
Enhancing TCP Performance in Networks with

Small Bu�ers
Ashu Razdan, Alok Nandan, Ren Wang, Medy Sanadidi and Mario Gerla

Network Research Laboratory

Computer Science Department

University of California, Los Angeles

Email:frazdan,alok,renwang,medy,gerlag@cs.ucla.edu

Abstract|TCP performance can be severely a�ected when
the bu�er capacity is small. This is possible either because
many 
ows share the network or that the bandwidth-delay
product is large (e.g. satellite links). The behavior of var-
ious versions of TCP with respect to bu�er capacity issues
has not been studied in much detail. In this paper, we in-
vestigate the behavior and performance of di�erent TCP
variants under small bu�er capacity conditions. We recog-
nize TCP pacing as a potential solution. However, instead of
using TCP's sending rate as the dictating metric, we make
use of the bandwidth-share estimate (BSE) maintained by
TCP Westwood, to set the pacing interval. We call this
newly proposed protocol Paced-Westwood. We also show the
need to scale BSE further to mitigate the e�ects of positive
feedback in BSE. For this, we propose a further enhance-
ment that we call �-paced Westwood that uses a scaling
parameter � to enforce convergence of BSE and the pacing
interval.The proposed �-paced Westwood uses its BSE to
space the packet bursts during the slow-start phase, result-
ing in a superior throughput in the troublesome low bu�er
capacity cases. With the help of simulations we show that
our enhanced TCP Westwood outperforms a both unpaced
as well as paced TCP NewReno under low bu�er capacity
networks.

Keywords|TCP Performance, small bu�ers

I. Motivation

TCP is the most widely deployed transport layer proto-

col in the Internet today. TCP was originally designed to

run over a variety of communication links. However, recent

advances in satellites and �bre-optic networks have caused

us to re-evaluate TCP's purported 
exibility. One problem

that is common to both satellite and �bre-optic networks

is that the capacity of these networks can be much greater

than in conventional networks. The mismatch between the

high capacity of these networks, and available storage at

the queues of individual network routers poses problems

for TCP. Given the ever-growing interest in these new net-

work technologies and the centrality of TCP in network

communication, the investigation done in this work was

imperative.

A. The Problem

TCP uses two algorithms, namely Slow Start (SS) and
Congestion Avoidance (CA), to control the 
ow of pack-

ets in the Internet [8]. With SS, the Congestion Window

(cwnd) is set to one segment and is incremented by one seg-

ment for every non-duplicate ACK received. If we suppose

the window advertised (awnd) by the receiver does not

limit the source throughput, this process continues until

the SS threshold (Wth) is reached or losses occur. If Wth is

reached without encountering any losses, the source moves

into a more conservative approach of congestion avoidance

where it increases the Window (W) by one packets for ev-

ery window of ACKs. Otherwise, W and Wth are both

reduced and a recovery phase is called. TCP supposes this

new Wth to be a more accurate estimate of the network

capacity.

In this paper we present an investigation of a problem

that occurs when TCP operates in a network having a small

bu�ering capacity compared to its bandwidth-delay prod-

uct. It is the problem of loosing packets during SS be-

fore fully utilizing the available bandwidth. To understand

this particular problem, consider the following idealized be-

havior of TCP during SS. During SS, for every segment

ACKed, the sender transmits two new segments. In e�ect,

this behavior means the sender is transmitting at twice the
data rate of the segments being ACKed. And keep in mind

the separation between ACKs represents (in an ideal world)

