
Explicit Transport Error Notification (ETEN) for Error-Prone
Wireless and Satellite Networks∗

Rajesh Krishnan†, James P.G. Sterbenz‡,
Wesley M. Eddy¶,

Craig Partridge†, Mark Allman§

†BBN Technologies,{krash,craig}@bbn.com
‡University of Massachusetts, Amherst, jpgs@acm.org

¶Ohio University, weddy@irg.cs.ohiou.edu
§International Computer Science Institute, mallman@icir.org

Abstract

Wireless and satellite networks often have non-negligible
packet corruption rates that can significantly degrade TCP
performance. This is due to TCP’s assumption that every
packet loss is an indication of network congestion (causing
TCP to reduce the transmission rate). This problem has re-
ceived much attention in the literature. In this paper, we
take a broad look at the problem of enhancing TCP perfor-
mance under corruption losses, and include a discussion of
the key issues. The main contributions of this paper are:
(i) a confirmation of previous studies that show the reduc-
tion of TCP performance in the face of corruption loss, and
in addition a plausible upper bound achievable with perfect
knowledge of the cause of loss, (ii) a classification of the
potential mitigation space, and (iii) the introduction of a
promising new mitigation that employs rich cumulative in-
formation from intermediate nodes in a path to form a better
congestion response.

We first illustrate the performance implications of
corruption-based loss for a variety of networks via simu-
lation. In addition, we show a rough upper bound on the
performance gains a TCP could get if it could perfectly de-
termine the cause of each segment loss – independent of
any specific mechanism for TCP to learn the root cause of
packet loss. Next, we provide a taxonomy of potential prac-
tical classes of mitigations that TCP end-points and inter-
mediate network elements can cooperatively use to decrease
the performance impact of corruption-based loss. Finally,
we briefly consider a potential mitigation, calledcumulative
explicit transport error notification(CETEN), which cov-
ers a portion of the solution space previously unexplored.
CETEN is shown to be a promising mitigation strategy, but
a strategy with numerous formidable practical hurdles still
to overcome.
∗Pre-print: Accepted for publication in Elsevier Computer Networks.

Keywords: explicit transport error notification (ETEN), ex-
plicit loss notification (ELN), explicit congestion notifica-
tion (ECN), wireless and satellite networks, TCP perfor-
mance, congestion, corruption, bit errors, channel fades.

1 Introduction

The Transmission Control Protocol (TCP) [35] is the most
widely used transport protocol in the TCP/IP suite by to-
day’s common Internet users and applications. One obsta-
cle to good performance of TCP over internetworks with
wireless and satellite components is non-negligible bit-error
rates (BER). TCP guarantees that corrupted data will be re-
transmitted by the data sender, hence providing a reliable
byte-stream to applications. However, packet loss is also
used by TCP to determine the level of congestion in the net-
work [23] – as traditionally, the bulk of packet loss in net-
works comes from router queue overflow (i.e., congestion).
Therefore, to avoid congestion collapse TCP responds to
packet loss by decreasing its congestion window (cwnd)
[23, 4], and therefore the sending rate. The reduction of
the congestion window is not needed to protect network sta-
bility in the case when losses are caused by corruption and
therefore these needless reductions in the sending rate have
a negative impact on a connection’s performance with little
(if any) overall benefit to the network.

If a TCP sender can distinguish packets lost due to conges-
tion from packets lost due to corruption, better performance
may be achieved. The performance benefit can be realized if
TCP can retransmit a packet lost due to corruption without
needlessly reducing the transmission rate, while continuing
to protect network stability by decreasing the sending rate
when loss is caused by network congestion.

Several approaches have been proposed in the literature to

1

distinguish congestion losses from corruption losses. For
instance, methods to implicitly distinguish corruption from
congestion have, thus far, not been successful [10, 16].
However, Performance Enhancing Proxies (PEPs) [12] have
been shown to improve TCP performance [7], but break the
end-to-end semantics of the transport layer connection. In
addition, PEPs that require intrusive header inspection are
not able to impact encrypted traffic (e.g., traffic utilizing
IPsec [26]). Earlier work on explicit loss notification in the
context of TCP over wireless and satellite links is described
in [9, 8, 41, 40]. An analysis of situations that can bene-
fit from explicit transport error notification (ETEN) mecha-
nisms is given in [16].

The goal and contribution of this paper is as follows. First,
unlike previous work in this area, the bulk of this paper ex-
plores the problems caused by corruption-based loss and
possible mitigations in a broad and generic fashion without
regard to any particular mitigation mechanism. To this end,
Section 2 illustrates the impact of corruption-based packet
losses on standard TCP performance across a variety of net-
work topologies and traffic patterns. Additionally, Section 2
establishes a rough upper bound on the performance a TCP
can attain if the TCP can perfectly determine the cause of
a dropped segment (via using an “Oracle” that knows the
cause of each loss). Next, Section 3 presents a detailed tax-
onomy of the possible methods for mitigating the effects of
corruption-based loss, including the pros and cons of vari-
ous schemes. In Section 4 we depart from the broad, generic
terms of the previous sections and present a preliminary ex-
amination of a novel mechanism for coping with corruption-
based losses using cumulative information provided by the
network. Finally, in Section 5 we conclude and summarize.

2 Can ETEN Help?

In this section we present several simulations to con-
cretely illustrate TCP’s performance problems caused by
corruption-based loss across a variety of network types.
In addition to the impact on stock TCP, we examine a
TCP variant that uses “Oracle” notifications to gain perfect
knowledge about the cause of packet loss and therefore can
mitigate the performance issues. We believe this second
TCP variant, discussed in section 2.1, is a plausible upper-
bound on the performance gains a TCP could expect from
a scheme to combat the issues created by corruption-based
loss.

2.1 Oracle Notifications

We extended thens-2simulator [31] (version 2.1b9) to sup-
port our simulations. We added an “Oracle” tonsthat sits at

the end of a particular link and reports all corruption-based
loss to a TCP sender. The TCP endpoint registers with the
Oracle (indicating a desire to receive corruption reports) and
when a corruption loss occurs the Oracle instantaneously
notifies TCP of the corruption-based loss. We modified the
TCP sender to record these notifications in a table for later
use during loss recovery. Of course, this mechanism is not
realistic, but rather the instantaneous and perfect knowledge
the Oracle supplies provides an upper bound on how po-
tential strategies to mitigate the impact of corruption-based
losscouldwork.

