Net wor k Wor ki ng Group S. Floyd

Request for Comments: 3782 | CSI
obsol et es: 2582 T. Hender son
Cat egory: Standards Track Boei ng
A CGurtov

Tel i aSoner a

April 2004

The NewReno Modification to TCP's Fast Recovery Al gorithm
Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2004). Al Rights Reserved.
Abst r act

The purpose of this docunent is to advance NewReno TCP's Fast
Retransmt and Fast Recovery algorithms in RFC 2582 from Experi ment al
to Standards Track status.

The main change in this docunent relative to RFC 2582 is to specify
the Careful variant of NewReno's Fast Retransnit and Fast Recovery
algorithms. The base algorithm described in RFC 2582 did not attenpt
to avoid unnecessary nultiple Fast Retransmts that can occur after a
timeout. However, RFC 2582 also defined "Careful" and "Less Careful "
variants that avoi d these unnecessary Fast Retransmts, and
recomrended the Careful variant. This docunent specifies the
previously-naned "Careful " variant as the basic version of NewReno
TCP.

Fl oyd, et al. St andards Track [Page 1]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

1

| ntroducti on

For the typical inmplenentation of the TCP Fast Recovery al gorithm
described in [RFC2581] (first inmplenented in the 1990 BSD Reno

rel ease, and referred to as the Reno algorithmin [FF96]), the TCP
data sender only retransmts a packet after a retransmt tineout has
occurred, or after three duplicate acknow edgenents have arrived
triggering the Fast Retransmit algorithm A single retransmt

ti meout might result in the retransm ssion of several data packets,
but each invocation of the Fast Retransmt algorithmin RFC 2581

| eads to the retransm ssion of only a single data packet.

Probl ens can arise, therefore, when nultiple packets are dropped from
a single window of data and the Fast Retransmit and Fast Recovery
algorithms are invoked. |In this case, if the SACK option is
avai l abl e, the TCP sender has the information to nmake intelligent
deci si ons about which packets to retransmt and which packets not to
retransmt during Fast Recovery. This docunment applies only for TCP
connections that are unable to use the TCP Sel ective Acknow edgenent
(SACK) option, either because the option is not |locally supported or
because the TCP peer did not indicate a willingness to use SACK

In the absence of SACK, there is little information available to the
TCP sender in naking retransm ssion decisions during Fast Recovery.
Fromthe three duplicate acknow edgenents, the sender infers a packet
| oss, and retransmits the indicated packet. After this, the data
sender could receive additional duplicate acknow edgenents, as the
data recei ver acknow edges additional data packets that were already
in flight when the sender entered Fast Retransmt.

In the case of multiple packets dropped froma single w ndow of data,
the first new information available to the sender cones when the
sender receives an acknow edgenent for the retransnitted packet (that
is, the packet retransmitted when Fast Retransmit was first entered).
If there is a single packet drop and no reordering, then the

acknow edgenent for this packet will acknow edge all of the packets
transmtted before Fast Retransmit was entered. However, if there
are nmultiple packet drops, then the acknow edgenment for the
retransmtted packet will acknowl edge sonme but not all of the packets
transmtted before the Fast Retransmit. W call this acknow edgenent
a partial acknow edgnent.

Al ong with several other suggestions, [Hoe95] suggested that during
Fast Recovery the TCP data sender responds to a partia

acknow edgnent by inferring that the next in-sequence packet has been
lost, and retransmitting that packet. This docunment describes a

nodi fication to the Fast Recovery algorithmin RFC 2581 t hat

i ncorporates a response to partial acknow edgenents received during

Fl oyd, et al. St andards Track [Page 2]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

Fast Recovery. W call this nodified Fast Recovery al gorithm
NewReno, because it is a slight but significant variation of the
basi ¢ Reno algorithmin RFC 2581. This docunent does not discuss the
ot her suggestions in [Hoe95] and [Hoe96], such as a change to the
ssthresh paraneter during Slow Start, or the proposal to send a new
packet for every two duplicate acknow edgenents during Fast Recovery.
The version of NewReno in this document al so draws on ot her

di scussions of NewReno in the literature [LMD7, Hen98].

We do not claimthat the NewReno version of Fast Recovery described
here is an optinmal nodification of Fast Recovery for responding to
partial acknow edgenents, for TCP connections that are unable to use
SACK. Based on our experiences with the NewReno nodification in the
NS simulator [NS] and with numerous inplenmentations of NewReno, we
believe that this nodification inproves the performance of the Fast
Retransmt and Fast Recovery algorithms in a wide variety of

scenari os.

2. Terninology and Definitions

In this docunment, the key words "MJST", "MJST NOT", "REQU RED',
"SHALL", "SHALL NOT*, "SHOULD', "SHOULD NOT", "RECOWMMENDED', "NAY",
and "OPTI ONAL" are to be interpreted as described in BCP 14, RFC 2119
[RFC2119]. This RFC indicates requirenment |levels for conpliant TCP

i mpl enentati ons i nplenenting the NewReno Fast Retransnit and Fast
Recovery al gorithms described in this docunent.

Thi s docunent assumes that the reader is famliar with the terns
SENDER MAXI MUM SEGMENT S| ZE (SMBS), CONGESTI ON W NDOW (cwnd), and
FLI GHT SIZE (FlightSize) defined in [RFC2581]. FLIGHT SIZE is
defined as in [RFC2581] as fol | ows:

FLI GHT SI ZE:
The anmount of data that has been sent but not yet acknow edged.