the rate segments can 
ow through the bottleneck router

in the path. So the sender is bursting data at twice the

bottleneck rate, and a queue must be forming during the

burst. In the simplest case, the queue is entirely at the

bottleneck router, and at the end of the burst, the queue

is storing half the data in the burst. 1

If the network bu�ers are not designed to absorb this

high rate, they will over
ow and losses are detected before

the source gets into congestion avoidance. The window size

when these losses are detected is a wrong estimation of the

network capacity. But TCP considers it as the maximum

reachable window which results in a throughput degrada-

tion. This problem, known as the double SS phenomenon,

has been studied previously in [9]. It can be seen in any

SS phase if the bu�er capacity does not scale with the

bandwidth-delay product of the network. Also it can be

seen in the �rst SS of the connection and if the default val-

ues are bad then the performance of short-lived connections

are a�ected. A phenomenon of three consecutive SS phases

per cycle has also been observed and analyzed in [3]. Due

1During the burst, we transmitted at twice the bottleneck rate.
Suppose it takes one time unit to send a segment on the bottleneck
link. During the burst the bottleneck will receive two segments in
every time unit, but only be able to transmit one segment. The
result is a net of one new segment queued every time unit, for the life
of the burst.



0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

pa
ck

et
s/

s)

Buffer Size (packets)

Throughput vs Buffer Size

"Tahoe"
"Newreno"

"Westwood"
"Westwood-NR"

Fig. 1. Throughput Vs Bu�er Size for various TCP variants

to the multiplicative decrease of the congestion window af-

ter a loss detection, these consecutive slow-starts results in

a deterioration in TCP throughput. This phenomenon oc-

curs in a cyclic manner in networks having a small bu�ering

capacity compared to their bandwidth delay product. This

phenomenon [3] has been observed in TCP Tahoe, as seen

in the graph 1.

The analysis of the double and triple slow-start phe-

nomenon using the 
uid 
ow approach has been done in

[9] and [3] respectively which gives us the necessary con-

ditions for double (1) and triple slow-start (2) below where

B is the bu�er size and �T is the pipe size.

B

�T + 1
<

1

3
(1)

Intuitively too, the triple slow-start phenomenon would

occur when the bu�ers are much more constrained com-

pared to the case of double slow-start as is con�rmed by

the two analytic results.

B

�T + 1
<

1

7
(2)

Also note from the graph 1 the value at which the triple

slow-start phenomenon starts degrading the throughput.

Given the fact that the pipe size i.e �T is 107 packets.

We observe that throughput degrades at the 15-20 packets

mark that's approximately the one-seventh of 107. In Fig-

ure 1, we plot the throughput achieved by Tahoe, Newreno

and Westwood in the case of small bu�ers. The curve

corresponding to Tahoe conforms to the analysis done by

Barakat etal. We notice that the dips are most promi-

nent around bu�er size equal to 15. Barakat etal. explain

these dips by exposing the double and triple slow start phe-

nomena occurring at bu�er sizes equal to �T/7 (which is

roughly 15 packets). However, similar inconsistencies in

throughput can also be seen for Newreno and Westwood.

This behavior warrants further analytical study for these

TCP variants.

In the course of our investigation we discovered a mecha-

nism that was initially proposed to improve performance in

such a scenario. We propose our enhancement to a recent

TCP variants which gels very well with this original idea

proposed in [11].

The rest of the paper is organized as follows-Section II

describes previous work in this area, speci�cally with ref-

erence to pacing [11]. Section III discusses brie
y about

one of the TCP variants we use before delving deep into

our proposed enhancement.Section IV describes the exper-

imental algorithms, simulation methodology and section V

describes the simulation results. Finally, we conclude in

section VI.

II. Related Work

Several solutions have been proposed to the above men-

tioned problem . One proposition [4] is to reduce the SS

threshold Wth so that to get in CA before the over
ow of

bu�ers.The idea is to decrease theWth to bring it below the

over
ow windowWB [4], [3] . This makes the source enter

CA with one SS without bu�er over
ow. Because Wmax is

imposed by the network parameters, the only possible way

is to change the reduction factor one half used by TCP

in the calculation of Wth . However this scheme does not

always work, in certain cases where the ratio on the left

side of the equation (1) falls below 1/4, it does not work

as proved in [4]. However, another more interesting and

powerful idea [4] is packet-spacing. The idea is to keepWth

unchanged and to increase WB so that to get in CA before

bu�er over
ow. We know WB is inversely proportional to

the queue building rate. To increase it, the packets that

TCP sends in bursts during SS is spaced.

