
Exact Sampling of TCP Window States
�

Ashish Goel
�

University of Southern California
Michael Mitzenmacher

�
Harvard University

February 15, 2002

Abstract

We demonstrate how to apply Coupling from the Past, a simulation technique for exact sampling, to
Markov chains based on TCP variants. This approach provides a new, statistically sound paradigm for
network simulations: instead of simulating a protocol over long times, or explicitly finding the stationary
distribution of a Markov chain, use Coupling from the Past to quickly obtain samples from the stationary
distribution.

Coupling from the Past is most efficient when the underlying state space satisfies a partial order and
certain monotonicity conditions. To efficiently apply this general paradigm to TCP, we demonstrate that
the states of a simple TCP model possess a monotonic partial order; this order appears interesting in its
own right.

Preliminary simulation results indicate that this approach is quite efficient, and produces results which
are similar to those obtained by simulating a TCP-Tahoe connection.

1 Introduction

There are two commonly used methods for determining or comparing the performance of TCP variants. The
first approach is to use simulations over large time scales, using tools such as ns [17]. While useful in practice,
this approach generally lacks a statistical basis, without a priori knowledge of how long a TCP simulation
should run in order to obtain a good sample. A second approach is to develop a simplified TCP model, often
based on a Markov chain. (Another recently proposed related approach is to use stochastic fluid models [15].)
If enough simplifying assumptions are made, such a model may yield an equation (or bounding equations)
for relevant quantities such as throughput [16, 19, 6, 3]. Such a tack often requires fairly extreme simpli-
fications, however. Alternatively, given an appropriate model one may be able to calculate explicitly the
equilibrium distribution [18, 22], from which relevant quantities can be derived. The calculations required,
however, grow with the complexity of the model. For example, if complex loss models are used, calculating
the equilibrium distribution may require significant resources.

We suggest another approach that may prove useful for studying performance of TCP variations or sim-
plifications. This approach is to treat a TCP connection as a Markov chain and obtain a sample from the
�
A preliminary version of this paper will appear in the Proceedings of IEEE Infocom, 2002.�
Ashish Goel is at the Department of Computer Science, University of Southern California. Supported in part by the DARPA

NMS program under contract no. N66001-00-C-8066 (”SAMAN”). Email: agoel@cs.usc.edu�
Michael Mitzenmacher is at the Division of Engineering and Applied Sciences, Harvard University. Supported in part

by an Alfred P. Sloan Research Fellowship and NSF grants CCR-9983832, CCR-0118701, and CCR-0121154. Email:
michaelm@eecs.harvard.edu

1

stationary distribution of this chain. Unlike previous work, our approach does not require computing the en-
tire stationary distribution. Also, unlike simulation attacks that simply run the chain for a long period of time,
our approach is grounded with a solid statistical basis. Specifically, under certain conditions, one can run a
Markov chain in such a way that one is sure to obtain an exact sample from the stationary distribution.

We apply “Coupling from the Past” (CFTP) [20], a simulation technique widely used to sample combina-
torial structures in mathematics and physics, to Markov chains for TCP. While this connection is theoretically
interesting in its own right, we believe that CFTP may also prove a practically useful tool for network analy-
sis. Indeed, we suspect that CFTP may prove useful for studying other similar complex network phenomena
that can be modeled effectively as Markov chains.

CFTP is essentially a variant of the Markov Chain Monte Carlo method [8, 13] and a natural extension of
the work on approximate and exact sampling for specific Markov chains [4, 14, 13]. Markov Chain Monte
Carlo methods have already been used widely for problems arising from combinatorics (e.g. [5, 1]), physics
(e.g. [10, 11]), statistics (e.g. [4]), and optimization (e.g. [7]). The reader is referred to an excellent descrip-
tion of CFTP by Propp and Wilson [20] for more detail.

Coupling from the Past is most effective when there is a partial order on the underlying state space with
a monotone structure i.e. if ���
	 in the partial order, then this relationship is preserved as the states �
and 	 evolve in time. Accordingly, we first present a partial order defined on all possible states of a TCP
connection. We show that this partial order results in a minimum and a maximum state. The minimum state
corresponds to a connection performing slow start, with the slow start threshold and the congestion window
set to the smallest possible values. The maximum state corresponds to a connection performing congestion
avoidance, with the congestion window set to the maximum possible value. We then demonstrate that if
we start in two different states which are ordered and couple their packet loss events, then the ordering is
preserved as the states evolve. Thus the partial order has a monotonic structure. This allows us to apply
CFTP to efficiently obtain an exact sample from the stationary distribution of the window sizes of a bulk
TCP connection; here the stationary distribution is as seen by a random packet.

The sampling algorithm is very simple. For notational convenience, it is simplest to think of arranging
matters so that packet sequence numbers are increasing but non-positive, so that our exact sample is obtained
at the packet numbered 0. To obtain a sample from the exact distribution of the TCP Markov chain, we first
generate an infinite packet loss pattern going backwards from packet 0, � and choose a small value � . Then we
simulate the TCP connection for packets numbered �� to 0 starting in both the minimum and the maximum
states. If the two states have converged by the time we get to the packet number 0, then the common state at
the end is the desired sample. Otherwise, we double � and repeat. Note that the work involved is just to run
the Markov chains, albeit from two states instead of just one.