When TCP enters its traditional loss recovery phase via fast
retransmit all losses are repaired per a standard loss recov-
ery technique (e.g., using SACK [28]). Stock TCP reduces
the congestion window (cwnd) by half upon a fast retrans-
mit. When using the Oracle, TCP queries the table of known
corruption-based losses. If the segment being transmitted
via fast retransmit was dropped due to corruption thecwnd
is not reduced, and furthermore, a flag is set indicating the
cwndhas not been reduced in the current window of data.
If additional losses within the current window occur and are
congestion-based (i.e., no Oracle notification for the loss
was received) the TCP will reducecwndupon retransmis-
sion of the first congestion-based loss in the window and
clear the flag that indicates a congestion response has not
been invoked. This scheme is similar to using TCP SACK
[11] or TCP NewReno [19] in that onecwndreduction per
“loss event” is taken.

In the case of loss detected via the retransmission timeout
(RTO), TCP behaves the same regardless of whether Ora-
cle notifications have arrived. In other words, Oracle noti-
fications have no impact after an RTO. While in any given
situation this is necessarily sub-optimal a clean and general
approach remains illusive. Upon an RTO expiration TCP
generally makes the decision that all segments sent are no
longer in the network (and the SACK scoreboard is cleared).
Therefore, if the sending TCP uses Oracle notifications to
determine that acwnd reduction is not necessary a poten-
tially large burst of segments may be sent (bursts cancause
congestionin some cases [22]). A second problem is that
retransmission after an RTO is fairly gross with TCP often
sending many more segments than necessary [3]. There-
fore, in the vast majority of the cases (based on the data pre-
sented in [3]) a segment would be retransmitted for which
no Oracle notification was received (and, in fact was not
even lost) and therefore cause acwndreduction.

Finally, we note that in some cases (e.g., highly interac-
tive traffic) the optimal response to an Oracle notification
would be to retransmit the corrupted segment immediately.
However, retransmission outside of a traditional TCP loss
recovery period ends up having implications later in the
connection due to the reordering of events. The problem

2

stems from a retransmission being queued behind packets
with higher sequence numbers. This causes the TCP re-
ceiver to transmit duplicate ACKs, which the sender, in
turn, uses to detect loss. The TCP sender then needs to
remember which segments have been retransmitted outside
the traditional loss recovery phase and which have not. Ac-
cordingly the TCP sender must be able to determine when
and if to invoke congestion control. We believe that such is-
sues could be worked out given enough effort at redesigning
TCP’s traditional notions. However, in this paper we focus
on bulk transfers, in which case the key objective is to keep
the sending rate from being needlessly reduced. Therefore,
we did not focus on optimizing when retransmits are sent
with respect to the delay in getting the data to the receiver.

2.2 Single Flow Simulations

The first set of simulations involves a simple topology with
one link between the sender and receiver. The goal of these
simulations is to illustrate the impact of corruption-based
loss on TCP performance, as well as to show a plausible
upper-bound on the performance that could be achieved
with a perfect-knowledge mitigation.

In our simulations, we use three different combinations of
bandwidth and delay for the link, as follows: (i) a Long-
Fat Network (LFN) with a one-way delay of 250 msec1 and
bandwidth of 10 Mbps, (ii) a Short-Fat Network (SFN) with
a one-way delay of 25 msec and bandwidth of 10 Mbps and
(iii) a Long-Thin Network (LTN) with a one-way delay of
250 msec and bandwidth of 1.5 Mbps. All transfers are
run for 30 minutes (ensuring that even when corruption is
a very low rate event it happens in every transfer). We ap-
plied a uniform bit-error rate (BER) of10−4–10−11 to the
link. The highest error rate is just under 1% packet loss
rate – above which TCP does not cope well. We used the
nsstandardFullTcpSackTCP variant. The TCP advertised
window was set to 2400 segments – large enough to never
be a factor in our simulations. TCP uses a segment size of
536 bytes. The capacity of the drop-tail queues applied to
the link is set to the delay-bandwidth product of the net-
work. In all the following plots the point on the far left side
of the figure (at a BER of zero) is a baseline transfer with
no corruption drops. In this paper we report the mean of
30 runs with each set of simulation parameters.

The simulations with BERs of10−4 and10−5 follow the
trends shown in the following results. Furthermore, at
these BERs, the difference in performance between stock
SACK TCP and SACK TCP enhanced with Oracle support
is nearly non-existent in all simulations presented in this

1The propagation delay between the Earth and a geo-synchronous satel-
lite is roughly one-eight of a second, yielding a one-way propagation delay
of 250 msec and a round-trip time of 500 msec.

section. TCP’s goodput2 at these BERs effectively makes
the plots presented in this section more difficult to read by
stretching they-axis by several orders of magnitude. There-
fore, we omit these simulations from the following discus-
sions, but summarize the simulations with the following two
points: First, TCP performs quite poorly at very high BERs
(often obtaining an average of less than 1 byte/sec). Second,
we find that the Oracle notifications do not help TCP per-
formance in this regime due to the excessive loss and RTO
behavior (including RTO backoff).

10e2

10e3

10e4

10e5

10e6

0 10e-11 10e-10 10e-9 10e-8 10e-7 10e-6

G
oo

dp
ut

 (
by

te
s/

se
c)

�

Bit-Error Rate

Stock SACK
SACK w/ Oracle

Figure 1: LFN: Oracle vs. Stock SACK TCP

Figure 1 shows the performance of a single TCP connec-
tion over the LFN topology as a function of the bit-error
rate plotted on a log-log scale. The plot shows the gen-
eral degradation of performance as the BER increases for
stock TCP. The reduced performance motivates the study of
mechanisms to mitigate the dramatic reduction in goodput
caused by corruption-based loss. In this situation we note
that even at a BER of10−11 the performance of stock TCP
has been reduced by roughly 10% when compared to the
corruption-free case3.

The plot also shows that with perfect knowledge of the
cause of drops TCP can improve performance dramatically.
However, as the BER increases the performance suffers
even with the Oracle’s assistance. In this regime, the RTO
plays a large part in loss recovery – which means that the
perfect knowledge that has been gathered cannot be reason-
ably applied, as discussed in Section 2.1. In our LFN sim-

2The goodputof a flow is defined as the bandwidth delivered to the
receiver, excluding duplicate packets [20]. We calculate the goodput by
dividing the total number of unique bytes arriving at the receiver by the
duration of the TCP connection (Note: the header bytes of these unique
packets are also included).

3This aspect is difficult to see on the figure due to the logarithmic scal-
ing of the axes; we use the logarithmic scaling in order to best illustrate
how the overall performance varies with BERs across several orders of
magnitude.

3

ulations without corruption-based loss the RTO timer never
fired. On the other hand, the RTO timer expires an average
of 117 times during the Oracle assisted transfers at a BER
of 10−6 (and an average of 130 times without the Oracle).