A. Is Pacing the Solution?

This idea of packet spacing is not new. Earlier work

of [7] to support higher throughput for Persistent-HTTP

connections over TCP uses the idea of rate-based pacing

(RBP). Partridge argues [11], [1] that pacing can address

problems in TCP performance on long-latency, high band-

width satellite links while the Berkeley WebTP group has

combined pacing, receiver -driven congestion control, and

application-level framing into a transport protocol special-

ized for web traÆc [12]. However all the above implemen-

tations of Pacing to counteract the bu�er over
ow problem

lack in one regard. What should be the rate at which the

packets should be paced? Some of the implementations es-

timate it from the incoming ACK rate, while others use the

latest RTT values to predict the optimum pacing parame-

ter.

A.1 TCP Pacing

Pacing is a hybrid between pure rate control and TCP's

use of ACKs to trigger new data to be sent into the net-

work. As a traditional window based protocol, TCP uses

a window to determine the number of packets that can be

sent and uses the receipt of acknowledgments to trigger the

sending of packets. Pure rate based schemes, on the other

hand, use rates to determine both how much and when to

send. Pacing is a hybrid between these two approaches, it

uses the TCP window to determine how much to send but



uses rates instead of acknowledgments to determine when
to send [11]. Instead of sending an entire window of packets

in a single burst at the beginning of each round-trip time,

the TCP sender should send out the packets in a steady

stream over the entire course of a round-trip time.2 In

fact, under the ideal conditions, a Paced TCP implemen-

tation will only cause queuing bottlenecks to occur when

the TCP sender is genuinely sending at a rate that is too

fast for the server itself. Pacing is an attractive solution to

the queuing bottleneck problems for at least two reasons.

First, it relieves network designers from having to guess

at bu�er sizes based on typical bandwidth-delay products.

Second, it can be implemented by modifying TCP senders

only. Pacing does not require participation of the network's

intermediate routers or TCP receivers.

A.2 TCP Paced-Newreno

For TCP Newreno, the pacing interval is dynamically

set to the TCP sender's instantaneous rate [11]. Due to

the fact that TCP Newreno does not have a bandwidth

estimation mechanism, the only way the pacing interval

can be set is through a very basic computation.

Æ =
1

CWND

latestRTT

(3)

It should be noted that the pacing rate is being set as

the rate of the TCP sender irrespective of the bottleneck

bandwidth!

This observation suggests using Pacing along with a in-

stantaneous sender rate estimator as a potential solution.

In the next section we propose our enhancement leveraging

this idea of instantaneous rate estimation using one of the

newer TCP variants.

III. Our Proposed Enhancement

Before we get into our proposition we give a brief back-

ground on TCP Westwood, one of the newer TCP variants

that uses the idea of rate estimation to set the congestion

window.

A. Background

TCP Westwood (TCPW in short) [6], [13] is a sender-

side only modi�cation of the TCP Reno protocol stack that

optimizes the performance of TCP congestion control over

both wireline and wireless networks. TCPW is based on

end-to-end bandwidth estimation to set congestion window

and slow start threshold after a congestion episode, that is,

after three duplicate acknowledgments or a timeout. The

bandwidth is estimated by properly low-pass �ltering the

rate of returning acknowledgment packets. The rationale of

this strategy is simple: in contrast with TCP Reno, which

halves the congestion window after three duplicate ACKs,

2For example, if the current TCP window is 8 packets and the
RTT is 500ms, then the TCP sender should send out 1 packet every
62.5ms is enough time for a 3 Mb server to process a single packet,
and therefore the queue in the network should never build up.

TCP Westwood sets a slow start threshold and a conges-

tion window which tries to be consistent with the band-

width used at the time congestion is experienced. Resetting

the window to match available bandwidth makes TCPW

more robust to sporadic losses due to transmission channel

problems (e.g. satellite links, wireless links). These often

cause conventional TCP to over-react, leading to unneces-

sary window reduction.