3. The Fast Retransnit and Fast Recovery Al gorithnms in NewReno

The standard inplenentation of the Fast Retransmit and Fast Recovery
algorithms is given in [RFC2581]. This section specifies the basic
NewReno al gorithm Sections 4 through 6 describe sone optiona
variants, and the notivations behind them that an inplementor nmay
want to consider when tuning performance for certain network
scenarios. Sections 7 and 8 provide sonme gui dance to inplenentors
based on experience with NewReno inpl enmentations.

The NewReno nodification concerns the Fast Recovery procedure that

begi ns when three duplicate ACKs are received and ends when either a
retransm ssion timeout occurs or an ACK arrives that acknow edges al

Fl oyd, et al. St andards Track [Page 3]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

of the data up to and including the data that was outstandi ng when
the Fast Recovery procedure began

The NewReno al gorithm specified in this docunment differs fromthe

i mpl enentation in [RFC2581] in the introduction of the variable
"recover” in step 1, in the response to a partial or new

acknow edgenent in step 5, and in nodifications to step 1 and the
addition of step 6 for avoiding multiple Fast Retransmits caused by
the retransni ssion of packets already received by the receiver.

The al gorithm specified in this document uses a variable "recover”,
whose initial value is the initial send sequence nunber.

1) Three duplicate ACKs:
When the third duplicate ACK is received and the sender is not
already in the Fast Recovery procedure, check to see if the
Cunmul ati ve Acknow edgenent field covers nore than "recover". |If
so, go to Step 1A. Oherwise, go to Step 1B

1A) Invoking Fast Retransmit:
If so, then set ssthresh to no nore than the value given in
equation 1 below. (This is equation 3 from|[RFC2581]).

ssthresh = max (FlightSize / 2, 2*SMsS) (1)

In addition, record the hi ghest sequence nunber transmitted in
the variable "recover", and go to Step 2.

1B) Not invoking Fast Retransmt:
Do not enter the Fast Retransmt and Fast Recovery procedure. In
particul ar, do not change ssthresh, do not go to Step 2 to
retransmt the "lost" segment, and do not execute Step 3 upon
subsequent duplicate ACKs.

2) Entering Fast Retransmt:
Retransmit the | ost segnent and set cwnd to ssthresh plus 3*SMSS.
This artificially "inflates" the congestion w ndow by the nunber
of segments (three) that have |eft the network and the receiver
has buffered.

3) Fast Recovery:
For each additional duplicate ACK received while in Fast
Recovery, increnent cwnd by SMSS. This artificially inflates the
congestion wi ndow in order to reflect the additional segment that
has left the network.

Fl oyd, et al. St andards Track [Page 4]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

4)

5)

Fl oyd,

Fast Recovery, continued:
Transmt a segnent, if allowed by the new value of cwnd and the
recei ver’'s adverti sed w ndow.

VWhen an ACK arrives that acknow edges new data, this ACK coul d be
the acknow edgnment elicited by the retransnission fromstep 2, or
elicited by a later retransm ssion

Ful I acknow edgenents:

If this ACK acknow edges all of the data up to and including
"recover"”, then the ACK acknow edges all the internediate
segnents sent between the original transm ssion of the |ost
segnent and the receipt of the third duplicate ACK. Set cwnd to
either (1) mn (ssthresh, FlightSize + SM5S) or (2) ssthresh,
where ssthresh is the value set in step 1; this is ternmed

"defl ating" the window. (We note that "FlightSize" in step 1
referred to the anmount of data outstanding in step 1, when Fast
Recovery was entered, while "FlightSize" in step 5 refers to the
amount of data outstanding in step 5, when Fast Recovery is
exited.) |If the second option is selected, the inplenentation is
encouraged to take measures to avoid a possible burst of data, in
case the ampunt of data outstanding in the network is nuch | ess
than the new congestion wi ndow allows. A sinple mechanismis to
limt the nunmber of data packets that can be sent in response to
a single acknow edgenent; this is known as "maxburst " in the NS
simulator. Exit the Fast Recovery procedure.

Partial acknow edgenents:

If this ACK does *not* acknow edge all of the data up to and
including "recover", then this is a partial ACK. In this case,
retransmt the first unacknow edged segnent. Deflate the
congestion wi ndow by the amount of new data acknow edged by the
cumul ati ve acknow edgenent field. |If the partial ACK

acknow edges at | east one SM5S of new data, then add back SMSS
bytes to the congestion window. As in Step 3, this artificially
i nfl ates the congestion window in order to reflect the additiona
segnent that has left the network. Send a new segnent if
permtted by the new value of cwnd. This "partial w ndow

defl ation" attenpts to ensure that, when Fast Recovery eventually
ends, approxi mately ssthresh anpunt of data will be outstanding
in the network. Do not exit the Fast Recovery procedure (i.e.

if any duplicate ACKs subsequently arrive, execute Steps 3 and 4
above).

For the first partial ACK that arrives during Fast Recovery, also

reset the retransmt tiner. Tiner managenent is discussed in
nore detail in Section 4.

et al. St andards Track [Page 5]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

6) Retransmt tineouts:
After a retransmt tineout, record the highest sequence nunber
transmtted in the variable "recover" and exit the Fast Recovery
procedure if applicable.

