La qualité de l'air

Christian Marchionini

SOMMAIRE

- L'air et l'atmosphère
- Les polluants
- Les impacts
- Les réglementations
- La surveillance et ses outils
- Le dispositif français
- Où trouver l'information

Composition volumétrique de l'air sec

Nom	Formule	%	ppm
Azote	N_2	78,09	780900
Oxygène	O_2	20,95	209500
Argon	A	0,93	9300
Gaz carbonique	CO_2	0,033	330
Néon	Ne	0,00182	18,2
Hélium	Не	0,000524	5,24
Méthane	CH ₄	0,0002	2
Krypton	Kr	0,000114	1,14
Hydrogène	H_2	0,00005	0,5
Protoxyde d'azote	N ₂ O	0,00005	0,5
Xénon	Xe	0,0000087	0,087
Ozone	O_3	0,000001	0,01

Quelles unités de mesure

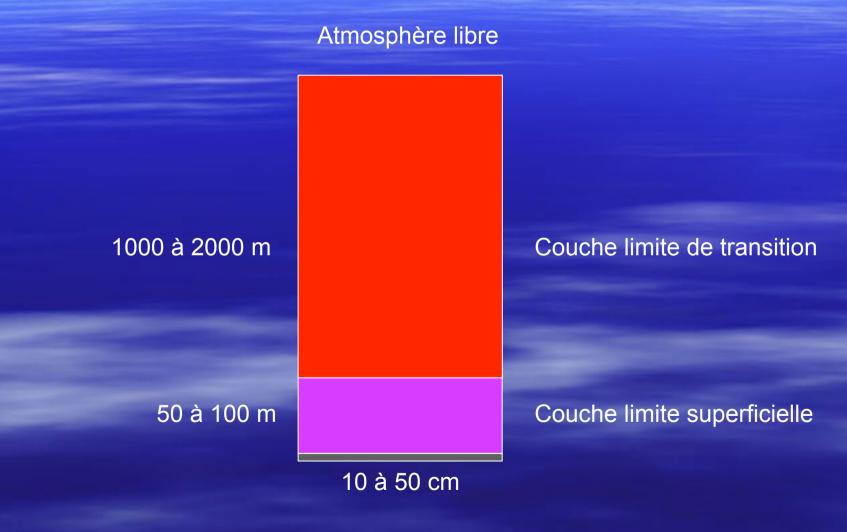
Nom	Formule	ppm
Azote	N_2	780900
Oxygène	O_2	209500
Argon	A	9300
Gaz carbonique	CO_2	330
Hélium	Не	5,24
Méthane	CH ₄	2
Hydrogène	H_2	0,5
Protoxyde d'azote	N_2O	0,5
Ozone	O_3	0,01

•ppm partie par million

1 ppm = 1 particule / 1 million de particules


•ppb partie par billion (anglais)

1ppb = 1 particule / 1 milliard de particules


•µg/m³

1 millionième de gramme dans 1 m³ d'air

La structure verticale


La couche limite atmosphérique

- La concentration en polluants de l'air
- Émissions dans l'atmosphère (cheminées, industries, transports, agriculture, ...)
- Les conditions météorologiques
 - Diffusion dans le fluide porteur par diffusion moléculaire (effet thermique)
 - Dispersion due à l'advection du vent (effet mécanique)
- Puits absorbants (végétation, océans, lacs, ...)

- L'environnement du lieu
 - Rugosité du sol (bâtiments, topographie)
 - Frein à l'écoulement de l'air
 - Création de turbulence dynamique
 - Echanges terre-mer (brise de mer)
 - Echanges ville-campagne (brise de ville)
 - Effet de vallée (inversion thermique, goulet)
 - Végétation (absorption, désorption, émissions naturelles)

La dispersion des polluants

Une couche d'inversion thermique

- Quelle est la définition ?
 - Substance en concentration anormale de quelques millionièmes à quelques milliardièmes de gramme par m³
 - Notion de toxicité
 - Notion d'impact sanitaire
- Gaz à effet de serre (GES)
 - $-CO_2$
 - Vapeur d'eau
 - Méthane, ...