B. Some Observations

Intuitively, TCP Westwood and Pacing should work to-

gether and complement each other because of two reasons-

� Sender-side modi�cations: Both the Pacing mechanism

and Westwood are sender side [5] modi�cations 3. So

the implementation and deployment of the two mechanism

side-by-side is no problem at all.

� Feedback E�ect: Pacing uses Westwood bandwidth esti-

mation and Westwood uses the pacing mechanism to better

estimate the bandwidth measurement, so the two mecha-

nism work in� tandem and help enhance the performance

of each other.

C. Our Proposal

Our proposed enhancement augments the pacing scheme

by using the Bandwidth-Share-estimate (BSE in short) of

TCP Westwood to determine how much to send and when
to send, see section II-A above. Most of Pacing implemen-

tations use the pacing mechanism across the lifetime of the

connection. However our proposition is that we use Pac-

ing only during the slow-start phase of the TCP window

evolution.

TCP pacing is an elegant solution to the small bu�er

problem. Pacing can be implemented through the integra-

tion of a Leaky Bucket with a TCP sender. The token

rate for the leaky bucket dictates the pacing interval. In

TCP pacing, this packet inter-departure time is not a �xed

parameter. The pacing interval changes dynamically based

on the current sending rate of the TCP sender. For TCPW

the pacing rate should be the same as the bandwidth share

BSE measured from returning ACKs.

C.1 Initial Enhancement: TCP Paced-Westwood

In the previous subsection, we saw that the pacing inter-

val for TCP Newreno was dependent on the TCP sender's

instantaneous rate, irrespective of the bottleneck's band-

width. However, Westwood maintains this measure in the

BSE parameter. We expected that a reasonable pacing rate

as indicated by this bandwidth estimates should work. For

this, we use ABSE estimates instead of the BE proposed

in the original TCPW.

However, there is a hazard in setting the pacing interval

based purely on the BSE. This is because we expected to

see some feedback e�ects, because if we over-estimate the

3By the de�nition however, pacing can be both a sender or a re-
ceiver side modi�cation. Of course, receiver pacing is less e�ective,
since acknowledgments arriving at the sender can trigger multiple
data sends; with receiver pacing, these packets will be sent in a burst.
Further, receiver pacing is susceptible to ACK compression.



pacing interval (TCPW starts o� with a not-so-accurate

BSE), it would a�ect the BSE (due to an increased ACK

spacing), which in-turn would again a�ect the pacing in-

terval (as we plug in the pathological BSE samples in the

pacing scheme)! So we ought to be very careful, or else we

might get stuck in a local maximum for the pacing interval.

The simulation study in next section con�rm our intuition.

C.2 Second Re�nement: TCP �-paced Westwood

As pointed out in the previous subsection, the positive

feedback e�ect was suspected to cause potential divergence

in the BSE estimates. To mitigate this, we used the fol-

lowing scaled BSE to calculate the packet inter-departure

times.

RE = �BSE (4)

It should be noted that having RE greater than BSE does

not mean that the rate of TCP is RE, but it means that the

bursts are being sent out at RE. These are clearly di�erent.

However, we do need a higher RE than BSE, or else the

pacing intervals (and BSE as well) will not converge!

Now, if we set RE with alpha greater than 1.0, although

we are not being conservative, we are pacing the connec-

tion! What we do achieve here is remove the instability of

BSE due to the feedback e�ects. That we only use a \low-

pass" �lter in TCPW is one of the problems. If we are

to remove the instability without using the constant alpha

(larger than 1.0, which is not foolproof), we shall need to

insert a \band-pass" �lter instead. This is because it is the

high pacing interval (high ACK spacing) that is killing us.

Æ =
1

RE
(5)

We also compared the performance of �-paced Westwood

with Paced-Newreno. These results are included in the

next section.