Step 1 specifies a check that the Cumul ati ve Acknow edgenent field
covers nore than "recover". Because the acknow edgenment field
contai ns the sequence nunber that the sender next expects to receive,
the acknow edgerment "ack_numnber" covers nore than "recover" when:

ack_number - 1 > recover;

i.e., at least one byte nore of data is acknow edged beyond the
hi ghest byte that was outstandi ng when Fast Retransnmit was | ast
entered.

Note that in Step 5, the congestion windowis deflated after a
partial acknow edgenent is received. The congestion w ndow was
likely to have been inflated considerably when the partia

acknow edgenent was received. In addition, depending on the origina
pattern of packet |osses, the partial acknow edgenent m ght
acknow edge nearly a wi ndow of data. |In this case, if the congestion

wi ndow was not defl ated, the data sender mi ght be able to send nearly
a wi ndow of data back-to-back.

Thi s docunent does not specify the sender’s response to duplicate
ACKs when the Fast Retransmit/Fast Recovery algorithmis not invoked.
This is addressed in other documents, such as those describing the
Limted Transmit procedure [RFC3042]. This docunent al so does not
address issues of adjusting the duplicate acknow edgenent threshold,
but assunes the threshold specified in the | ETF standards; the
current standard is RFC 2581, which specifies a threshold of three
dupl i cate acknow edgenents.

As a final note, we would observe that in the absence of the SACK
option, the data sender is working fromlimted information. Wen
the issue of recovery frommultiple dropped packets froma single
wi ndow of data is of particular inmportance, the best alternative
woul d be to use the SACK option.

4. Resetting the Retransmt Timer in Response to Partia
Acknowl edgenent s

One possible variant to the response to partial acknow edgenents
specified in Section 3 concerns when to reset the retransmt tinmer
after a partial acknow edgenment. The algorithmin Section 3, Step 5,
resets the retransmit timer only after the first partial ACK. In
this case, if a |arge nunber of packets were dropped froma w ndow of

Fl oyd, et al. St andards Track [Page 6]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

data, the TCP data sender’s retransmt tiner will ultinmately expire,
and the TCP data sender will invoke SlowStart. (This is illustrated
on page 12 of [F98].) W call this the Inpatient variant of NewReno.
We note that the Inpatient variant in Section 3 doesn’'t followthe
recommended algorithmin RFC 2988 of restarting the retransmt tiner
after every packet transm ssion or retransm ssion [RFC2988, Step
5.1].

In contrast, the NewReno sinulations in [FF96] illustrate the
al gori thm descri bed above with the nodification that the retransmt
timer is reset after each partial acknow edgenent. We call this the

Sl ow but - St eady variant of NewReno. |In this case, for a window with
a | arge nunber of packet drops, the TCP data sender retransnits at
nost one packet per roundtrip tinme. (This behavior is illustrated in

the New Reno TCP sinulation of Figure 5 in [FF96], and on page 11 of
[FO8]).

When N packets have been dropped froma w ndow of data for a | arge
value of N, the Sl ow but-Steady variant can renmain in Fast Recovery
for Nround-trip tines, retransmtting one nore dropped packet each
round-trip tine; for these scenarios, the Inpatient variant gives a
faster recovery and better performance. The tests "ns test-suite-
new eno.tcl inpatientl” and "ns test-suite-neweno.tcl slowl"” in the
NS sinulator illustrate such a scenario, where the Inpatient variant
perforns better than the Sl ow but-Steady variant. The |npatient
variant can be particularly inportant for TCP connections with |arge
congestion windows, as illustrated by the tests "ns test-suite-

new eno.tcl inpatient4" and "ns test-suite-neweno.tcl slowd" in the
NS si nul at or.

One can al so construct scenari os where the Sl ow but-Steady vari ant
gives better perfornmance than the Inpatient variant. As an exanple,
this occurs when only a small nunber of packets are dropped, the RTO
is sufficiently small that the retransmit tiner expires, and

per formance woul d have been better without a retransmt timeout. The
tests "ns test-suite-neweno.tcl inpatient2" and "ns test-suite-
neweno.tcl slow2" in the NS sinulator illustrate such a scenario.

The Sl ow but - Steady variant can al so achi eve hi gher goodput than the
| mpati ent variant, by avoiding unnecessary retransm ssions. This
could be of special interest for cellular links, where every

transm ssion costs battery power and noney. The tests "ns test-
suite-neweno.tcl inpatient3" and "ns test-suite-neweno.tcl slow3"
inthe NS simulator illustrate such a scenario. The Sl ow but- St eady
variant can al so be nore robust to delay variation in the network,
where a del ay spike mght force the Inpatient variant into a tineout
and go- back-N recovery.

Fl oyd, et al. St andards Track [Page 7]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

Neither of the two variants discussed above are optinal. Qur
reconmendation is for the Inpatient variant, as specified in Section
3 of this docunent, because of the poor perfornance of the Sl ow but-
Steady variant for TCP connections with | arge congesti on wi ndows.