In order for the CFTP paradigm to apply, the underlying Markov chain needs to be ergodic. In the case
of TCP, whether the chain is ergodic or not depends on the nature of the loss process that determines whether
each packet gets dropped or successfully transmitted. Two interesting loss processes that result in ergodicity
of the TCP chain are where the packet drops are i.i.d., and where the packet drops form a Markovian On-Off
process. A further condition is that we need to be able to sample from the stationary distribution of the loss
process, and create a loss pattern backwards in time. A more detailed explanation is presented in section 4.1.

We also perform a running time analysis of this scheme; in order to obtain one exact sample, we need
to simulate a TCP connection over ����������������� �"! packets on the average, where ������� is the number of
packets required for the TCP Markov chain to mix (see section 4.3 for a formal definition). It is unrealistic
to expect to obtain any good sample (much less an exact sample) in fewer steps than the mixing time, and
hence the running time guarantees are quite strong. Finally, we show how simple sub-sampling techniques
#
Clearly an infinite loss pattern can not be generated in the traditional sense; in order to “generate” such a pattern, it suffices to

fix a deterministic algorithm that takes a non-positive packet sequence number as an input, and output a bit indicating whether this
packet got lost. We deal with this issue in greater detail in section 4.1.

2

can allow us to sample from the stationary distribution at a random time instant (as opposed to at a random
packet departure epoch).

Several points about the CFTP approach are worth noting. First, even though the running time guarantee
involves the quantity �$�%��� , the algorithm does not need to know this quantity to obtain the exact sample.
This is a great asset, since computing � �%�&� or an upper bound on � ����� can be very complicated even for
very simple Markov chains. Second, even though proving the correctness of the CFTP approach involves
the partial order defined in section 2, the resulting sampling algorithm does not involve any knowledge of
the partial order. Again, this is very useful since the partial order and the proof of monotonicity are quite
intricate. Finally, it is important to note that CFTP does not strictly require monotonicityunder a partial order,
although these requirements aid analysis and greatly improve the practicality of using CFTP. Thus, although
TCP variants can demonstrate non-monotonic behaviors [9], we believe this approach can be extended to
Markov chains for other TCP variants besides the chain considered in this paper. Also, we believe that our
monotonic partial order is interesting in its own right and may lead to further insights into the nature of TCP
congestion control.

Our simulations of simple scenarios suggest that this approach is efficient, scales well with increasing
maximum window sizes, and yields results which are close to those obtained by running the network simu-
lator ns for TCP-Tahoe. Our simulation results are quite preliminary, and it would be interesting to develop
a more extensive simulation infrastructure to explore the practical utility of the ideas in this paper.

In this paper, we restrict ourselves to bulk TCP connections, so we ignore the connection establishment
phase. Further we assume that the TCP slow start and congestion avoidance algorithms are in place, but
fast retransmit and fast recovery algorithms are not (see [12, 21, 2] for a detailed description of these algo-
rithms). Extending our approach to all variants of TCP and to other networking protocols is an interesting
open problem.

Section 2 defines the partial order, and section 3 proves that this partial order is monotonic. Section 4
details how the CFTP paradigm can be applied to this problem, section 5 presents the simulation results, and
section 6 concludes the paper.

2 A Partial Order on TCP Windows

In this section, we define a simplified state space for TCP, and provide a partial order on this state space. We
show that this partial order has unique minimum and maximum elements, which is useful in applying CFTP.

Definition 1 Given a TCP connection ' , the state ()�*'+! of the TCP window is the triplet , MODE - SSTHRESH - CWND .
where

/ MODE 0 SS if the TCP connection is performing slow start, and MODE 0 CA if the connection is
performing congestion avoidance.

/ SSTHRESH denotes the slow start threshold. If MODE 0 CA then the slow start threshold is irrele-
vant and is denoted by the symbol 1 .

/ CWND denotes the congestion window of the TCP connection.

We use MODE ��(%!2- SSTHRESH ��(%!2- and CWND ��(�! to denote the three components of the state (; also we
overload notation and use MODE �*'+! etc. to denote MODE ��()�*'+!3! etc.

Definition 2 Let 4 denote the space of all valid TCP states.

3

We do not define formally what the valid TCP states are, but invoke the properties of TCP as and when needed
to disqualify states from belonging to 4 . In particular, we assume that a TCP connection goes out of slow
start and into congestion avoidance as soon as the congestion window becomes equal to or exceeds the slow
start threshold.

We now define a relation 5 on 4 .

Definition 3 Given two states 67-98;:�4 , the relation 6<5=8 holds if and only if exactly one of the following
is true:

1. MODE ��6)!>0 MODE �?87!�0 CA and CWND ��6)!@� CWND �?87!
2. MODE ��6)!>0 MODE �?87!�0 SS , SSTHRESH �?6A!@� SSTHRESH ��87! , and CWND ��6)!@� CWND ��8$!
3. MODE ��6)!>0 SS , MODE ��8$!�0 CA , and SSTHRESH ��6)!@� CWND ��8$!
4. MODE ��6)!>0 CA , MODE �?87!�0 SS , and CWND ��6)!@� CWND ��8$!
This relation has some very interesting properties. In particular, we will show that this relation is a partial

order. Figure 1 illustrates this partial order for a simple case.