- Les oxydes d'azote
 - Incolore, inodore, sans saveur
 - Toute combustion
 - Transport 50%
 - Industrie 20%
 - Agriculture 15%
 - Transformation d'énergies 10%
 - Irritant pulmonaire (asthmatiques et enfants)
 - Seuils NO₂ 200 μg/m³ durant une heure puis 400 μg/m³

Ozone

- Indispensable dans la stratosphère
- Polluant secondaire par transformations chimiques de polluants précurseurs et les UV
- Très irritant et agressif, toux, yeux
- Très néfaste pour la végétation et les matériaux
- Seuils
 - 180 μg/m³ sur une heure puis 360 μg/m³
 - 200 μg/m³ sur une heure pour les végétaux (objectif)

- Le dioxyde de soufre SO₂
 - Sources de combustion à énergie fossile
 - Centrales thermiques
 - Installations industrielles
 - Chaufferies collectives et individuelles
 - La plus importante les volcans
 - Effets irritants sur les muqueuses, toux, gêne respiratoire
 - Synergie avec les particules fines
 - Seuils SO₂ 300 μg/m³ durant une heure puis 500 μg/m³

- Les oxydes de carbone CO et CO₂
 - Inodore, incolore, sans saveur
 - Sources de CO
 - Par combustion incomplète
 - Principale source les transports
 - Transformation en CO₂
 - Les effets
 - Fixation à la place de l'oxygène dans le sang
 - Anoxie pouvant être mortelle
 - Seuils CO 10 mg/m³ durant 8 heures
- Le CO₂ n'est pas considéré comme un polluant mais c'est un puissant GES

- Les hydrocarbures ou COV
- De très nombreuses espèces
 - Sources très nombreuses
 - Peintures, encres, solvants, ...
 - Transports
 - Industries chimiques
- Les effets
 - Très variables selon les espèces
 - Gêne olfactive à des effets mutagènes et cancérigènes
- Seuil uniquement le benzène 10 µg/m³ en moyenne annuelle

Les poussières

- Des caractéristiques physiques très variées
 - Granulométrie
 - Couleur
 - Masse volumique
- Sources
 - Combustion de matière fossile
 - Transports
 - Industries métallurgiques, incinération, extractions minières
- Les effets
 - Variable selon la granulométrie
 - Irritation des poumons
 - Potentiel cancérigène et mutagène selon les espèces
- Seuils de poussières types PM10 à 50 μg/m³ en moyenne journalière

Les impacts

- La pollution de l'air évoquée dès l'antiquité
 - Dans les centres urbains
 - Exposition chronique
- Les accidents surviennent avec la concentration industrielle
 - Très haut niveau de pollution (pics)
 - Épisodes plus ou moins longs
 - Atteinte d'une population importante

Les impacts

Les accidents

- Vallée de la Meuse en décembre 1930
 - Conditions météorologiques défavorables
 - Brouillards d'acide sulfurique
 - 50 décès sur 1000 personnes touchées
- Donora aux USA en 1946
 - Brouillard chargé de fumées d'aciéries et traitement du zinc
 - 6000 habitants touchés sur 14000 et 20 décès
- Londres en décembre 1952
 - Smog épais durant plusieurs jours
 - Fumées industrielles et urbaines en concentration 10 fois supérieures à la normale
 - 4000 décès au dessus de la normale
- Bhopal Inde en décembre 1984
 - Accident industriel avec Isocyanate de méthyle (MIC)
 - 3500 décès directs à 25 000 selon les ONG

Les impacts

- Les pollutions chroniques
 - Hausse des allergies dans les sites urbains
 - Plus grand nombre de maladies respiratoires
 - Modification ou altération de la végétation
 - Dégradation des bâtiments

- Les premiers textes
 - Décret impérial de 1810
 - Action de salubrité publique donc d'hygiène
- Les textes en vigueur
 - Lois, décrets, arrêtés, circulaires
 - De quelques textes annuels il y a 30 ans à plusieurs dizaines chaque année