D. Implementation

We have incorporated pacing into the ns-2 [10] simula-

tion code for all TCP variants. The ns-2 code closely mod-

els the congestion control behavior of all of the TCP im-

plementations in widespread use, including TCP Newreno

as well as newer variants like TCP Westwood. We have en-

abled delayed acknowledgments for this study as well, un-

like the pacing implementation in [2]. Our implementation

of pacing uses a variant of the leaky bucket algorithm and is

very similar to the implementations in [11]; one di�erence

being that these implementations use pacing throughout

the lifetime of a 
ow while we use it during speci�c periods

(e.g. after idle time or at connection start up) ; another dif-

ference is that Timeouts are scheduled at regular intervals

of duration RTT/BSE (instead of RTT/Window) [11] , [2]. A

packet is transmitted from the window whenever the timer

expires. This ensures that packet transmissions are spread

across the whole duration of the RTT.

S 1

Sn

R1

Rn

270ms

1.5Mbps

5ms

10Mbps

5ms

10 Mbps

5ms

10Mbps

5ms

10Mbps

Fig. 2. Simulation Setup for Multiple Flow study

IV. Performance Evaluation

A. Experimental Algorithms

In order to study the e�ect of pacing on TCPWestwood,

we examined two existing TCP algorithms with our pro-

posed enhancement.

TCP NewReno is the most widely deployed TCP version

in the Internet today. For TCP Newreno, the pacing inter-

val is dynamically set to the TCP sender's instantaneous

rate. Due to the fact that TCP Newreno does not have a

bandwidth estimation mechanism, the only way the pacing

interval can be set is through a very basic computation as

shown in equation (3)

It should be noted that the pacing rate is being set as

the rate of the TCP sender irrespective of the bottleneck

bandwidth! As we see in the results, the bandwidth-share

estimate (BSE) maintained by TCP Westwood proves in-

valuable to set the pacing rate.

B. Simulation Scenario

The simulation setup for the single 
ow is shown in Fig-

ure 3.The topology used for the multiple 
ows case is shown

in Figure 2. One or more TCP connections are established

between a set of senders and receivers through a single bot-

tleneck link. The bottleneck link uses FIFO scheduling and

drp tail bu�er management.

We evaluate the impact of pacing on the aggregate

throughput for all 
ows as well as individual 
ow through-

puts. We also measure the fairness using a modi�ed version

of Jain's fairness index as suggested by [2] for 
ows with

variable RTTs referred to as Normalized Fairness.
The scenario consists of three nodes connected in a linear

topology. The source runs a TCP variant, with a persis-

tent FTP connection at the application layer. The inter-

mediate node acts as the bottleneck router. The source

is connected to this bottleneck router with a high-speed

link of rate 10Mbps. The bottleneck router is connected

to the destination with a link of rate 1.5Mbps. The delays

on these links are 10ms and 270 ms respectively, the lat-

ter being characteristic of a high-delay satellite network.

These parameters give us a bandwidth delay product of

110Kb, or 107 packets. The metric chosen in this work for

performance evaluation is TCP goodput. For the follow-

ing analysis, however, we shall use the words goodput and

throughput interchangeably. This metric is calculated as

the total number of packets transmitted per unit time.



B CA

SOURCE DESTINATION

BUFFER

10 Mbps

10ms

1.5 Mbps

270ms 

Fig. 3. Simulation Setup for Single Flow study

V. Results

The simulation results are organized as follows: section

V-A proves the existence of the double and triple slow start

phenomenon across all the TCP variants not just TCP

Tahoe which [3] performed. Sections 8 and V-C presents

results for single and multiple 
ows respectively.

A. Preliminary Simulations

In our �rst experiment, we worked with three well known

TCP variants, namely Tahoe, Newreno and Westwood.

We also worked with the latest version of TCP West-

wood (Westwood-NR) that incorporate Newreno features

like handling of multiple losses in a window. In this ex-

periment, we plotted the throughput of these variants for

a range of bu�er sizes. We increase the bu�er size from

0 to a maximum of 50, which is roughly one-half of the

bandwidth-delay product. As can be seen in Figure 1, the

throughput stabilizes and saturates around a bu�er size of

38 packets. This value is well below one-half of the pipe

size (107/2 packets/s). Thus, we observe that the through-

put reaches it's maximum value at around one-half of the

pipe size.