(CA, ,4)

(SS,3,2)

(SS,4,3)

(SS,4,2)

(SS,4,1)

(SS,2,1)

(SS,3,1)

(CA, ,2)

(CA, ,3)

Figure 1: A pictorial representation of the partial order 5 for a small set of TCP window states. There is a
directed path from 8 to 6 in the above graph iff 6"5B8 . Notice that there is a minimum state � SS -DCE-GFG! , a
maximum state � CA -91H-3IJ! , and that there are incomparable states (eg. the states � CA -D1H-9K�! and � SS -3IL-9C�!).

2.1 The partial order property

We now claim that the relation 5 is a partial order i.e. it is reflexive, anti-symmetric, and transitive.

Theorem 1 The relation 5 is a partial order.

Proof: �M5N� is trivial to prove, so reflexivity holds.
To prove anti-symmetry, we need to show that if � O0P	 then � 5Q	SR 	TO5Q� . The proof is by

contradiction. Suppose �UO0V	 -W�X5N	 and 	Y5Z� . We consider four cases:

4

1. Suppose MODE �[�\!�0 MODE �[�!]0 CA . Then, combining � 5^	 with rule 1 in definition 3,
we know that CWND �[�\!N� CWND �[�! . Since 	 5S� also holds, we know that CWND �[�!_�
CWND �[�\! i.e. CWND �[�\!`0 CWND �[a! . Since MODE �[�\!`0 MODE �b	c!d0 CA , we know that
SSTHRESH �[�\!�0 SSTHRESH �[�!>0<1 . Hence �^0e	 which is a contradiction.

2. Suppose MODE �[�\!A0 MODE �[�!f0 SS . Then combining rule 2 in definition 3 with �T5g	 and
	h5N� , we get SSTHRESH �[�\!�� SSTHRESH �[�!2- SSTHRESH �[a!�� SSTHRESH �[�\!2- CWND �[�\!@�
CWND �[�!i- and CWND �[�!j� CWND �[�\! simultaneously. Together, these imply that �X0k	 , which
is a contradiction.

3. Suppose MODE �[�\!a0 SS and MODE �[�!d0 CA . Then by rule 3 and the fact that � 5l	 , we
get SSTHRESH �[�\!@� CWND �[�! . Combining rule 4 with 	Y5N� , we get CWND �[�!j� CWND �[�\! .
Together, the two imply that SSTHRESH �b�m!j� CWND �[�\! . But TCP goes out of slow start and into
congestion avoidance when the congestion window becomes equal to or exceeds the slow start thresh-
old. Hence state � could not be in slow start mode, which is a contradiction.

4. Suppose MODE �[�\!+0 CA and MODE �b	�!�0 SS . This is symmetric with the previous case.

Since all four cases above result in a contradiction, we have established that 5 is anti-symmetric.
We must now prove that 5 is transitive i.e. � 5l	 and 	n5po together imply � 5Yo . Again, we

divide the proof into four steps:

1. Suppose MODE �[�\!>0 MODE �[�!>0 CA . If MODE ��o)!>0 CA , then by rule 1, we have CWND �b�m!%�
CWND �[�!@� CWND ��o)! which implies that CWND �b�m!%� CWND �?oA! . Invoking rule 1 again, we have
�X5=o . If MODE ��oA!>0 SS , then by rules 1 and 4, we have CWND �[�\!%� CWND �[a!�� CWND �?oA! ;
invoking rule 4 again implies that �M5=o .

2. Suppose MODE �[�\!>0 MODE �[a!>0 SS . If MODE ��o)!>0 SS then by invoking rule 2, we know that
CWND �[�\!7� CWND �[a!`� CWND ��o)! and SSTHRESH �[�\!a� SSTHRESH �[a!`� SSTHRESH ��o)! ;
invoking rule 2 again, we obtain �T5
o . If MODE �?oA!f0 CA then invoking rules 2 and 3, we get
SSTHRESH �[�\!%� SSTHRESH �[�!@� CWND ��o)! ; reinvoking rule 3 gives �M5=o .

3. Suppose MODE �[�\!@0 SS and MODE �[a!�0 CA . If MODE ��oA!j0 CA then invoking rules 3 and
1, we get SSTHRESH �[�\!]� CWND �[a!q� CWND ��o)! ; invoking rule 3 again gives � 5Xo . The
case MODE ��o)!70 SS is a little more involved. Invoking rules 3 and 4, we get SSTHRESH �[�\!`�
CWND �[�!d� CWND ��o)! . This in itself is not enough to invoke rule 2 and claim that � 5Yo . But
observe that since � and o are both in slow start, we know that CWND �[�\!ar SSTHRESH �[�\! and
CWND ��o)!fr SSTHRESH ��o)! . Combining these two inequalities with SSTHRESH �[�\!)� CWND ��o)!
gives CWND �[�\!fr SSTHRESH �[�\!f� CWND ��oA!$r SSTHRESH ��o)! . We can now invoke rule 2 to
claim that �X5=o .