These results suggest that mechanisms to conduct loss re-
covery without relying on the RTO timer when the sending
rate is low would be useful. Such mechanisms would reduce
the need for the gross loss recovery that the RTO timer often
causes [3]. In turn, finer-grained loss recovery may help the
TCP sender determine the root causes of the loss which can
then aid performance. Mechanisms such as Early Retrans-
mit [2] and Smart Framing [30] may be useful in this space
and warrant further study.

10e3

10e4

10e5

10e6

0 10e-11 10e-10 10e-9 10e-8 10e-7 10e-6

G
oo

dp
ut

 (
by

te
s/

se
c)

�

Bit-Error Rate

Stock SACK
SACK w/ Oracle

Figure 2: SFN: Oracle vs. Stock SACK TCP

Figure 2 shows the performance of a single TCP connec-
tion over the SFN topology as a function of the BER on a
log-log plot. When compared to the LFN simulations pre-
sented above, the SFN plot shows that the shorter RTT of
the network aids TCP performance by tightening the con-
gestion control loop. Stock SACK’s performance first drops
below full utilization (by roughly 85%) at a BER of10−8 in
this set of simulations – much later than the BER of10−11

where the dropoff first occurs in the LFN case presented
above. Additionally, we see the performance at the worst
BER is an order of magnitude better than the same point
in the LFN simulations. While the shorter feedback loop
aids TCP performance, the impact of corruption-based loss
is still significant (over an order of magnitude difference at
high error rates). Finally, in these experiments we again
observe the power in being able to determine the cause of
each packet loss and how that power is diminished as the
connection starts to rely on the RTO for loss recovery.

Finally, Figure 3 shows the performance of a single TCP
connection over the LTN topology as a function of the BER
plotted on a log-log scale. In this plot we see that TCP
has lower goodput due to the smaller amount of capacity on

10e2

10e3

10e4

10e5

0 10e-11 10e-10 10e-9 10e-8 10e-7 10e-6

G
oo

dp
ut

 (
by

te
s/

se
c)

�

Bit-Error Rate

Stock SACK
SACK w/ Oracle

Figure 3: LTN: Oracle vs. Stock SACK TCP

the bottleneck link than used in the LFN set of simulations.
However, we also note a similar decline in performance as
the BER increases, as we have illustrated previously. Fur-
ther, with the Oracle’s help the performance is significantly
improved over stock TCP – again suggesting that mecha-
nisms that offer TCP more information about the cause of
losses would be worthwhile to bulk data transfer applica-
tions.

2.3 Competing Traffic

To verify that the above results hold in a slightly more prac-
tical environment our next set of simulations involves com-
peting traffic. While this simulation is still not a realistic
Internet setting, it gives a glimpse of how TCP copes with
corruption-based loss when there is also contention for bot-
tleneck resources between various traffic flows. The simula-
tions presented in this section involve a four node topology
with a TCP source and TCP destination separated by two
routers. The link between the end nodes and the routers has
a capacity of 10 Mbps and a one-way delay of 1 msec. The
link between the routers has a capacity of 1.5 Mbps, a one-
way delay of 250 msec and router queue sizes set based
on the delay-bandwidth product of the path (these are the
same settings used for the LTN experiments outlined above
and shown in Figure 3). The competing traffic consists of
four constant-bit rate on/off UDP flows in each direction
over the bottleneck link (between the routers). The on and
off times of the flows are dictated by an exponential ran-
dom process with mean on and off times of 0.5 sec. When
on each flow sends at 0.25 Mbps. When all competing flows
are active they consume two-thirds of the bottleneck capac-
ity. The first UDP flow in each direction is started 60 msec
into the simulation, with an additional UDP flow starting
in each direction every 50 msec (until four on/off flows are

4

active in each direction).

10e2

10e3

10e4

10e5

0 10e-11 10e-10 10e-9 10e-8 10e-7 10e-6

G
oo

dp
ut

 (
by

te
s/

se
c)

�

Bit-Error Rate

Stock SACK
SACK w/ Oracle

Figure 4: LTN with competing traffic

Figure 4 shows the average goodput of the end-to-end TCP
connection over 30 simulation runs as a function of the BER
on a log-log plot. The figure shows the same general trends
illustrated in the single connection LTN case. The impact
of the bursty on/off traffic is to reduce the available bottle-
neck capacity by roughly one-third4. The figure shows that
corruption-based loss negatively impacts stock TCP perfor-
mance in a scenario with competing traffic. Further, the
figure shows that with perfect knowledge a TCP sender can
enjoy performance benefits across a range of BERs, but the
benefits diminish as the BER increases and TCP relies more
heavily on the RTO for loss recovery.

2.4 Discussion

The results in this section confirm previous work (e.g. [9, 8,
41, 40] in showing that schemes that allow a sending TCP
to determine the cause of a segment loss would be useful to
bulk transfer applications, especially in networks with non-
negligible packet corruption rates. This conclusion holds
across a number of different network types and a range of
BERs. We classify the solution space for mitigations in the
next section.

4The UDP flows are expected to consume one-third of the capacity
since the flows are set up to consume two-thirds of the bottleneck capacity
when all flows are sending at the same time and the flows are configured
to send roughly half the time.

3 A Taxonomy of Corruption Notifi-
cation and Response Mechanisms

In this section we present a taxonomy describing the range
of mechanisms that can be used for loss discrimination, ex-
plicit transport notification, and mitigation. First, we of-
fer the following definitions to clearly distinguish different
transport protocol mechanisms, as illustrated in Figure 5:

• Flow control is exerted by thereceiverto prevent the
sender from transmitting data at a rate that exceeds the
capacity of the receiver.

• Congestion control [15] and avoidance is used to pre-
vent the sender from transmitting data too quickly for
thenetworkto handle.

• Error control is a function needed for the reliable deliv-
ery of data; this function is responsible for retransmit-
ting information that is lost (due to either corruption or
congestion) between the sender and receiver.

Transport Layer Control

... ...
Error Control Congestion ControlFlow Control

Loss Notification

Corruption Notification

...

...
Congestion Notification

...

Error Control Response

Figure 5: Transport Layer Control

In this paper we are concerned with error control, in particu-
lar discriminating loss that is caused by corruption from loss
caused by congestion. Congestion-based losses are caused
by resource contention or control in networks. For instance,
packets arriving at a router that has exhausted its buffer
memory may be dropped – indicating contention caused by
a mismatch in the packet arrival and packet departure rates
at the router. In this paper we will use the termcongestion
lossto refer to packets not arriving at their destination due
to resource contention somewhere along the path.