- Les directives européennes
 - L'environnement est une compétence européenne
 - Le droit européen est la base minimale
 - Chaque état membre est libre d'appliquer une législation plus rigoureuse
 - Fonctionnement en programme
 - CAFE, Auto OIL, ...
 - Directives cadres fixant les objectifs
 - Directives filles fixant les limites et conditions de surveillance et de diffusion de l'information

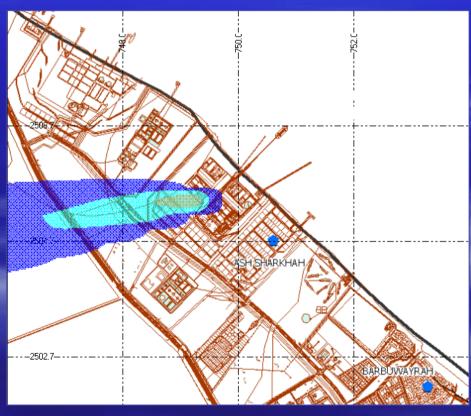
- Les organismes français
 - Le MEDD ministère de l'écologie et du développement durable
 - L'ADEME agence de l'environnement et de la maîtrise de l'énergie
 - Les DRIRE direction régionale de l'industrie de la recherche et de l'environnement
 - Législation ICPE
 - Intervention dans l'industrie
 - Les DDASS pour ce qui ne concerne pas les ICPE
 - Les réseaux de surveillance de la qualité de l'air

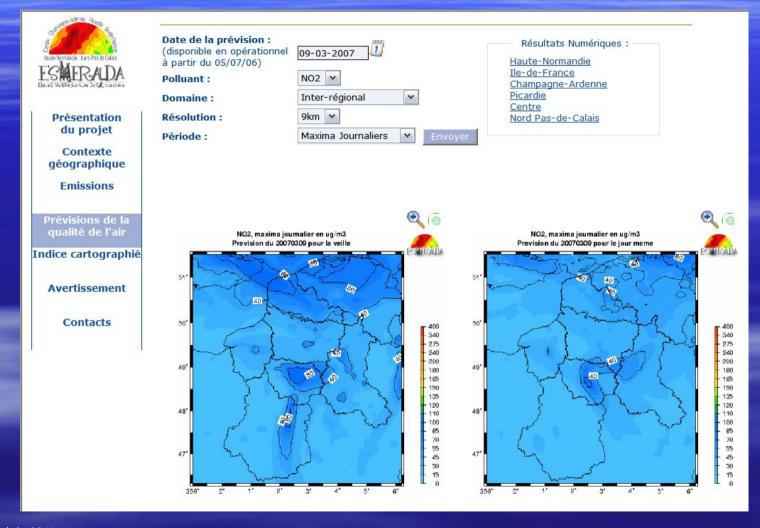
- Les comités de normalisation
 - AFNOR Agence française de normalisation
 - Rôle de référence
 - Recommandations
 - CEN comité européen de normalisation
 - Norme prime sur AFNOR
 - Utilisation obligatoire
 - ISO International Standard Organisation
 - Même rôle que AFNOR
 - Niveau mondial

- Les premières mesures
- Prélèvements manuels
- Analyses différées en laboratoire
- Premières mesures in situ dans les années
 1960 par barbotage chimique
- Développement des mesures automatiques dans les années 1970