4. Suppose MODE �[�\!+0 CA and MODE �b	�!�0 SS . If MODE ��o)!�0 SS , then rules 4 and 2 imply that
CWND �[�\!)� CWND �[�!$� CWND ��oA! ; invoking rule 2 again gives �s5to . If MODE �?oA!)0 CA ,
then rule 4 implies that CWND �[�\!u� CWND �[a! , MODE �b	�!u0 SS implies that CWND �[a!=r
SSTHRESH �[a! , and rule 3 implies that SSTHRESH �[a!A� CWND ��o)! . Combining the above, we ob-
tain CWND �[�\!@r CWND ��oA! ; invoking rule 1 now gives us �M5=o .

It is interesting to note that the partial order 5 is a total order if restricted to only those states which are in the
congestion avoidance mode. The above proof illustrates how the definition of 5 is carefully tailored for us to
be able to prove that the relation 5 is a partial order. There are other partial orders that can be defined on the

5

TCP window state space. What makes the relation 5 particularly interesting is the existence of a minimum
and a maximum element.

2.2 The lower bound property

We now define a special “lower bound” state vw .

Definition 4 The state vw is , SS -GF�-xFG. i.e. the TCP connection is in slow start, and the congestion window
and the slow start threshold y are both set to 1.

The state vw is a minimum i.e. vw 5N� for all �M:�4 . This is easily verified by looking at rules 2 and 3.

2.3 The upper bound property

We now define a special “upper bound” state vz . We use the terms max cwnd and max ssthresh to refer
to the maximum possible window size and the maximum possible slow start threshold, respectively. These
terms typically depend on the TCP variant in use, the advertised window size of the receiver, and the con-
figuration of the end-hosts. We assume that max ssthresh � max cwnd; if not then max ssthresh can
be set equal to max cwnd without any change in TCP behavior. By a similar argument, we assume that
max cwndis no larger than the receiver’s advertised congestion window.

Definition 5 The state vz is , CA -91H- max cwnd . i.e. the TCP connection is in the congestion avoidance
phase and the congestion window is the maximum possible.

The state vz is a maximum i.e. �M5 vz for all �M:�4 . This is easy to verify by looking at rules 1 and 3.

3 Monotonicity in the TCP Window Space

We show here that the partial order 5 has a nice monotonic property which allows us to apply Coupling from
the Past, assuming the loss process satisfies certain useful properties.

Consider two valid states � and 	 of a TCP connection ' such that �{5|	 . Let Next �[�\! and Next �[a!
denote the states of this connection after sending one packet each from states � and 	 and receiving the
corresponding ACK or NACK. Here we make the following simplifying assumption: when a loss occurs, it
begins a loss event that causes all subsequent packets to be lost until a timeout occurs. Since we are not using
fast retransmit or fast recovery, essentially this assumption provides a lower bound on TCP performance; we
ignore packets that may have been received that and will be acknowledged later. Similar assumptions have
been made in other work, e.g. [19, 3].

If we couple the fate of the next packet sent in state � with the fate of the next packet sent in state 	 (i.e.
either both begin a loss event, or both are successfully transmitted), then Next �[�\!@5 Next �b	�! .

We recall how Next �[�\! depends on � .

1. If MODE �b�m!�0 SS , then a successful transmission yields CWND � Next �b�m!W!}0 CWND �[�\!�~]F . Also
MODE � Next �[�\!3!�0 CA if CWND � Next �[�\!3!�0 SSTHRESH �[�\!�0 SSTHRESH � Next �[�\!3! .

2. If MODE �[�\!�0 CA , then a successful transmissionyields CWND � Next �[�\!3!�0 CWND �[�\!3~aFG� CWND �[�\! .
3. On a packet loss, MODE � Next �b�m!W!+0 SS ,

SSTHRESH � Next �[�\!3!�0k�`���L��� CWND �[�\!3��C���-9C�� , and CWND � Next �b�m!W!}0tF .
�
Most variants of TCP set the congestion window to at least 2; for these variants we should define ��u�<�

SS ���i���3� . All the
results in this paper hold with this variation as well.

6

Before proving the theorem for the above setup, it is worth emphasizing that our approach could easily
apply to other common TCP simplifications. For example, in some cases TCP is modeled without slow start;
it is instead assumed that the process is always in congestion avoidance, and that a loss causes the sending
window to shrink by some constant factor. (See, for example, [19, 3] for relevant discussions.) In this case
our Markov chain state space would be even simpler (we could avoid the SS mode altogether), and we we
could prove monotonicity in a manner similar to the theorem below.

Theorem 2 If �M5N	 then Next �[�\!@5 Next �[�! .
Proof: As before, we require a careful case by case analysis:

1. Suppose MODE �b�m!�0 MODE �[�!%0 CA . Then by rule 1 in definition 3, we know that CWND �[�\!@�
CWND �[�! . If there is no loss, then MODE � Next �[�\!3!�0 MODE � Next �b	�!3!>0 CA , CWND � Next �[�\!3!�0
CWND �[�\!J~|FG� CWND �[�\! , and CWND � Next �[a!3!>0 CWND �[�!H~|FG� CWND �b	�! . Now CWND � Next �[�\!3!
� CWND � Next �[a!3! , as the function �>����!>0k�L~aFx��� is increasing in � for ���kF . Hence CWND � Next �[�\!3!��
CWND � Next �[a!3! , so by rule 1 in definition 3, Next �b�m!@5 Next �[�! . If there is a loss, then MODE � Next �[�\!3!�0
MODE � Next �[a!3!�0 SS , CWND � Next �[�\!3!d0 CWND � Next �[�!W!�0sF , SSTHRESH � Next �[�\!3!�0
�`���H��� CWND �[�\!3��C���-9C�� , and SSTHRESH � Next �[a!3!>0k�`���E��� CWND �[`!3��C���-DC�� . Note SSTHRESH � Next �[�\!3!��
SSTHRESH � Next �[a!3! . By rule 2 in definition 3, Next �b�m!%5 Next �[`! .