Corruption is generally caused either by channel errors
(such as background noise or interference) or by hardware
errors in network components [44]. Corruption can con-
sist of bit errors, packet loss, or burst errors, depending on
the duration of a particular error event. We will use the
term corruption lossto refer to packets that do not arrive
intact at their destination due to the information contained
in the packet (either header or payload) being unexpectedly

5

changed5 during transit.

3.1 Loss Discrimination

Loss discrimination refers to determining whether a packet
loss event was due to corruption or congestion. We define
two major classes of loss discrimination: implicit and ex-
plicit.

3.1.1 Implicit Loss Discrimination

Implicit loss discrimination does not rely on mechanisms
that definitively identify the causes of packet losses. Rather,
implicit discrimination mechanisms make assumptions on
the cause of loss to determine the appropriate error, flow,
or congestion control response. This inference can span the
range:

• All losses are due to congestion; this assumption is
valid in networks that are engineered to have highly re-
liable links, and is generally valid for wired networks.
This is the assumption that TCP makes and has pre-
vented congestion collapse in the traditional wired In-
ternet. This assumption is conservative in that it errs
on the side of protecting the network at the expense of
performance when loss is not caused by congestion.

• Losses may either be due to corruption or due to con-
gestion, or both. It may be possible to use additional
information (e.g., grouping of packet losses, and de-
lay variations) to better infer the cause of loss. For
example, networks that use a different form of conges-
tion control than TCP’s loss-based scheme (e.g., delay-
based congestion control [13] or congestion control
that relies on explicit information from the network
[25]) could enable such inference.

• All losses are due to corruption; this assumption is
valid in lossy networks where there is no chance of
congestion, either due to overprovisioning or guaran-
teed resource reservation.

Previous work (e.g., [10]) concluded that implicit loss dis-
crimination is not an effective strategy. However, con-
gestion avoidance behaviors based on accurate estimation
of the end-to-end path capacity can enhance TCP perfor-
mance in certain environments in which losses can occur
both due to congestion and corruption. Examples of conges-
tion avoidance behaviors that implicitly account for corrup-
tion losses based on path capacity estimation include TCP
Westwood [14] and TCP Peach [1].

5Some packet transformations, such as TTL reduction, are expected
and are not considered to be packet corruption.

TCP Westwood is a sender-side modification to TCP Reno
that continuously estimates the bottleneck capacity for the
end-to-end path (based on the times when acknowledg-
ments are received), and adjusts the congestion window
based on the estimated capacity [14]. Since packets dropped
due to corruption should not reduce the estimated capacity
(assuming accurate measurements and estimation), the loss
discrimination is thereforeimplicitly included in the con-
gestion response.

TCP Peach, a congestion control scheme proposed for satel-
lite networks, uses dummy segments (that must be treated
as low-priority segments by all intermediate nodes) to probe
the availability of network resources [1]. If all the dummy
segments are acknowledged, then the sender interprets this
as evidence that there are unused resources in the network
and accordingly can increase its transmission rate. In TCP-
Peach, corruption errors are not explicitly notified, but in-
steadimplicitly accounted for by the capacity estimation
strategy.

3.1.2 Explicit Loss Discrimination

Explicit loss discrimination is based on mechanisms that ex-
plicitly signal loss due to corruption, congestion, or both.

It is important to note that corruption cannot be directly
inferred from explicit congestion notification (e.g., ECN
[21]), and vice versa. This is due to the fact that a
given packet may experienceboth congestion as well as
be dropped due to corruption. Furthermore, in cases where
these mechanisms are cumulative or statistical in nature, it
becomes more difficult to infer one from the other.

In this paper we focus primarily on explicit loss discrimi-
nation. We present a taxonomy forexplicit transport error
notification(ETEN) mechanisms next. We examine ETEN
mechanisms along two orthogonal axes, namely, node be-
havior and control loop issues.

3.2 ETEN Node Behavior

There are two classes of behavior of concern to ETEN: no-
tification and response. This is reflected in the behavior of
two types of nodes:

1. The sender is the transport endpoint that transmits
data, and is typically responsible for response behav-
ior. In the case of reliable end-to-end communication,
this is the node that will be required to retransmit data
that has not successfully reached the receiver. In the
case of TCP, the sender is also responsible for conges-
tion control decisions6.

6The sender ultimately controls the data transmission rate and so is

6

2. Thenotifier is a node that detects a corruption event
and initiates a notification that will ultimately reach the
sender. The notifier may involve the receiving node, or
the intermediate nodes along the communication path.

Note that in this work we are concerned with only corrup-
tion losses that are end-to-end in scope. Generally speak-
ing, mechanisms that attempt local recovery of lost pack-
ets and try to hide those losses from the sender are out
of scope for this paper. In particular, link-layer retrans-
missions, link-layer Forward Error Correction (FEC) and
performance-enhancing proxies [12] (e.g.,snoop[9]) may
be used in conjunction with the mechanisms involving the
end-hosts discussed in this paper, but are specifically out of
scope for our discussions.

The sender and notifier nodes each exhibitobservation, de-
cision, andactionbehaviors, discussed briefly in the follow-
ing subsections.

3.2.1 Notifier Behavior

The notifier, as defined earlier, is either an intermediate or
receiving node that detects corruption and is responsible for
acting in a manner that will ultimately notify the sender.

Notifier observationsconsist of detecting corruption events,
for example due to a checksum calculation or feedback from
the link layer.

Notifier decisionsdetermine when and how to make corrup-
tion notifications. For example, in the case of cumulative
ETEN the notifier will have to determine the time interval
over which to compute corruption statistics and the times
at which the notifications should occur. If multiple mech-
anisms are in effect, the notifier must decide which is the
appropriate one to use.

Notifier actionsare the signaling mechanisms used to report
corruption-based loss. This may range from sending an ex-
plicit ETEN signaling message directly back to the sender
on the detection of a corrupted packet (out-of-band back-
ward packet-granularity ETEN) to modifying a header field
that is accumulating path corruption statistics (in-band for-
ward cumulative ETEN). Notifier action might also consist
of dropping a corrupted packet or merely marking it as cor-
rupt as it is forwarded. The range of actions is discussed
further in Section 3.3.

3.2.2 Sender Behavior

The sender is the node that will have to take actions to re-
transmit data once it has been notified.

always at least acomponentof congestion control.

Sender observationsconsist of understanding corruption
signaling from the notifier (whether as explicit ETEN sig-
naling messages or embedded in returning acknowledg-
ments), congestion information (whether explicitly signaled
as in ECN or inferred as in the lack of an acknowledgment),
as well as local observations on its own environment, such
as offered load.