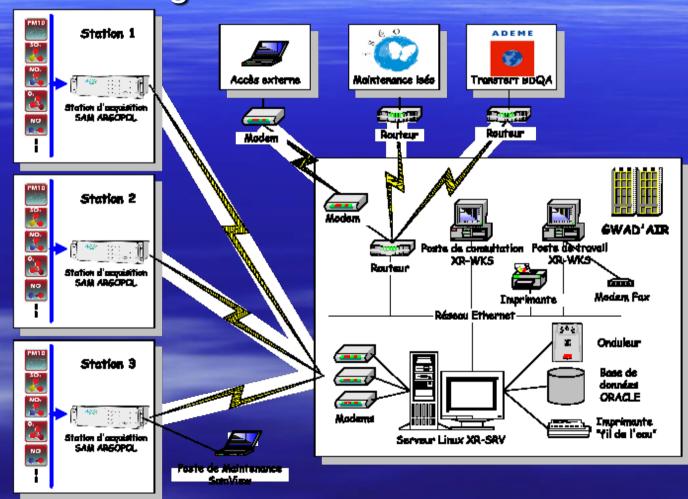
Les mesures automatiques

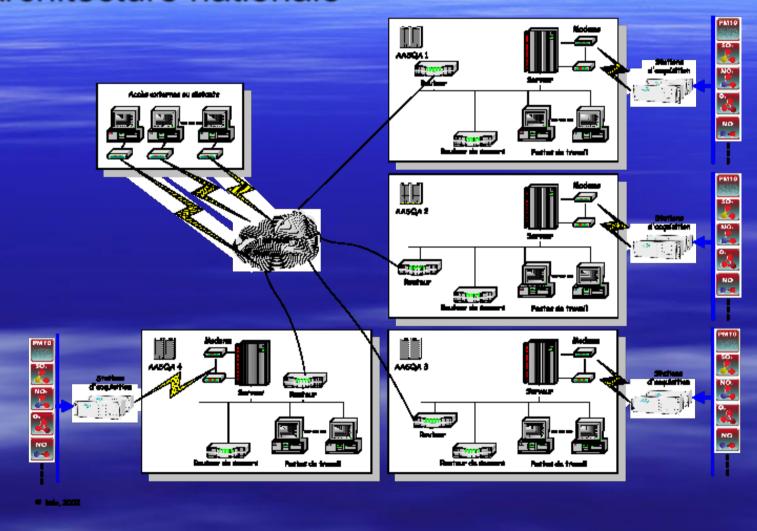
Les mesures automatiques





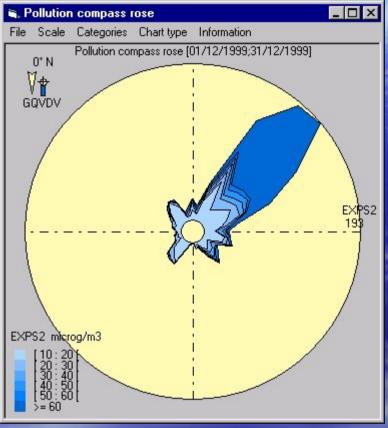
Les outils de modélisation




Les outils de modélisation

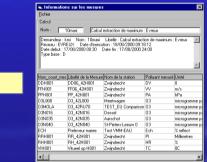
Architecture régionale

Architecture nationale

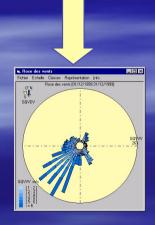


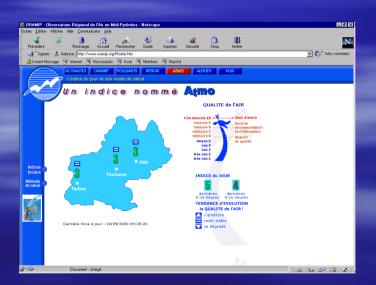
Les sites industriels

- La diffusion de l'information
- Les messages d'alerte sur la pollution
 - Presse et radios
 - SMS
 - Site internet
- Les résultats de mesures
 - Journalier et horaire
 - Bulletin mensuel
 - Rapport annuel
 - Banque de données nationale



La chaîne de l'information





La société iséo



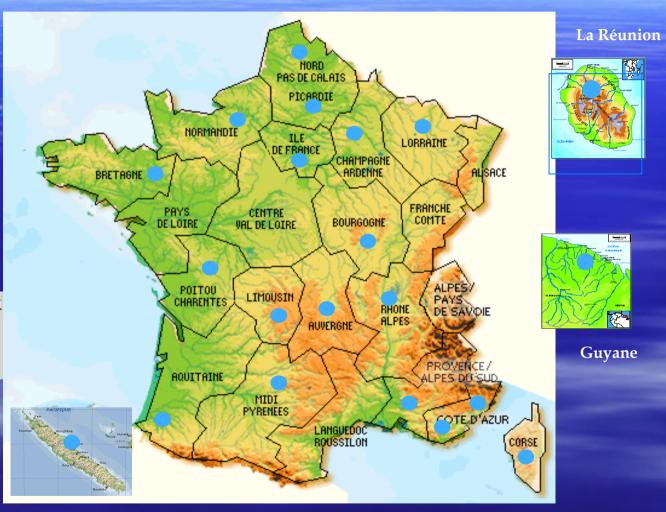
La surveillance environnementale

- Basée à Bidart (Sud Ouest France)
- 23 personnes
- Activité 2,6 M€
- 15% en R&D
- 55% à l'export
- GroupeEnvironnement-SA