2. Suppose MODE �b�m!]0 MODE �[�!q0 SS . By rule 2 in definition 3 we have SSTHRESH �[�\!u�
SSTHRESH �[a! and CWND �b�m!)� CWND �[a! . If there is a loss, it is as in case 1. If there is no loss,
then the SSTHRESH remain unchanged, CWND � Next �[�\!3!�0 CWND �b�m!�~�F , and CWND � Next �[`!3!
0 CWND �[a!H~NF , so CWND � Next �[�\!3!�� CWND � Next �[�!3! . If both states remain in mode SS , then
by rule 2 in definition 3, Next �[�\!@5 Next �[�! . If both states move to mode CA , then by rule 1 in
definition 3, Next �[�\!�5 Next �[�! . If state � moves to mode CA and 	 does not, by rule 4 in defini-
tion 3, Next �[�\!�5 Next �[�! . If state 	 moves to mode CA and � does not, then SSTHRESH �[�\!>�
SSTHRESH �[a!�� CWND � Next �[�\!3! , so by rule 3 in definition 3, Next �[�\!>5 Next �[�! .

3. Suppose MODE �b�m!�0 SS and MODE �b	�!>0 CA . Then by rule 3, CWND �[�\!�r SSTHRESH �[�\!@�
CWND �[�! . If there is a loss, it is as in case 1. If there is no loss, then SSTHRESH �b�m! remains un-
changed, CWND � Next �b�m!W!}0 CWND �b�m!�~�F , and CWND � Next �[�!W!+0 CWND �[�!�~"FG� CWND �b	�! .
If MODE � Next �b�m!W!}0 SS , then we have CWND � Next �[�\!3!>r SSTHRESH �b�m!�r CWND � Next �b	�!3! ,
and by rule 3 in definition 3, Next �[�\!�5 Next �[�! . If MODE � Next �b�m!W!J0 CA , then CWND � Next �[�\!3!
0 SSTHRESH �[�\!>r CWND � Next �b	�!3! , and by rule 1 in definition 3, Next �b�m!�5 Next �b	�! .

4. Suppose MODE �[�\!a0 CA and MODE �[a! 0 SS . Then by rule 4 in definition 3, CWND �[�\!��
CWND �[�! . If there is a loss, it is as in case 1. If there is no loss, then CWND � Next �[�\!3!�0 CWND �[�\!3~
FG� CWND �[�\! , and CWND � Next �[�!W!A0 CWND �[a!+~"F . If MODE � Next �[a!3!A0 SS , then by rule 4
in definition 3, Next �[�\!%5 Next �[`! ; otherwise, it follows by rule 1.

4 Applying CFTP to the TCP Window Space

In this section, we demonstrate how to use our previous results to apply CFTP to the TCP window space.
We confine ourselves to bulk TCP connections; specifically, we choose a position in the stream and label
its packet sequence number as 0, and we assume there are an infinite sequence of packets prior to this one.
Our goal is to find the state of the TCP connection as seen by this packet. All other packets have negative

7

numbers. Further, we require that each packet is labeled with a bit that indicates whether this packet was
successfully transmitted by the network. A loss process is a stochastic process that produces this labeling of
the infinite stream of packets.

In this paper, we are concerned with loss processes where packet drops are governed by a Markov chain.
A loss process along with the TCP congestion control algorithms define a Markov chain that we call the
TCP Markov chain. Note that in our TCP Markov chain, we do not include packets that are sent out after the
dropped packet (until a timeout happens); hence our loss process really signals loss events.

4.1 Ergodic TCP loss processes

Definition 6 A loss process is said to be an ergodic TCP loss process if the resulting TCP Markov chain is
ergodic.

One sufficient condition for a loss process to be an ergodic TCP loss process is that arbitrarily long sequences
of packet drops and successful packet transmissions should occur with a non-zero probability. Two interest-
ing loss processes that result in ergodicity of the TCP chain are where the packet drops are i.i.d, and where
the packet drops form a Markovian On-Off process.

In order for the CFTP paradigm to apply, we need to be able to generate the loss pattern from �¡ to
0. Since this is an infinite sequence, we can not enumerate it in any traditional sense; instead we need to
generate elements of this sequence on demand and in a consistent fashion. For i.i.d. drops, it is easy to gen-
erate elements of this sequence on demand. For Markovian On-Off drops, we can sample from the stationary
distribution of the On-Off process to determine whether packet 0 got dropped. We can then do a backwards
walk in the On-Off Markov chain to generate other elements of this sequence on demand. Sampling from
the stationary distribution of a Markovian On-Off process is easy. Similar techniques should apply for other
natural loss processes.