Sender decisionsdetermine what action should take place
based on notification and other observations, for example
the time and granularity of retransmissions. A key addi-
tional decision is the determination of the likelihood that
a given loss event is due to congestion, particularly in the
absence of explicit congestion notification. As mentioned
earlier, this cannot be correctly inferred in the absence of an
ETEN notification, since a given loss event may be due to
both corruption and congestion.

Sender actionsare simply the actions taken in response to
corruption, including packet retransmission and dynamic
FEC strength adjustment. Additionally, sender actions in-
clude the appropriate congestion control action, such as
throttling the sender’s transmission rate.

The next section describes various control mechanisms that
can be applied to the notifier–sender control loop. In some
cases the sender and notifier behavior are highly dependent
on one another. For example, if the notifier uses out-of-
band backward ETEN signaling messages to indicate cor-
ruption, the sender must be capable of receiving and pars-
ing the messages. In other cases, the notifier and sender
may operate independently. For example, the granularity
of corruption notification may be smaller than, equal to, or
larger than the granularity of sender retransmission.

3.3 Control Loop

Corruption notification and response involves a control loop
between thenotifiernodes that are involved in the detection
and notification of corruption and thesenderof information
that must respond in order to enable recovery from the cor-
ruption losses. The notifiers may be intermediate network
nodes, the receiver, or both.

In the following subsections, we describe in detail the var-
ious aspects of this control loop, namely: (i) feedback, (ii)
locus, (iii) granularity, (iv) in vs. out-of-band signaling, (v)
direction of control information flow, and (vi) determinism.

We illustrate the taxonomy from the perspective of the re-
sponse in Figure 6, and provide a notification-centric per-
spective in Figure 7.

7

GranularityFeedback

(Window retransmit)

(Selective retransmit)(FEC)

Closed−loop Coarse

Fine
Open−loop

Locus
Deterministic

Determinism

(CETEN−A)

(CETEN−P)

Endpoint

Hybrid

Sender Receiver Both

... ...

(ARQ, CETEN)

(Stutter XOR)

...
(LEAST, CETEN) (CETEN MDF Computation)

Observation Mechanism Decision Mechanism Action Mechanism

(CETEN MDF Setting, Retransmission)

Intermediate−Node

...
(SnoopTCP, TCP Splicing)

Error Control Response

(HBH) (E2E)

Probabilistic

Figure 6: Error Correction Response

Feedback LocusDirectionGranularity

Corruption Notification

Explicit

...
Implicit

Determinism

Closed−loop

Open−loop

Hybrid

Per−PacketCumulative

Per−link
Per−flow

Per−node
Per−path

Forward Backward

Deterministic
(CETEN−A)

(CETEN−P)

Out−of−Band

... ...
Action MechanismObservation Mechanism Decision Mechanism

...
(MAC, IP, TCP checksums)

(Interface packet error, transmit, and overflow counts)

(Averaging, Thresholding)

(Select Signaling, Direction, and Granularity)

In−Band

... ...
(Generate Notification Packet)

...
(Mark packets, modify headers)

Intermediate−Node Endpoint

Receiver

(Infer Loss, ACK)
...

(CETEN) (PETEN) (HBH) (E2E)

Probabilistic

Out−of−Band
Signaling

In−Band vs.

Figure 7: Corruption Loss Notification

8

3.3.1 Feedback

The ETENfeedbackloop can be open, closed, or a hybrid.

Closed-loopfeedback requires that acknowledgments (pos-
itive or negative) are returned to the sender to indicate which
packets have been received intact and which have been cor-
rupted7. This is typically an ARQ mechanism with a num-
ber of possible variants such as go-back-n and selective re-
peat.

Open-loopfeedback uses forward error correction (FEC) to
provide statistical guarantees on a packet’s successful trans-
mission. Often FEC schemes are tightly coupled with a par-
ticular channel corruption model.

Hybrid open/closed-loop feedback combines both
mechanisms: open-loop FEC to reduce the need for
acknowledgment-based retransmissions, with acknowledg-
ments as necessary to trigger retransmits andguaranteethe
delivery of data (or, at least an understanding by the sender
that the data was not successfully delivered).

There are fundamentally two ways in which FEC strate-
gies can be used for ETEN: either the error correction code
can be contained entirely within each packet or it can be
distributed across multiple packets. In the first case, each
packet can include additional bits of error correcting infor-
mation; intermediate nodes can detect and if possible cor-
rect corruption before forwarding the packet. A large num-
ber of error correcting codes that are effective under differ-
ent error models are available.

In the second case, erasure codes can be used that allow cor-
rupted packets to be dropped while allowing the end points
to recover the information from additional redundant pack-
ets. The Stutter XOR scheme [24] is an example of a simple
erasure code. More sophisticated codes have been applied
to packet switched networks [43, 29, 39].

Deployment challenges for FEC schemes with TCP/IP:
There are significant challenges to combining FEC with
some form of ETEN for TCP/IP. Anyreliable transport
protocol must still provide end-to-end ARQ to guarantee
packet delivery. TCP, in particular, uses ARQ in its com-
bined error, flow, and congestion control algorithms; the
addition of, and interaction with, FEC may add significant
protocol complexity.

In the case of satellite or wireless links, per-packet FEC can-
not protect against all non-congestion packet losses, for ex-
ample, channel fades. Furthermore, IP routers simply drop
erroneous packets to prevent mis-forwarding [6]. With per-
packet FEC, intermediate IP routers would be required to
correct packet headers (provided there is no IP-IP encapsu-

7The sender must have some default behavior to avoid becoming dead-
locked if an acknowledgment does not arrive (e.g., a timeout with a default
assumption about the cause of loss).

lation, else the payload may also have to be corrected at in-
termediate routers) to ensure mis-forwarding. Furthermore,
for any given path MTU, the use of variable strength FEC
means that the MSS seen by TCP will fluctuate with the
corruption rate.

The interactions of end-to-end TCP mechanisms for flow
control, loss recovery, and congestion avoidance with era-
sure codes is much more subtle. There is tension between
erasure codes, on the one hand, trying to mask all packet
losses (whether due to congestion or corruption including
fades) and prevent retransmissions, while TCP on the other
hand, relying on the congestion losses to provide feed-
back to congestion avoidance mechanisms. This masking of
losses challenges the fundamental ETEN goal of being able
to discriminate between corruption and congestion packet
losses.