One possibility for a nore optimal algorithmwould be one that
recovered fromnultiple packet drops as quickly as does slowstart,
while resetting the retransnit tiners after each partia

acknow edgenent, as described in the section below. W note,
however, that there is a limtation to the potential performance in
this case in the absence of the SACK option

5. Retransmi ssions after a Partial Acknow edgenent

One possible variant to the response to partial acknow edgenents
specified in Section 3 would be to retransmt nore than one packet
after each partial acknow edgenent, and to reset the retransmt tinmer
after each retransm ssion. The algorithmspecified in Section 3
retransmts a single packet after each partial acknow edgenent. This
is the nost conservative alternative, in that it is the least likely
to result in an unnecessarily-retransmtted packet. A variant that
woul d recover faster froma w ndow with many packet drops would be to
effectively Slow Start, retransmtting two packets after each partia
acknow edgerment. Such an approach would take | ess than N roundtrip
times to recover fromN | osses [Hoe96]. However, in the absence of
SACK, recovering as quickly as slowstart introduces the |ikelihood
of unnecessarily retransmitting packets, and this could significantly
conplicate the recovery mechani sms.

We note that the response to partial acknow edgenments specified in
Section 3 of this docunent and in RFC 2582 differs fromthe response
in [FF96], even though both approaches only retransmit one packet in
response to a partial acknow edgenent. Step 5 of Section 3 specifies
that the TCP sender responds to a partial ACK by deflating the
congestion w ndow by the amount of new data acknow edged, addi ng back
SMBS bytes if the partial ACK acknow edges at | east SMSS bytes of new
data, and sending a new segrment if permtted by the new val ue of

cwnd. Thus, only one previously-sent packet is retransmtted in
response to each partial acknow edgenent, but additional new packets
m ght be transmitted as well, depending on the anmount of new data
acknow edged by the partial acknowl edgement. In contrast, the
variant of NewReno illustrated in [FF96] sinply set the congestion

wi ndow to ssthresh when a partial acknow edgenent was received. The
approach in [FF96] is nore conservative, and does not attenpt to
accurately track the actual nunber of outstanding packets after a
partial acknow edgement is received. While either of these
approaches gi ves acceptabl e performance, the variant specified in
Section 3 recovers nore snoothly when nultiple packets are dropped

Fl oyd, et al. St andards Track [Page 8]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

froma w ndow of data. (The [FF96] behavior can be seen in the NS
simul ator by setting the variable "partial_w ndow deflation " for
"Agent/ TCP/ Newr eno” to O0; the behavior specified in Section 3 is
achi eved by setting "partial _w ndow deflation_" to 1.)

6. Avoiding Miultiple Fast Retransnmits

This section describes the nmotivation for the sender’s state variable
"recover", and discusses possible heuristics for distinguishing
between a retransmitted packet that was dropped, and three duplicate
acknow edgenents fromthe unnecessary retransm ssion of three
packets.

In the absence of the SACK option or tinestanps, a duplicate

acknow edgenment carries no information to identify the data packet or
packets at the TCP data receiver that triggered that duplicate
acknow edgenent. In this case, the TCP data sender is unable to

di stingui sh between a duplicate acknow edgenent that results froma

| ost or del ayed data packet, and a duplicate acknow edgenent t hat
results fromthe sender’s unnecessary retransm ssion of a data packet
that had al ready been received at the TCP data receiver. Because of
this, with the Retransmt and Fast Recovery algorithns in Reno TCP
mul tiple segment | osses froma single wi ndow of data can soneti nes
result in unnecessary multiple Fast Retransmits (and nultiple

reducti ons of the congestion w ndow) [F94].

Wth the Fast Retransmt and Fast Recovery algorithms in Reno TCP
the performance problems caused by multiple Fast Retransmits are
relatively mnor conmpared to the potential problens with Tahoe TCP
whi ch does not inplenent Fast Recovery. Neverthel ess, unnecessary
Fast Retransmits can occur with Reno TCP unl ess sone explicit
mechanismis added to avoid this, such as the use of the "recover"
variable. (This nmodification is called "bugfix" in [F98], and is
illustrated on pages 7 and 9 of that docunent. Unnecessary Fast
Retransmts for Reno without "bugfix" is illustrated on page 6 of

[F98].)

Section 3 of [RFC2582] defined a default variant of NewReno TCP that
did not use the variable "recover", and did not check if duplicate
ACKs cover the variable "recover" before invoking Fast Retransmt.
Wth this default variant from RFC 2582, the problemof multiple Fast
Retransmits froma single wi ndow of data can occur after a Retransmt
Timeout (as in page 8 of [F98]) or in scenarios with reordering (as
in the validation test "./test-all-neweno neweno5 noBF" in
directory "tcl/test" of the NS sinulator. This gives performance
simlar to that on page 8 of [F03].) RFC 2582 also defined Carefu
and Less Careful variants of the NewReno al gorithm and recomended
the Careful variant.

Fl oyd, et al. St andards Track [Page 9]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

The al gorithm specified in Section 3 of this docunment corresponds to
the Careful variant of NewReno TCP from RFC 2582, and elim nates the
problem of multiple Fast Retransmits. This algorithmuses the
variable "recover", whose initial value is the initial send sequence
nunber. After each retransmt tineout, the highest sequence numnber
transmtted so far is recorded in the variable "recover".

If, after a retransnit tineout, the TCP data sender retransnits three
consecutive packets that have al ready been received by the data
receiver, then the TCP data sender will receive three duplicate
acknow edgenents that do not cover nore than "recover”. In this
case, the duplicate acknow edgenments are not an indication of a new

i nstance of congestion. They are sinply an indication that the
sender has unnecessarily retransmtted at |east three packets.