4.2 Applying CFTP to sample from the TCP state space

We use the CFTP paradigm for monotonic Markov chains as defined by Propp and Wilson [20] to obtain a
sample from the stationary distribution of TCP window sizes. The evolution of the states vw and vz in the
Markov chain is simulated from event �� to ¢ . If the two processes are in the same state at event 0, then
this common state is output as the sample from the stationary distribution. If not, then � is doubled and the
process is repeated. Note that doubling � is chosen for simplicity; any factor greater than one would do.
(See [20] for details.) It is important to reuse the same random numbers at event @£ during all the iterations
of the algorithm. In our scenario, this means that during all the iterations of the algorithm, we should have a
consistent view of whether the packet numbered @£ was lost. The main intuitionis that when the sample paths
starting from the bottom state vw and the top state vz converge, they sandwich the entire state space in between.
It is important to follow this procedure exactly as described and not cut corners such as simulating states vw
and vz forward in time from event 0 till they converge. The reader is referred to an excellent description of
the process by Propp and Wilson [20] for more detail.

The following theorem follows from a general theorem due to Propp and Wilson [20] regarding the cor-
rectness of the CFTP paradigm.

Theorem 3 The algorithm outlined above samples exactly from the stationary distribution of the Markov
chain defined by the TCP slow start and congestion avoidance mechanisms in conjunction with an ergodic
TCP loss process.

8

4.3 Running Time Analysis

We first need some definitions. Assume we are given an ergodic Markov chain ¤ ; further assume that the
state space of this Markov chain is equipped with a partial order, a minimum state, a maximum state, and a
monotonic property.

Definition 7 Let ¥¦ ��§H!�0<�`����¨ #�© ¨ ��ª«ª¬}®� ¬}®y ª«ª where ¬}® is the distribution governing the Markov chain ¤
after § transitions, when started in a random state governed by the distribution ¬ . The mixing time ¯��%���E�?¤�!
is defined to be the smallest § for which ¥¦ ��§H!@�kFG��° .
The mixing time need not necessarily be a “time;” in fact, for the TCP Markov chain it is going to denote the
number of packets transmitted.

Definition 8 The convergence time ¯²±���¤�! denotes the number of simulation steps required by the CFTP
process to return a sample from the stationary distribution of ¤ .

Definition 9 Given a partial order on the state of the Markov chain ¤ , the chain-length ³���¤"! of ¤ is the
length of the largest ordered sequence of distinct states.

The following general lemma was proved by Propp and Wilson.

Lemma 4 E ´µ¯ ± �?¤�!·¶+�_C�¯������¸��¤"!>¹J�ºF»~|�«¼@³½��¤"!3!2¾
Let � denote the maximum congestion window size of the TCP connection under study, and let �c�����

denote the mixing time of the TCP Markov chain.

Lemma 5 The number of distinct states in the TCP Markov chain is �����"¿2! .
Proof: We need to prove that ª 4 ª 0l�½��� ¿ ! . If a TCP connection is in the slow start mode, then its slow
start threshold and congestion window are both integers �X� . Hence the number of different slow-start
states is at most �"y . Now suppose that the TCP connection is in the congestion avoidance phase, and that
the transition from slow start to congestion avoidance was made when the window size was � . There are
at most � choices for the value of � . Also, each successful ack during congestion avoidance results in the
window size being increased by at least FG��� . Consequently, there can be at most � y distinct window sizes
encountered as the window increases from � to � . Hence, there can be at most � ¿ different states in the
congestion avoidance phase. The total number of states is at most � y ~N� ¿ 0e�½�?� ¿ ! .

Since the chain-length can not be any larger than the number of states, we obtain the following theorem:

Theorem 6 The convergence time for the TCP Markov chain is �����a�������«¼���! .

4.4 Sub-sampling to obtain samples at a random time

When the window size is large, a large number of packets see that window size. Thus the stationary distribu-
tion as seen by a random packet is biased towards larger window sizes compared to the stationary distribution
at a random time instant. In order to obtain a sample from the latter distribution, we need to discard some of
the samples returned by the CFTP process outlined above.

We use the term sampling interval to represent the larger of the timeout value and the RTT for the TCP
connection (the timeout value is the duration after which the sender presumes that an unacknowledged packet
has been dropped). We denote the sampling interval by À . To obtain samples at a random time we use the
following sub-sampling algorithm:

9

1. Use CFTP to obtain a sample � from the stationary distribution of the TCP state space as seen by a
random packet.

2. Simulate the TCP connection starting from � to determine the interval À¸Á after which the next packet
is sent.

3. With probability À Á ��À , output this sample and exit; else, go back to step 1.

The following theorem states that the sub-sampling algorithm is correct and efficient.

Theorem 7 The sub-sampling algorithm outlined above returns an exact sample from the stationary dis-
tribution of the TCP Markov chain as seen at a random time instant. Further, the sub-sampling algorithm
makes at most �Â¹J��À�� RTT ! calls to the CFTP algorithm on an average.