TCP ACKs carry the sequence number of the next byte of
data the receiver expects to arrive. This allows the sender to
determine packet losses and adjust the congestion window.
When erasure codes are used, this feedback is insufficient
since the last segment being accounted for (as received)
may belie the fact that some packets could have been lost
due to congestion (but were reconstructed at the receiver).
Enough packets must be dropped so as to exceed the capa-
bility of the code before the TCP sender is actually notified
of congestion. This added delay might make the congestion
avoidance loop unstable.

Solving this problem requires that we keep track not only
the sequence number of the payload data but also the se-
quence number of the encoded packets. In this case, TCP
congestion avoidance could use this latter sequence number.
This will require the addition of this information to the IP
or TCP packet headers (perhaps in the form of an option).

Furthermore, with erasure codes, the receiving TCP has to
wait for the possibility of subsequent packets correcting a
loss. This can conflict with the settings of the retransmit
timer and the delayed acknowledgment timer.

3.3.2 Locus of ETEN

We uselocusof control to describe the span of the ETEN
control loop, in particular to define thenotifier node or
nodes that are responsible for corruption detection and re-
porting back to thesender.

End-to-End (E2E)ETEN relies only on the receiver to serve
as the notifier that detects corruption and informs the sender.

Hop-by-Hop (HBH)ETEN relies on nodes along the path
to serve as notifiers to detect and report corruption. HBH
schemes involve the intermediate network nodes (switches
or routers) as well as the receiver (for the last hop). Ad-
ditionally, the receiver will be involved in any necessary

9

end-to-end recovery notification, including relaying for-
ward ETEN messages to the sender (as discussed in Sec-
tion 3.3.5). Note that even though we generally think of
TCP/IP as having only end-to-end loss recovery, the IP
checksum and IP router semantics that require the dropping
of corrupted packets [6] is a HBH component of the TCP/IP
loss recovery process.

From a deployment perspective, ETEN mechanisms that al-
low selectedintermediate nodes in a path to participate in
the corruption detection and notification scheme are more
desirable than those ETEN mechanisms which requireall
intermediate nodes in the path to participate. The former
has the significant practical advantage of allowing selec-
tive deployment of nodes that need corruption notification
mechanisms rather than requiring massive replacement of
network infrastructure. For example, candidates for the de-
ployment of ETEN notifier nodes are wireless access points
and gateways, and switches that terminate long-haul wire-
less and satellite links.

3.3.3 Granularity

Thegranularity of ETEN corruption feedback refers to the
scope over which corruption detection, notification, and re-
sponse actions are taken. At the highest level, we refer to
the granularity as either per-packet(PETEN) orcumulative
(CETEN).

Packet-based (PETEN) mechanisms are able to detect, re-
port, and respond to individual packet corruption events.
Per-packet notifiers are able to properly convey the fact that
individual packets have been corrupted; per-packet senders
are able to retransmit those (and only those) packets that
require retransmission. The Oracle ETEN described in Sec-
tion 2.1 is a PETEN with the ability to perfectly determine
addressing and sequence numbers for each packet.

PETEN requires not only that the sender and notifier per-
form corruption detection and notification on a per-packet
granularity, but that the notifiers that detect corruption are
able to properly identify corrupted or obliterated packets.
Thus, the source and destination address as well as the se-
quence number must be available or reconstructed. In the
case of TCP, this consists of the source and destination IP
addresses, the source and destination TCP ports, and the
TCP sequence number. In addition, the packet in question
must be part of the sender’s current window; otherwise, the
opportunity to mitigate the performance problems caused
by the corrupted packet is lost.

In practice PETEN may be challenging since it requires that
the notifier have a reliable mechanism with which it can de-
termine the transport endpoints. One solution to consider
is to separately protect the header by a strong FEC check.

Another is to obtain this information from link layer re-
covery mechanisms (e.g., the upstream neighbor that had
to retransmit a packet can generate such notifications). In
the absence of such mechanisms, observations and notifica-
tions of corruption loss have to be at a coarser granularity,
described next.

CumulativeETEN (CETEN) mechanisms are needed when
the notifier nodes can only calculate cumulative corruption
rates for each link. In other words, the information in the
header of a corrupted packet is considered inaccurate and
cannot be constructed with enough confidence to allow PE-
TEN mechanisms to perform well.

The cumulative CETEN information conveyed to the end-
hosts can be in one of several different forms:

• An absolutecorruption rate (bit-based, byte-based or
packet-based) observed within a moving window in
time. The corruption rate may be quantized into a
small number of steps (for example,high, medium,
and low). A binary feedback scheme [38] (see also
[36, 37]) is a special case that provides indication
that the bit/byte/packet corruption rate exceeds some
threshold.

• A relativecorruption rate that simply indicates that the
quantized corruption rate has increased or decreased
from the previous value.

• An estimate of the probability that a packet survives
corruption.

There are various possibilities for the aggregation of the cu-
mulative corruption statistics from each notifier (e.g., per-
flow, per-path, per-link, or per-node). Furthermore, CETEN
information can be collected on a per-hop basis or aggre-
gated over the end-to-end path. Due to the difficulty in
correctly assigning corrupted packets to their correspond-
ing flows, any per-flow CETEN information has to be esti-
mated, for example from what is observed across all flows
using a given link. Estimating and correctly attributing the
fraction of the observed aggregate corruption loss rate on
a per-flow basis can add significant complexity to the node
(except perhaps at the receiver). Determining whether this
can be done reliably (and if so, how) requires further study.
We investigate CETEN further in Section 4.

The applicability of PETEN and CETEN mechanisms to
various application and network scenarios under various er-
ror models also requires further study.

3.3.4 In-Band vs. Out-of-Band Signaling

ETEN signaling can either beout-of-bandor in-band.

10

Out-of-band(OB) signaling uses distinct ETEN signaling
messages (e.g., using ICMP) that are propagated from the
notifier node to the sender (either backward or forward, as
described in the following subsection).

In-band(IB) signaling modifies or piggybacks on the head-
ers of data packets and acknowledgments. In-band signal-
ing is particularly attractive for CETEN schemes that prop-
agate corruption statistics in the packet header. In this case,
each CETEN-capable intermediate notifier node modifies
the corruption rate carried in the packet header, so that when
the packet reaches its destination the receiver knows the
path corruption rate.

Note that for packet-based PETEN, if corrupted packets are
dropped (as in IP [6]), the ETEN indication must be con-
tained in other packets belonging to the same flow. Alter-
natively, if the packet header is separately protected by an
error check and only the payload is corrupted, the packet
could be marked as corrupt and forwarded towards the des-
tination.

3.3.5 Direction of Notification

Notifications can either be sent directly back to the sender,
or proceed to the destination to be returned to the sender.