However, when a retransmtted packet is itself dropped, the sender
can al so receive three duplicate acknow edgenents that do not cover
nore than "recover". |In this case, the sender would have been better
off if it had initiated Fast Retransmt. For a TCP that inplenents
the algorithmspecified in Section 3 of this docunent, the sender
does not infer a packet drop from duplicate acknow edgenments in this
scenario. As always, the retransmt timer is the backup mechani sm
for inferring packet loss in this case.

There are several heuristics, based on tinestanps or on the anount of
advancenent of the cumnul ati ve acknow edgenent field, that allowthe
sender to distinguish, in some cases, between three duplicate

acknow edgenments following a retransmtted packet that was dropped,
and three duplicate acknow edgenents fromthe unnecessary

retransm ssion of three packets [Qur03, GF04]. The TCP sender MNAY
use such a heuristic to decide to invoke a Fast Retransmit in sone
cases, even when the three duplicate acknow edgenments do not cover
nore than "recover".

For exanple, when three duplicate acknow edgements are caused by the
unnecessary retransm ssion of three packets, this is likely to be
acconpani ed by the cunul ati ve acknow edgenent field advanci ng by at

| east four segnents. Similarly, a heuristic based on tinmestanps uses
the fact that when there is a hole in the sequence space, the

ti mestanp echoed in the duplicate acknow edgenent is the timestanp of
the nmost recent data packet that advanced the cunul ative

acknow edgenent field [RFC1323]. |If timestanps are used, and the
sender stores the timestanp of the | ast acknow edged segnent, then
the timestanp echoed by duplicate acknow edgenents can be used to

di stingui sh between a retransmitted packet that was dropped and three
dupli cate acknowl edgenments fromthe unnecessary retransm ssion of
three packets. The heuristics are illustrated in the NS sinmulator in
the validation test "./test-all-neweno".

Fl oyd, et al. St andards Track [Page 10]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

6.1. ACK Heuristic

I f the ACK-based heuristic is used, then follow ng the advancenent of
the cunmul ative acknow edgenent field, the sender stores the val ue of
the previous cumul ati ve acknowl edgement as prev_hi ghest _ack, and
stores the latest cumul ative ACK as highest _ack. In addition, the
following step is perforned if Step 1 in Section 3 fails, before
proceeding to Step 1B

1*) If the Curul ati ve Acknow edgenent field didn’t cover nore than
"recover"”, check to see if the congestion wi ndow is greater than
SMBS bytes and the difference between hi ghest ack and
prev_hi ghest _ack is at nbst 4*SMSS bytes. |f true, duplicate
ACKs indicate a | ost segnent (proceed to Step 1A in Section 3).
O herwi se, duplicate ACKs likely result from unnecessary
retransm ssions (proceed to Step 1B in Section 3).

The congestion wi ndow check serves to protect against fast retransmt
i Mmediately after a retransnmit tineout, simlar to the
"exitFastRetrans_" variable in NS. Exanples of applying the ACK
heuristic are in validation tests "./test-all-new eno

new eno_rto_l oss_ack” and "./test-all-neweno neweno_rto_dup_ack" in
directory "tcl/test” of the NS sinulator.

If several ACKs are |lost, the sender can see a junp in the cunul ative
ACK of nore than three segnents, and the heuristic can fail. A
validation test for this scenario is "./test-all-neweno
neweno _rto |l oss ackf". RFC 2581 reconmends that a receiver should
send duplicate ACKs for every out-of-order data packet, such as a
dat a packet received during Fast Recovery. The ACK heuristic is nore
likely to fail if the receiver does not follow this advice, because
then a snmaller nunmber of ACK | osses are needed to produce a
sufficient junmp in the cunul ative ACK.

6.2. Timestanmp Heuristic

If this heuristic is used, the sender stores the tinmestanp of the
| ast acknow edged segnent. In addition, the second paragraph of step
1in Section 3 is replaced as follows:

1**) If the Curul ati ve Acknow edgenent field didn’t cover nore than
"recover", check to see if the echoed tinestanp in the |ast
non-dupl i cate acknow edgnent equals the stored tinestanp. |If
true, duplicate ACKs indicate a | ost segnent (proceed to Step 1A
in Section 3). Oherwise, duplicate ACKs likely result from
unnecessary retransm ssions (proceed to Step 1B in Section 3).

Fl oyd, et al. St andards Track [Page 11]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

Exampl es of applying the tinmestanp heuristic are in validation tests
"“./test-all-neweno neweno rto loss tsh" and "./test-all-neweno
new eno_rto_dup_tsh". The tinmestanp heuristic works correctly, both
when the receiver echoes timestanps as specified by [RFC1323], and by
its revision attenpts. However, if the receiver arbitrarily echoes
ti mestanps, the heuristic can fail. The heuristic can also fail if a
ti meout was spurious and returning ACKs are not fromretransmtted
segnents. This can be prevented by detection algorithnms such as

[RFC3522] .

7. Implenentation |Issues for the Data Receiver

[RFC2581] specifies that "Qut-of-order data segnents SHOULD be
acknow edged i medi ately, in order to accelerate | oss recovery."
Neal Cardwell has noted that some data receivers do not send an

i medi at e acknowl edgenent when they send a partial acknow edgrent,
but instead wait first for their del ayed acknow edgenent timer to
expire [C98]. As [C98] notes, this severely linmts the potentia
benefit of NewReno by del aying the receipt of the partia

acknow edgenent at the data sender. Echoing RFC 2581, our
reconmendation is that the data receiver send an i nmedi ate

acknow edgenent for an out-of-order segment, even when that out-of-
order segnent fills a hole in the buffer.