- Études d'impact
- campagnes de mesures
- Expertises et conseils

 Outils logiciels dédiés à la surveillance de l'environnement

- Installation
- Mise en service
- maintenance


Références en France

Martinique

Guadeloupe

New Caledonia

Références Monde

- Associations Agréées pour la Surveillance de la Qualité de l'Air AASQA
- Association loi 1901 cogérée par
 - Des représentant de l'état (préfet, DRIRE, Ademe, ...)
 - Des collectivités locales (villes, communautés, régions, départements)
 - Les industriels (CCI, membre propre)
 - Les associations de défense de l'environnement

- Associations Agréées pour la Surveillance de la Qualité de l'Air AASQA
- Les missions
 - Assurer la surveillance de la qualité de l'air dans la zone attribuée
 - Maintenir le dispositif de surveillance en conditions opérationnelles
 - Exploiter les informations, alerter et diffuser les messages
 - Sensibiliser et informer le public

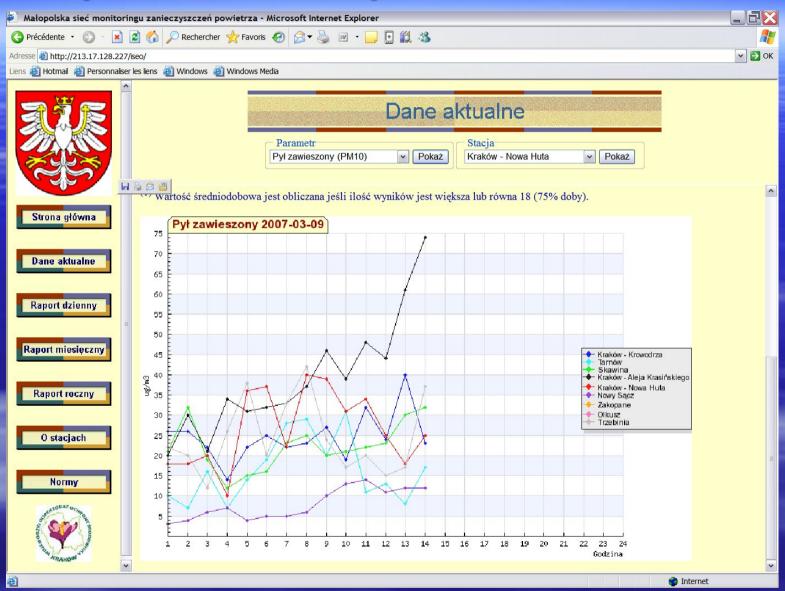
- Associations Agréées pour la Surveillance de la Qualité de l'Air AASQA
- Les moyens
 - Financement tripartite
 - État 1/3 par subventions
 - Collectivités locales 1/3 par subventions
 - Industriels 1/3 par cotisations ou don déductible de TGAP
 - Répartition théoriquement identique pour les investissements
 - Financements européens ou autres sur projets (FEDER, Interreg, Life, ...)

CarteAASQA

MEDDTL

- Représentant la France de l'environnement à l'étranger
- Donne les orientations politiques
- Assure la tutelle de l'ADEME et Inéris

Inéris


- Coordinateur technique pour les AASQA
- Pilote les projets techniques nationaux
- Gère le SIQA

- Les secrétariats permanents pour la prévention de la pollution industrielle SPPPI
 - Association de concertation locale
 - Sites industriels importants
 - Tous types de pollution
 - Actions de prévention et d'information
- Laboratoire central de la surveillance de la qualité de l'air LCSQA
 - École des mines de Douai, Laboratoire national d'essais et l'Inéris
 - Tests métrologiques
 - Étalons métrologiques de référence