BackwardETEN propagates notifications backward, analo-
gous to backward explicit congestion notification schemes
(e.g., source-quench [34] and ATM BECN [5]). In these
cases notifiers use out-of-band signaling messages destined
to the sender.

It is also conceivable to piggyback backward ETEN infor-
mation in returning acknowledgments to the sender (i.e., in-
band Backward ETEN), but this adds significant complexity
to the notifier.

ForwardETEN propagates notifications forward to the des-
tination, analogous to forward explicit congestion notifi-
cation schemes (e.g., ATM FECN [5] and IP-based ECN
[36, 37, 21]).

If separate messages are generated per-packet corruption
loss, it is easy to see that backward PETEN could lead to
faster loss repair than forward PETEN. The potential per-
formance benefit of using Backward ETEN is higher if the
corruption occurs closer to the sender and increases with the
round-trip delay of the path.

Two in-band signaling alternatives that do not require gen-
eration of new packets for Forward ETEN exist. With the
first alternative, the intermediate notifier node that detects
a corrupted packet can convey this information by mark-
ing or modifying headers of subsequent packets. If reliable
per-flow assignment of the corruption is possible, then this
operation can be restricted to subsequent packets belonging

to the same flow. This requires the maintenance of sufficient
per-flow state to find a subsequent packet on the same flow.
The other approach is to forward the corrupted packet (suit-
ably marked or encapsulated) and pass it along to the des-
tination (subsequent nodes must also forward this packet),
rather than dropping it (as currently required by IP router
semantics [6]). The destination in turn can notify the sender
of the packet lost due to corruption.

3.3.6 Determinism

The last aspect of the ETEN control mechanism to consider
is how deterministic actions are.

Deterministicactions are used when a particular response is
needed and sufficient knowledge is available. An example
of deterministic action by the notifier is the transmission of
a backward PETEN message for a corrupted packet from
which the header could be correctly decoded. A determin-
istic sender response would be to retransmit this packet.

Probabilistic actions are taken based on information that
is statistical or inferred without certainty. An example of
probabilistic notifier behavior is transmission of a backward
PETEN message when the header cannot be fully recon-
structed (but perhaps inferred with reasonable confidence
based on comparing the corrupted packet’s header with col-
lected per-flow state). An example of sender probabilistic
behavior is adjusting the congestion window a fraction of
the time based on an estimate of the fraction of losses due
to congestion (as will be described in Section 4).

In this section, we provided a taxonomy of the ETEN solu-
tion space. The key issues are:

• where, how, and what information about corruption is
observed and tracked by the notifier

• how does the notifier decide on when and by what
means to convey the information to the sender

• what information related to loss recovery does the
sender track and how

• how does the sender decide how to discriminate among
losses, and by what means to recover from losses

• design of mechanisms to detection, notification, and
response of corruption losses

We discussed that various alternatives exist for each one of
these issues. The potential gains in Section 2 motivates fur-
ther exploration and evaluation of the alternatives, in terms
of how well they perform and how best to combine them
into an end-to-end solution. In the next section, we present
a promising new CETEN approach that combines particular
approaches within this space.

11

4 Cumulative ETEN

The last two sections of this paper have broadly and gener-
ally discussed the implications of corruption-based loss on
TCP performance and what mechanisms could be used to
counteract the impact of corruption-based loss. In this sec-
tion we narrow our focus to a novel class of mitigation for
combating the impact of corruption-based loss. In this sec-
tion we explore Cumulative Explicit Transport Error Notifi-
cation (CETEN) techniques that are applicable when suffi-
cient information about the cause of specific packet drops is
not available to the transport layer endpoints. Rather, using
CETEN the TCP sender relies on corruption rate statistics
provided by the network to drive the behavior of the con-
gestion control algorithms. In this section, we describe two
CETEN strategies and present a brief set of simulations that
show their promise. The CETEN presentation in this paper
is preliminary and meant to suggest a new mechanism that
attempts to achieve the ideals presented in Section 2. More
in-depth treatments of CETEN issues are provided in [18]
and [17].

4.1 Determining the Packet Corruption Rate

The first problem we tackle is that of transmitting rich in-
formation about the corruption rate detected within the net-
work to the transport endpoints. The mechanism we employ
in our study adds acorruption survival-probabilityfield to
each packet. This value represents the probability that a
packet avoids corruption as it traverses the network path.
The survival probability field is initialized to 1.0 by the
source of the packet and is updated by intermediate nodes
along the path (as described in more detail below). When
a packet arrives at the receiver the survival probability con-
tained in the packet is the survival probability of the en-
tire path. The transport endpoint at the destination keeps a
record of the survival probability of the forward path and
echoes the probability back to the sender in the next ACK
packet transmitted. As discussed in Section 3 there are alter-
native methods for gathering the information. Experiment-
ing with those methods is left as future work.

Each intermediate node in the path is responsible for track-
ing the corruption rate,r, on their incoming links8. Each in-
termediate node then multiplies the path corruption survival
probability field from each packet header by the node’s own
estimate of the link corruption survival probability, (1− r),
for the link on which the packet arrived. The exact method
for arriving at the link error rate is a subject for future work.

8In practice, we only expect intermediate nodes connected to links ex-
periencing non-negligible amounts of corruption to implement CETEN.
An intermediate node that does not experience corruption loss will essen-
tially not change the path state and therefore the work involved would be
wasted effort.

In the experiments presented in this paperr represents the
configured link corruption rate rather than a corruption rate
that is tracked over time. Using the configured corruption
rate asr allows us to assess the upper bound on the perfor-
mance improvements that are possible without any estima-
tion error. Designing methods to track the corruption rate
is clearly a rich area of future work. Possible schemes for
arriving at error rates (and smoothing/averaging them over
time) are limitless. A possible approach is given in [27]. Fi-
nally, we verified the observed corruption rate to be within
10% of the configured corruption rate in our simulations.

We note that there is a delay between an intermediate host
noting its corruption rate and the sender ultimately receiv-
ing that information. The delay is less than the RTT of
the network path. We believe this delay is tolerable given
that we envision the intermediate node reporting corruption
rates somehow averaged over a number of RTTs. How-
ever, if corruption rates are to be reported for shorter time
intervals then the delay in getting the information to the
TCP sender may play a part in the overall effectiveness of
CETEN. Such a scenario is not explored in this paper and is
left as future work.