8. Implenentation Issues for the Data Sender

In Section 3, Step 5 above, it is noted that inplenmentations should
take neasures to avoid a possible burst of data when | eaving Fast
Recovery, in case the anount of new data that the sender is eligible
to send due to the new value of the congestion windowis large. This
can arise during NewReno when ACKs are | ost or treated as pure w ndow
updat es, thereby causing the sender to underestimate the nunber of
new segnents that can be sent during the recovery procedure.
Specifically, bursts can occur when the FlightSize is nuch | ess than
the new congestion wi ndow when exiting from Fast Recovery. One
sinpl e mechanismto avoid a burst of data when | eaving Fast Recovery
is tolimt the nunber of data packets that can be sent in response
to a single acknow edgnment. (This is known as "maxburst " in the ns
simulator.) Qher possible nmechanisns for avoiding bursts include
rat e- based pacing, or setting the slowstart threshold to the

resul tant congestion wi ndow and then resetting the congestion w ndow
to FlightSize. A recomendation on the general mechanismto avoid
excessively bursty sending patterns is outside the scope of this
document .

An inmplenentation may want to use a separate flag to record whet her

or not it is presently in the Fast Recovery procedure. The use of
the val ue of the duplicate acknow edgnent counter for this purpose is

Fl oyd, et al. St andards Track [Page 12]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

10.

not reliable because it can be reset upon w ndow updates and out - of -
order acknow edgnents.

When not in Fast Recovery, the value of the state variable "recover"
shoul d be pulled along with the value of the state variable for
acknow edgnents (typically, "snd _una") so that, when | arge anpounts of
dat a have been sent and acked, the sequence space does not wap and
falsely indicate that Fast Recovery should not be entered (Section 3,
step 1, last paragraph).

It is inmportant for the sender to respond correctly to duplicate ACKs
recei ved when the sender is no |onger in Fast Recovery (e.g., because
of a Retransmit Tinmeout). The Linmted Transmt procedure [RFC3042]
descri bes possible responses to the first and second duplicate

acknow edgenents. \When three or nore duplicate acknow edgenents are
recei ved, the Cumul ative Acknow edgenent field doesn’t cover nore
than "recover”, and a new Fast Recovery is not invoked, it is

i nportant that the sender not execute the Fast Recovery steps (3) and
(4) in Section 3. Qherwi se, the sender could end up in a chain of
spurious tineouts. W nention this only because several NewReno

i mpl enentati ons had this bug, including the inplenentation in the NS
simulator. (This bug in the NS simulator was fixed in July 2003,
with the variable "exitFastRetrans_".)

Si mul ati ons

Simul ati ons with NewReno are illustrated with the validation test
"tcl/test/test-all-neweno"” in the NS simulator. The comand
"..l..Ins test-suite-neweno.tcl reno" shows a simulation with Reno
TCP, illustrating the data sender’s | ack of response to a partia
acknow edgenment. In contrast, the command "../../ns test-suite-
new eno.tcl neweno_B" shows a simulation with the same scenario
usi ng the NewReno al gorithns described in this paper

Conpari sons between Reno and NewReno TCP

As we stated in the introduction, we believe that the NewReno

nodi fication described in this docunment inproves the performance of
the Fast Retransmit and Fast Recovery algorithms of Reno TCP in a

wi de variety of scenarios. This has been discussed in some depth in
[FF96], which illustrates Reno TCP' s poor performance when nmultiple
packets are dropped froma w ndow of data and also illustrates
NewReno TCP' s good performance in that scenario.

We do, however, know of one scenario where Reno TCP gives better
performance than NewReno TCP, that we describe here for the sake of
conpl eteness. Consider a scenario with no packet |oss, but with
sufficient reordering so that the TCP sender receives three duplicate

Fl oyd, et al. St andards Track [Page 13]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

11.

acknow edgenments. This will trigger the Fast Retransmt and Fast
Recovery algorithms. Wth Reno TCP or with Sack TCP, this will

result in the unnecessary retransm ssion of a single packet, conbined
with a halving of the congestion w ndow (shown on pages 4 and 6 of
[FO3]). Wth NewReno TCP, however, this reordering will also result
in the unnecessary retransnission of an entire w ndow of data (shown
on page 5 of [FO03]).

Wil e Reno TCP perforns better than NewReno TCP in the presence of
reordering, NewReno' s superior performance in the presence of
mul ti pl e packet drops generally outweighs its |ess optima

performance in the presence of reordering. (Sack TCP is the
preferred solution, with good perfornmance in both scenarios.) This
docunent recommends the Fast Retransnit and Fast Recovery al gorithms
of NewReno TCP instead of those of Reno TCP for those TCP connections
that do not support SACK. We would also note that NewReno’'s Fast
Retransmt and Fast Recovery mechani snms are wi dely deployed in TCP

i npl enentations in the Internet today, as docunented in [PFO1]. For
exanpl e, tests of TCP inplenmentations in several thousand web servers
in 2001 showed that for those TCP connections where the web browser
was not SACK-capable, nmore web servers used the Fast Retransmit and
Fast Recovery al gorithms of NewReno than those of Reno or Tahoe TCP

[PFO1] .