Le dispositif européen

- Agence européenne de l'environnement
- Chaque pays est ou doit s'équiper pour répondre aux directives en vigueur sous peine de sanction
- Selon les pays la qualité de l'air est gérée
 - Par l'état directement ou une agence gouvernementale
 - Par les régions
- GMES ensemble de portail de données initié par l'U.E. en cours de déploiement

Le dispositif européen

Projet européen SANY – Sensors Anywhere

SANY is an **Integrated Project** (contract number 0033564) co-funded by the Information Society and Media DG of the European Commission within the RTD activities of the **Thematic Priority Information** Society Technologies"

SANY – Sensors Anywhere

Project acronym	SANY
Project reference	IST-2006-033564
Project type	Integrated Project
Start date	01/09/2006
Duration	36 months
Budget	11,2 M€
EC contribution	7,0 M€

Fraunhofer Institut
Informations- und
Datenverarbeitung

Bidgenössische Technische Hochschule Zürich Swiss Pederal Institute of Technology Zurich

Le dispositif USA

Les informations

France

- IFEN http://www.ifen.fr/
- AFFSET http://www.afsset.fr/
- Afnor http://www.afnor.fr
- Les AASQA http://www.atmonet.org/
- Encyclopédie de l'atmosphère http://www.ace.mmu.ac.uk/eae/french/french.html
- International
 - GMES http://www.gmes.info/
 - Risque et santé <u>http://ec.europa.eu/health/ph_risk/committees/04_scher/scher_cons_01_en.htm</u>
 - Rapports sur l'Europe http://reports.eea.europa.eu/technical report 2006 8/en
 - CITEAIR http://citeair.rec.org/
 - AEE http://countries.eea.europa.eu/SERIS
 - AEE ozone http://www.eea.europa.eu/maps/ozone/welcome
 - USA http://airnow.gov/
 - Sany http://sany-ip.eu/

Métrologie

- Recherche d'indicateurs globaux (Atmo, Cit'air...)
- Mobilité donc miniaturisation, maintenance simple
- Simulation et capteurs virtuels
- Qualité biologique de l'air et toxicité
- Mesures de terrain en air ambiant et mesures industrielles différentes
- Diminuer les coûts d'exploitation pour densifier les points de mesures
- Analyse in situ privilégiée pour la disponibilité rapide
- Préleveurs automatiques sur évènements pour analyse inaccessible in situ (récupération des échantillons)

- Couverture de l'espace
 - Air intérieur
 - Quels polluants représentatifs
 - Durée de mesures et fréquences
 - Domotique et qualité de l'air
 - Extérieur
 - Zones urbaines de plus en plus surveillée et réglementé (ZAPA Zone d'Actions Prioritaires pour l'Air)
 - Grandes zones pour identifier les masses d'air
 - Zone limitée pour identifier et suivre un impact localisé
 - Marché mondial
 - Mesures satellitaires
 - Conditions d'exploitation différentes (Europe, Asie, M.O....)
 - Intercomparaison et mixage des données

Couverture temporelle

- Situation d'urgence
 - Mesure et transfert de résultat rapide
 - Fréquence importante et recherche des pics
 - Analyse rapide avec des outils de prévisions si possible
- Situation chronique
 - Fréquence réduite
 - Analyse continue, discontinue et modélisation
 - Analyses plus fouillées en laboratoire
- Situation intermédiaire
 - Fréquence horaire en site urbain, bi-journalières en général
 - Mesures réglementaires automatiques avec météorologie
 - Modélisation systématiques pour les prévisions à 1 jour

- Critères à évaluer sur l'évolution du dispositif
 - Coût des transmissions des informations
 - Coût de la Maintenabilité des dispositifs par rapport à l'investissement consenti
 - Robustesse et fiabilité technique du dispositif
 - Assurance-Qualité et conformité aux normes
 - Capacités d'intégration de différentes technologies dans les systèmes existants (national et international) système Plug&Play
 - Interconnexion des différents outils (métrologie automatique, données manuelles, modélisations, données spatiales...)