Proof:

(a) Correctness: This part is relatively straightforward, so instead of giving a formal proof, we sketch the
main intuition. Assume that the state of the TCP connection changes at packet-departure epochs. Now
the state seen by a random packet persists till the next packet is sent out. This happens an interval À Á
later. Therefore we need to weight this sample by ÀJÁ . Since À�Á must be less than À (recall that À is the
larger of the RTT and the timeout), choosing to retain the sample with probability À Á ��À gives it the
appropriate proportional weight.

(b) Running time: Let us artificially divide the entire packet sequence into chunks of � contiguous pack-
ets. Let us examine a specific chunk 8 . Let À Á� denote the time between the first and second packet
departures in the chunk, À Áy denote the time between the second and third packets in the chunk, and
so on. Further, let À ÁÃ denote the time between the last packet departure from chunk 8 and the first
packet departure from the next chunk. The CFTP algorithm in section 4.2 gives a sample from the
stationary distribution as seen by a random packet. Let us condition our sample such that the random
packet must belong to chunk 8 . Given this conditioning, each of the � packets on this chunk is cho-
sen with probability FG��� . Hence the probability that the sub-sample succeeds is �ÄFG���"!�Å ÃÆ3Ç � À�ÁÆ ��À .
Since the chunk is of size � (i.e. the maximum window size), it requires at least RTT time to go across,
which implies that Å ÃÆ3Ç � À ÁÆ � RTT. Therefore the success probability given this conditioningis at least
�ÄFG���"!�¹�� RTT ��ÀJ! . We did not use any special properties of the chunk 8 , so the same lower bound on
the success probability holds if we remove the conditioning. It now follows that the expected number
of samples required for success is at most �È¹��?ÀJ� RTT ! .

The sub-sampling algorithm as stated above seems to require a knowledge of the exact values of the timeout
and the RTT. However, the same algorithm continues to work if we use any À`�=�`���L� RTT, timeout � .

5 Simulation Results

We built a simple implementation to test the feasibility and utility of our CFTP framework. We present re-
sults only for the case where each packet is lost independently with probability É . (Of course in this case the
equilibrium distribution for the TCP Markov chain we have described could be calculated explicitly, but the
number of states grows rapidly in the window size.)

Our implementation takes as input the maximum window size max cwnd, and a drop probability É . The
maximum slow start threshold is assumed to be the same as the maximum window size. We allow a con-
gestion window of size one, and the minimum slow start threshold after a drop is two. Initially we simulate

10

Drop max cwnd= 40 max cwnd= 400
Rate É Avg. Max. Avg. Max.
0.001 1585.4 16384 5479.0 16384
0.01 350.8 1024 451.0 2048
0.02 174.1 1024 211.8 1024
0.03 121.3 512 130.9 512
0.04 83.6 256 93.2 512
0.05 68.7 256 72.7 512
0.06 53.6 256 56.7 256
0.07 44.3 256 47.6 256
0.08 38.4 256 44.3 256

Table 1: Quick samples from the CFTP method.

Drop max cwnd= 40 max cwnd= 400
Rate É Avg. CWND Avg. CWND

0.001 33.71 47.36
0.01 14.16 14.25
0.02 9.77 10.09
0.04 6.93 7.07
0.08 4.97 5.02

Table 2: Average CWND value from CFTP samples.

two steps of the Markov chain, and then we double the number of time steps simulated if coupling has not
occurred between the upper and lower bound states. Hence when we describe the number of steps required
before coupling, our implementation always gives a power of two. Recall that this is not a requirement, but
simply a convenient choice.

In Table 1, we show the average and maximum number of time steps (or equivalently packets) required
before a state was output over 1,000 trials and various drop rates when the window size was set to 40 and
400 packets. The average is significantly smaller than the maximum; often CFTP yields an exact sample
quickly. When the probability of a drop É is small, the coupling time is essentially dominated by the time for
the congestion window of the lower bound state to reach its maximum size max cwnd. When É is larger, the
bounding states tend to couple more quickly, as the congestion window of the upper state quickly decreases
toward the lower state. As predicted in the theory of Section 4, scaling up to a large maximum window size
does not dramatically increase the running time required, particularly when the drop rate is high. Importantly,
this suggests that CFTP may be a useful alternative approach when the number of states grows too large for
explicit calculations of the equilibrium distribution.

In Table 2, we show the average CWND for our simulation. Note that this average is the average CWND

experienced by each packet, and not the average over time. It is interesting to note that CWND still appears
to follows the square root law (see e.g. [19]) in our simulations; that is, CWND falls roughly proportionally
to FG��Ê É . Also, as one might expect, the difference between the average CWND value does not differ signif-
icantly between the smaller and larger window size unless the drop rate is low.

We also provide results comparing our CFTP implementation to a ns simulation with 10,000 packets us-
ing the Tahoe protocol. We examined the specific case where the drop probability É is ¢H¾Ë¢HF and the maximum

11

congestion window, max cwnd, is 40. We re-ran our CFTP simulation to obtain 1,000 new samples for this
comparison. We found that the average congestion window over all packets was 14.77 in our CFTP samples,
while it was 14.33 for the ns simulation. As another point of comparison, 5.2% of the samples were in the
slow start mode for our CFTP samples, while 5.7% of the packets were in slow start mode for the ns simu-
lation. We would expect the agreement to be rough, both because we are sampling and because our Markov
chain is not a true faithful representation of the Tahoe protocol. These results suggest that our approach can
lead to good approximations for actual TCP behavior.