Changes Rel ative to RFC 2582

The purpose of this docunent is to advance the NewReno’' s Fast
Retransmt and Fast Recovery algorithms in RFC 2582 to Standards
Tr ack.

The main change in this docunent relative to RFC 2582 is to specify
the Careful variant of NewReno's Fast Retransnit and Fast Recovery
algorithms. The base algorithmdescribed in RFC 2582 did not attenpt
to avoid unnecessary nultiple Fast Retransmits that can occur after a
ti meout (described in nmore detail in the section above). However,
RFC 2582 al so defined "Careful" and "Less Careful" variants that
avoi d these unnecessary Fast Retransnmits, and recommended the Carefu
variant. This docunent specifies the previously-named "Careful"
variant as the basic version of NewReno. As described below, this

al gorithmuses a variable "recover”, whose initial value is the send
seqguence nunber.

The al gorithm specified in Section 3 checks whether the

acknow edgenent field of a partial acknow edgenent covers *nore* than
"recover", as defined in Section 3. Another possible variant woul d
be to sinply require that the acknow edgenent field covers *nore than
or equal to* "recover" before initiating another Fast Retransmt. W
called this the Less Careful variant in RFC 2582.

Fl oyd, et al. St andards Track [Page 14]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

12.

There are two separate scenarios in which the TCP sender could
recei ve three duplicate acknow edgenents acknow edgi ng "recover" but
no nore than "recover”. One scenario would be that the data sender
transmtted four packets with sequence nunbers higher than "recover",
that the first packet was dropped in the network, and the follow ng
three packets triggered three duplicate acknow edgenents

acknow edgi ng "recover". The second scenario would be that the
sender unnecessarily retransnmitted three packets bel ow "recover", and
that these three packets triggered three duplicate acknow edgenents
acknow edgi ng "recover”. In the absence of SACK, the TCP sender is
unabl e to distinguish between these two scenari os.

For the Careful variant of Fast Retransmt, the data sender would
have to wait for a retransmt tinmeout in the first scenario, but
woul d not have an unnecessary Fast Retransmt in the second scenario.
For the Less Careful variant to Fast Retransmt, the data sender
woul d Fast Retransmt as desired in the first scenario, and woul d
unnecessarily Fast Retransnmit in the second scenario. This docunent
only specifies the Careful variant in Section 3. Unnecessary Fast
Retransmits with the Less Careful variant in scenarios with
reordering are illustrated in page 8 of [F03].

The docunent al so specifies two heuristics that the TCP sender MAY
use to decide to invoke Fast Retransmt even when the three duplicate
acknow edgenments do not cover nore than "recover". These heuristics,
an ACK- based heuristic and a tinmestanp heuristic, are described in
Sections 6.1 and 6.2 respectively.

Concl usi ons

Thi s docunent specifies the NewReno Fast Retransnit and Fast Recovery
algorithms for TCP. This NewReno nodification to TCP can even be

i mportant for TCP inplenentations that support the SACK option
because the SACK option can only be used for TCP connections when
both TCP end- nodes support the SACK option. NewReno perfornms better
than Reno (RFC 2581) in a nunber of scenarios discussed herein

A nunber of options to the basic algorithmpresented in Section 3 are
al so described. These include the handling of the retransm ssion
timer (Section 4), the response to partial acknow edgnents (Section
5), and the value of the congestion wi ndow when | eavi ng Fast Recovery
(section 3, step 5). CQur belief is that the differences between
these variants of NewReno are small conpared to the differences

bet ween Reno and NewReno. That is, the inportant thing is to

i mpl ement NewReno instead of Reno, for a TCP connection w thout SACK
it is less inportant exactly which of the variants of NewReno is

i mpl enent ed.

Fl oyd, et al. St andards Track [Page 15]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

13.

14.

15.

15.

15.

Security Considerations

RFC 2581 di scusses general security considerations concerning TCP
congestion control. This docunent describes a specific algorithm
that conforns with the congestion control requirenments of RFC 2581,
and so those considerations apply to this algorithm too. There are
no known additional security concerns for this specific algorithm

Acknowl edgenent s
Many thanks to Anil Agarwal, Mark Allman, Arnmando Caro, Jeffrey Hsu,
Vern Paxson, Kacheong Poon, Keyur Shah, and Bernie Volz for detailed
f eedback on this docunent or on its precursor, RFC 2582.

Ref er ences

1. Nornmtive References

[RFC2018] Mathis, M, Mhdavi, J., Floyd, S. and A Ronmanow, "TCP
Sel ective Acknow edgenment Options", RFC 2018, COctober 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC2581] Al l man, M, Paxson, V. and W Stevens, "TCP Congestion
Control ", RFC 2581, April 1999.

[RFC2582] Floyd, S. and T. Henderson, "The NewReno Mdification to
TCP' s Fast Recovery Algorithnt, RFC 2582, April 1999.

[RFC2988] Paxson, V. and M Al lnman, "Conputing TCP's Retransni ssion
Timer", RFC 2988, Novenber 2000.

[RFC3042] Allman, M, Bal akrishnan, H and S. Floyd, "Enhancing TCP s
Loss Recovery Using Limted Transmit", RFC 3042, January

2001.

2. Informative References

[Co8] Cardwel I, N., "delayed ACKs for retransmtted packets:
ouch!™. November 1998, Emmil to the tcpinpl mailing |ist,

Message- |1 D "Pi ne. LNX. 4. 02A. 9811021421340. 26785-
100000@ake. cs. washi ngton. edu", archived at "http://tcp-
i mpl .1 erc. nasa. gov/tcp-inpl".