However, for very small bu�er sizes, the throughput

curve is seen to be highly unstable. In their analysis,

Barakat etal used TCP Tahoe and exposed the double

and triple slow-start phenomena that occur for bu�er sizes

around one-third the pipe-size. Similar patterns are also

noticed for TCP Newreno and Westwood. For Newreno,

we notice a drop at bu�er size equal to 19, which is close

to one-sixth of the pipe-size.

It would only be fair to illustrate to what extent pac-

ing can help the small bu�er scenario. Figure 4 compares

the performance of a non-paced Newreno connection with

a paced Newreno. Note that the bu�er size chosen for this

experiment was 2, which is extremely small. It can be seen

in the plot that the non-paced connection goes into a series

of slow-start phases. Eventually, the value of ssthresh for

Newreno is set equal to 2. This is due to the fact that the

connection experiences multiple drops for congestion win-

dow values greater than 2. However, the paced Newreno

can pump away data comfortably, and reaches the conges-

tion window value equal to 100, which is the maximum

permissible value in our simulation.

B. Single Flow

We �rst evaluate the performance of Paced-Westwood

with Paced-Newreno. Figure 5 illustrates the performance

comparison of Paced-Newreno and Paced-Westwood. We

expected Paced-Westwood to outperform Paced-Newreno.

However, as it was noticed that for small bu�er sizes the

bandwidth estimation algorithm used by TCP-Westwood

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

C
on

ge
st

io
n 

W
in

do
w

 (p
ac

ke
ts

)

Time (s)

TCP Pacing Evaluation (Buffer Size = 2)

"Non-paced Newreno"
"Paced Newreno"

Fig. 4. Pacing evaluation for TCP Newreno`

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25
C

on
ge

st
io

n 
W

in
do

w
 (p

ac
ke

ts
)

Time (s)

Pacing Evaluation for Newreno and Westwood

"Paced-Westwood"
"Paced-Newreno"

Fig. 5. Pacing comparison for Newreno and Westwood

does not perform well, the pacing interval value is set to

a much larger value than it should be. This results in a

overly underestimated BSE, and consequently, an overly

overestimated pacing interval. Also, due to a positive feed-

back e�ect, the BSE algorithm always underestimates the

bandwidth share, and this leads to the pathological case

wherein Paced-Westwood sends out packets at a very low

rate, due to the large pacing interval. This can be seen in

Figure 5, where Paced-Newreno clearly outperforms Paced-

Westwood, something contrary to what we though would

happen. Our �nal re�ned �-paced Westwood mitigates the

positive feedback e�ect of pacing by scaling the BSE es-

timated by Westwood by a factor �. This parameter �

is typically larger than 1. To evaluate the performance of

�-paced Westwood, we varied the values of �, and plot-

ted its throughput. Figure 6 shows that by increasing

the value of � to 2.0, the congestion widow for Paced-

Westwood increases at a much faster rate than with � set

to 1.0. We compared the performance of �-paced West-

wood with Paced-Newreno. Figure 7 shows this evaluation

plot. We see that �-paced Westwood performs marginally

better than Paced-Newreno.

C. Multiple Flows

In light of the investigation of [2] we must evaluate the

performance of our enhancement to see if the synchronisa-

tion e�ect of pacing is exacerbated or diminished by the

bandwidth estimation procedure of TCPW. In the experi-



0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

C
on

ge
st

io
n 

W
in

do
w

 (p
ac

ke
ts

)

Time (s)

Alpha-paced Westwood

"Alpha = 1.0"
"Alpha = 1.1"
"Alpha = 1.2"
"Alpha = 1.3"
"Alpha = 1.4"
"Alpha = 1.5"
"Alpha = 2.0"

Fig. 6. Performance of Alpha-paced Westwood

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

C
on

ge
st

io
n 

W
in

do
w

 (p
ac

ke
ts

)

Time (s)

Paced-Newreno & Alpha-paced Westwood (Alpha = 3.9)

"Alpha-paced Westwood"
"Paced-Newreno"

Fig. 7. Alpha-paced Westwood vs Paced-Newreno

ment we observe that for bu�er sizes which are of the order

of one fourth of the bandwidth * Delay product Figure 9,

�-paced Westwood outperforms the other variants when

there are multiple 
ows as well.