6 Conclusions

We presented a partial order on the space of TCP window states that possesses a natural monotonic property.
This leads to an efficient application of the “Coupling From The Past” paradigm to sample from the stationary
distribution of TCP window states as seen by a random packet. The convergence time of this scheme is
�½�?�7�%���+�«¼��"! where �$�%��� is the number of steps required for the underlying TCP Markov chain to mix
and � is the maximum window size of. It is unrealistic to expect an exact sample in less than �c�%��� steps.
Hence, the above algorithm is only a small factor (�«¼)�) away from the optimum. At the same time, the
algorithm does not need to know ������� . We also showed how a simple sub-sampling algorithm can be used
to obtain a sample at a random time instant. Our partial order and proof of monotonicity may well be of
independent interest and may yield new insight into the structure of TCP congestion control algorithms. Our
simulations of simple scenarios suggest that this approach is efficient, scales well with increasing maximum
window sizes, and yields results which are close to those obtained by running the network simulator ns for
TCP-Tahoe.

The above approach can potentially give rise to the following new paradigm for network simulations:
instead of simulating a protocol over long times, or explicitly finding the stationary distribution of the states
of the protocol, try to quickly obtain a “typical” sample of the state of the protocol. Our approach currently
works for a simplified TCP model that does not employ fast recovery. Extending these ideas to other TCP
variants and other network protocols is an important open problem. Also, it would be interesting to develop
a simulation infrastructure to explore the practical utility of the ideas in this paper.

References

[1] D.J. Aldous. A random walk construction of uniform spanning trees and uniform labelled trees. SIAM
Journal on Discrete Mathematics, 3(4):450–465, 1990.

[2] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP Congestion Control. 1999.

[3] Eitan Altman, Konstantin Avrachenkov, and Chadi Barakat. A stochastic model of TCP/IP with sta-
tionary random losses. In SIGCOMM, pages 231–242, 2000.

[4] S. Asmussen, P. Glynn, and H. Thorisson. Stationary detection in the initial transient problem. ACM
trans. on modeling and comp. simulation, 2(2):130–157, 1992.

[5] A. Broder. Generating random spanning trees. 30th Annual Symposium on Foundations of Computer
Science, pages 442–447, 1989.

[6] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling TCP latency. In INFOCOM, pages
1742–1751, 2000.

12

[7] S. Cho and A. Goel. Exact sampling in machine scheduling problems. To appear in the 5th interna-
tional workshop on Randomization and Approximation Techniques in Computer Science (RANDOM
’01), 2001.

[8] P. Diaconis and L. Saloff-Coste. What do we know about the metropolis algorithm? Twenty-Seventh
Annual ACM Symposium on the Theory of Computing, pages 112–129, 1995.

[9] K Fall and S Floyd. Simulation-based comparisons of Tahoe, Reno and SACK TCP. Computer Com-
munication Review, 26(3):5–21, 1996.

[10] J. Fill. An interruptible algorithm for perfect sampling via Markov chains. Annals of Applied Proba-
bility, 8(1):131–162, 1998.

[11] M. Huber. Exact sampling and approximate counting techniques. 30th ACM Symposium on the Theory
of Computing, pages 31–40, 1998.

[12] V. Jacobson. Congestion avoidance and control. Computer Communication Review, 18(4):314–29,
1988.

[13] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an approach to approximate count-
ing and integration. In ”Approximation Algorithms for NP-hard Problems,” D.S.Hochbaum ed., 1996.

[14] L. Lovász and P. Winkler. Exact mixing in an unknown Markov chain. Electronic Journal of Combi-
natorics, 2, paper #R15, 1995.

[15] Vishal Misra, Wei-Bo Gong, and Donald F. Towsley. Fluid-based analysis of a network of AQM routers
supporting TCP flows with an application to RED. In SIGCOMM, pages 151–160, 2000.

[16] M. Mitzenmacher and R. Rajaraman. Towards more complete models of tcp latency and throughput.
Journal of Supercomputing, 2001.

[17] ns: UCB/LBNL/VINT network simulator. http://www-mash.cs.berkeley.edu/ns/.

[18] J. Padhye, V. Firoiu, and D. Towsley. A stochastic model of TCP Reno congestion avoidance and con-
trol. CMPSCI Technical Report 9902, University of Massachusetts, Amherst, MA, 1999.

[19] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A simple model and its
empirical validation. In ACM SIGCOMM ’98 conference on Applications, technologies, architectures,
and protocols for computer communication, pages 303–314, Vancouver, CA, 1998.

[20] J.G. Propp and D.B. Wilson. Exact sampling with coupled Markov chains and applications to statistical
mechanics. Random Structure & Algorithms, 9:223–252, 1996.

[21] W. R. Stevens. TCP/IP Illustrated, Volume 3; TCP for Transactions, HTTP, NNTP and the UNIX Do-
main Protocols. Addison Wesley, Reading, 1995.

[22] M. Zorzi, A. Chockalingam, and R. Rao. Throughput analysis of tcp on channels with memory. IEEE
J. Selected Areas Comm., 18:1289–1300, July 2000.

13