Fl oyd, et al. St andards Track [Page 16]

RFC 3782

[FO8]

[FO3]

[FF96]

[Fo4]

[GFO4]

[Gur 03]

[Hen98]

[Hoe95]

[Hoe96]

[LMD7]

Fl oyd,

et al.

NewReno Modification to Fast Recovery Algorithm April 2004

Floyd, S., Revisions to RFC 2001, "Presentation to the
TCPI MPL Worki ng Group", August 1998. URLs
"ftp://ftp.ee.lbl.gov/tal ks/sf-tcpinpl-aug98. ps" and
"ftp://ftp.ee.lbl.gov/tal ks/sf-tcpinpl-aug98. pdf".

Fl oyd, S., "Myving NewReno from Experinmental to Proposed
Standard? Presentation to the TSVWG Wor ki ng Group”, March
2003. URLs "http://www.icir.org/floyd/tal ks/ new eno-

Mar 03. ps" and "http://ww.icir.org/floyd/tal ks/ new eno-
Mar 03. pdf ".

Fall, K. and S. Floyd, "Sinulation-based Conparisons of
Tahoe, Reno and SACK TCP", Conputer Comruni cation Review,
July 1996. URL "ftp://ftp.ee.lDbl.gov/papers/sacks.ps.Z".

Floyd, S., "TCP and Successive Fast Retransmits", Technica
report, Cctober 1994. URL
"ftp://ftp.ee.lbl.gov/papers/fastretrans. ps".

GQurtov, A and S. Floyd, "Resolving Acknow edgnent

Anbi guity in non-SACK TCP", Next Generation Teletraffic and
Wred/ Wrel ess Advanced Networ ki ng (NEWRAN 04), February
2004. URL "http://ww. cs. hel sinki.fi/u/gurtov/papers/
heuristics. htm".

GQurtov, A., "[Tsvwg] resolving the probl em of unnecessary
fast retransmits in go-back-N', email to the tsvwg mailing
list, message | D <3F25B467.9020609@s. hel sinki.fi>, July
28, 2003. URL "http://wwi.ietf.org/ mail-archive/working-
groups/tsvwg/ current/ nsg04334. htm ".

Henderson, T., Re: NewReno and the 2001 Revi sion. Septenber
1998. Emmil to the tcpinpl mailing list, Message ID

"Pi ne. BSI. 3. 95. 980923224136. 26134A-

100000@ apt or . CS. Ber kel ey. EDU", archived at "http://tcp-

i mpl .l erc.nasa.gov/tcp-inpl".

Hoe, J., "Startup Dynamics of TCP' s Congestion Control and
Avoi dance Schenes", Master’s Thesis, MT, 1995.

Hoe, J., "Inproving the Start-up Behavior of a Congestion
Control Schene for TCP', ACM SI GCOMM August 1996. URL
"http://ww. acm org/si gcomi si gcom®6/ program htm ".

Lin, DD and R Mrris, "Dynam cs of Random Early

Detection", SIGCOW 97, Septenber 1997. URL
"http://ww. acm or g/ si gconmi si gconm®7/ program htm ".

St andards Track [Page 17]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004
[NS] The Network Sinulator (NS). URL
"http://ww.isi.edu/ nsnam ns/".

[PFO1] Padhye, J. and S. Floyd, "ldentifying the TCP Behavi or of
Web Servers", June 2001, SIGCOW 2001

[RFC1323] Jacobson, V., Braden, R and D. Borman, "TCP Extensions for
H gh Performance", RFC 1323, May 1992.

[RFC3517] Blanton, E., Allman, M, Fall, K and L. Wang, "A
Conservative Sel ective Acknow edgnent (SACK)-based Loss
Recovery Algorithmfor TCP', RFC 3517, April 2003.

[RFC3522] Ludwig, R and M Meyer, "The Eifel Detection Al gorithmfor
TCP", RFC 3522, April 2003.

Aut hors’ Addr esses

Sally Fl oyd
I nternational Conputer Science Institute

Phone: +1 (510) 666- 2989

EMai |l : floyd@cm org
URL: http://ww.icir.org/floyd/

Tom Hender son

The Boei ng Conpany

EMai | : thonas. r. hender son@oei ng. com
Andrei Qurtov

Tel i aSoner a

EMai | : andrei.gurtov@eliasonera.com

Fl oyd, et al. St andards Track [Page 18]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

Ful | Copyright Statenent

Copyright (C The Internet Society (2004). This docunent is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

Thi s docunent and the infornmation contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE
REPRESENTS OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE
| NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS COR

| MPLI ED, | NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF
THE | NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The |1 ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clai ned
to pertain to the inplenentation or use of the technol ogy
described in this document or the extent to which any license
under such rights m ght or might not be avail able; nor does it
represent that it has made any independent effort to identify any
such rights. Information on the procedures with respect to

rights in RFC docunents can be found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt made to obtain a general |icense or permssion for the use
of such proprietary rights by inmplenenters or users of this
specification can be obtained fromthe IETF on-line |IPR repository
at http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention
any copyrights, patents or patent applications, or other
proprietary rights that may cover technol ogy that may be required
to inplenent this standard. Pl ease address the information to the
|ETF at ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Fl oyd, et al. St andards Track [Page 19]