VI. Conclusions and Future Work

We analyzed the e�ect of small bu�ers on TCP through-

put. We recognized TCP pacing as a potential solution.

We also noted that the calculation of packet inter-departure

time in the current attempts, blindly use the instantaneous

TCP sending rate. Not using TCP's sending rate as the

dictating metric, we instead make use of the bandwidth-

share estimate (BSE), maintained by TCP Westwood to

set the pacing interval. We call this newly proposed proto-

col Paced-Westwood. We also realize that we need to scale

BSE further to mitigate the e�ects of positive feedback in

BSE. For this, we propose another protocol that we call

�-paced Westwood. This uses a scaling parameter � to

enforce convergence of BSE and the pacing interval.

Our work evaluated the performance of TCP variants

in a single 
ow case, as well as the multiple 
ows case.

Our �-paced Westwood outperforms other variants in the

small-bu�er scenarios.

References

[1] ACK spacing for high bandwidth-delay paths with insuÆ-
cient bu�ering. Internet Draft draft-rfced-info-partridge-01.txt,
September 1998.

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (B

yt
es

/s
)

Buffer Size (packets)

"Alpha-Paced TCPW (alpha=1.3)"
"Alpha-Paced TCPW (alpha=2)"

"TCP"
"Paced TCP"

"Paced TCPW"

Fig. 8. Single Flows

100000

110000

120000

130000

140000

150000

160000

10 15 20 25 30 35 40 45 50
Pe

r C
on

ne
ct

io
n 

Th
ro

ug
hp

ut
 (B

yt
es

/s
)

Buffer Size (packets)

"Alpha-Paced TCPW (alpha=1.3)"
"Alpha-Paced TCPW (alpha=2)"

"Paced TCPW"
"Paced TCP"

"TCP"

Fig. 9. Multiple Flows: 10 connections, bandwidth*delay=200 pack-
ets

[2] Amit Aggarwal, Stefan Savage, and Thomas Anderson. Under-
standing the performance of TCP pacing. In INFOCOM (3),
pages 1157{1165, 2000.

[3] Chadi Barakat and Eitan Altman. Analysis of the phenomenon
of several slow start phases in TCP. ACM Sigmetrics, 2000.

[4] Chadi Barakat, Nesrine Chaher, Walid Dabbous, and Eitan Alt-
man. Improving TCP/IP over geostationary satellite links. IEEE
Globcom, 1999.

[5] R. Lo Cigno, G. Procissi, and M. Gerla. Sender-side TCP mod-
i�cations:an analytic study. Networks, 2002.

[6] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and
S. Mascolo. TCP Westwood: Congestion window control using
bandwidth estimation. IEEE GlobeComm, 2001.

[7] John Heidemann and Visweswaraiah Vikarm. Performance in-
teractions between P-HTTP and TCP implementations. ACM
Computer Communication Review, 27, 1997.

[8] Van Jacobson. Congestion avoidance and control. In ACM SIG-
COMM '88, pages 314{329, Stanford, CA, August 1988.

[9] U. Madhow and T.V. Lakshman. The performance of TCP/IP
for networks with high bandwidth-delay products and random
loss. IEEE/ACM Transactions on Networking, June 1997.

[10] Steve McCanne and Sally Floyd. Ns-simulator. 1995.
[11] Craig Partridge, Joanna Kulik, Robert Coulter, and Denis Rock-

well. Paced TCP for high bandwidth-delay networks. WOSBIS,
1999.

[12] Gupta Rajshri, Mike Chen, Steven McCanne, and Jean Walrand.
Webtp:a receiver-driven web transport protocol. INFOCOM,
1999.

[13] A. Zanella, G. Procissi, M. Gerla, and M. Y. Sanadidi. TCP
Westwood: Analytic model and performance evaluation. IEEE
GlobeComm, 2001.