4.2 Computing the Total Loss Rate

Loss can be either due to congestion or corruption9. In the-
ory, if a TCP knew how to ascertain the fraction of losses
due to one cause (say, losses due to corruption, as outlined
above) and if the TCP can determine the total loss rate, then
the TCP can determine the losses due to the other cause. A
natural method for ascertaining the total loss rate is for the
TCP sender to count the number of retransmissions. How-
ever, as shown in [3] this method ends up significantly over-
estimating the total loss rate due to TCP’s sometimes gross
retransmission strategies. A family of algorithms (called
LEAST) is presented in [3] that TCP senders can use to
estimate the total loss rate to within 10% of the actual loss
rate in over 90% of the TCP connections studied (using the
NIMI mesh of Internet measurement points [32]).

An alternative approach to estimating the total loss rate is to
have the network inform the TCP endpoint about the current
congestion-survival probability, much like the scheme out-
lined above for corruption information; [27] outlines such
a scheme. In addition, the XCP congestion control tech-
nique [25] could also be leveraged to help disambiguate the
cause of losses. The biggest weakness of such an “in-the-
network” scheme is that if some congested routers do not
participate they cause the sender to overestimate the frac-

9Exactly how to handle the case described in the last section when a
packet experiences both congestion and corruption is outside the scope of
this paper. Also, in our simulations lossis either caused by congestion or
corruption and never crosses into this gray area.

12

tion of losses attributed to corruption (by underestimating
the congestion rate) and therefore inject more traffic into the
network than appropriate. In-the-network strategies require
less accounting on the part of the TCP sender/receiver; how-
ever, there also could be issues relating to the soundness of
the estimates of corruption and congestion in the network.

For the work presented in this paper we use theLEAST
loss estimation technique in the TCP sender to estimate the
total loss rate when needed.

4.3 Alternate Congestion Responses

In this section, we address the question of what the sender
could do with the corruption probability estimates and how
TCP’s congestion response may be changed to incorporate
this new information. We specify two different schemes
that could be used by a TCP sender to mitigate the perfor-
mance impact of corruption. These are far from the only
two schemes that could be used. However, determining the
best variant for general use is beyond the scope of this pa-
per.

4.3.1 Probabilistic: CETENP

Given that TCP has inferred loss(es) from duplicate ac-
knowledgments [4], selective acknowledgments (SACKs)
[28] and/or retransmission timeouts [33] TCP needs a
way to decide on a congestion control response. For the
CETENP variant we use a weighted coin flip based on
the estimated fraction of the losses due to corruption,e

p ,
wheree is the fraction of packets dropped due to corruption
andp is the fraction of packets dropped for any reason. If,
probabilistically, a particular loss is attributed to packet cor-
ruption the lost segment can be retransmitted without mod-
ifying the congestion control state. Otherwise, the TCP re-
transmits the lost segment and invokes standard congestion
control procedures (i.e., reducing the congestion window by
half). WhileCETENP may not correctly choose whether
to change TCP’s congestion control state on any particular
loss, the goal is to provide the appropriateaverage, long-
term congestion response without incurring the traditional
susceptibility to losses caused by corruption.

4.3.2 Adaptive adjustment:CETENA

An alternative to the binary decision with regards to invok-
ing congestion control offered byCETENP , CETENA

provides an adaptive scheme that reacts to each loss,
but not by using the traditional multiplicative decrease
factor (MDF) that stock TCP uses (one-half). Rather,
CETENA’s MDF is defined as:

MDF =
1 + (e

np)k

2
n ≥ 1, k > 0, p > 0 (1)

wherep is the total packet loss rate,e is the corruption loss
rate andn andk are parameters allow for the shaping and
bounding of the MDF. In the experiments presented in this
paper we usen = k = 1 which provides a congestion re-
sponse as if the only losses were those caused by conges-
tion. Whenn = k = 1 and all loss is caused by congestion
the standard MDF of one-half is used. However, if all loss
is due to packet corruption an MDF of 1 is used (i.e., no
cwnd reduction). Varyingn andk can make the response
more conservative (or more aggressive) and likely has im-
plications on fairness. Future work should include exper-
imenting with these shaping parameters, but such work is
beyond the scope of the initial evaluation presented in this
paper. Finally, note that any continuous monotonically in-
creasing function based onep that is no more aggressive than
Equation 1 withn = k = 1 can be used to determine the
MDF.

4.4 CETEN Simulations

To investigate CETEN we implemented bothCETENA

and CETENP in ns-2. CETEN is implemented in the
ns sack1TCP variant rather than theFullTcpSackvariant
used in Section 2 becausesack1supports DSACK (which
is needed for the estimate ofp). The simulations con-
sist of a four node network with TCP end points separated
by two routers. The routers are connected to each other
with a 5 Mbps link with a 40 msec one-way propagation
delay. The routers use drop-tail queues with 150 packet
buffer sizes. A uniform random process is used to insert
corruption-based drops on the link between the routers. The
corruption-rate is varied (as shown in our results). Each host
is connected to a router via a 10 Mbps link with a one-way
propagation delay of 3 msec. The TCP endpoint uses an
advertised window of 500 segments – enough to never be
a performance issue in our simulations. The hosts use an
MSS of 1460 bytes and delayed ACKs. This scenario is dif-
ferent from the scenarios used in Section 2. The TCP sender
estimates the total loss rate using the DSACK version of the
LEAST algorithm [3]. This simulation setup allows for the
TCP to self-congest the network (i.e., a single TCP connec-
tion can consume the network capacity and the entire router
queue causing congestion-based losses to occur). All sim-
ulations are run for 1 hour to assess the long-term average
sending rate. The following results represent the average of
30 random simulations.

The situation presented in this section is more akin to a ter-
restrial wireless network than those previously explored in
Section 2. Since the TCP model is generally discussed in

13

terms of packet loss rates rather than bit-error rates, we use
the fraction of packets lost when discussing the drop preva-
lence in this section as opposed to the bit-error rates used
in previous sections. All corruption rates used in Section 2
represent less than a 1% packet drop rate. In this section,
most of the packet error rates used are at least 1%. In other
words, the experiments presented in this section generally
have a higher prevalence of corruption than in the experi-
ments presented in Section 2.

 1000

 10000

 100000

 1e+06

0.01 0.1 0.2

G
oo

dp
ut

 (
B

ps
)

�

Packet Corruption Rate

CETEN_A
CETEN_P

Stock SACK

Figure 8: CETENP and CETENA vs. stock SACK TCP.

The first set of simulations involve a single TCP flow
across the network described above. In these simulations
corruption-based losses are applied to only the data packets
traversing the bottleneck link (i.e., not for the ACK traffic
flowing back to the sender). Figure 8 shows TCP perfor-
mance as a function of the corruption-rate plotted on a log-
log scale. The plot shows the performance drop-off of stock
TCP SACK. In addition, the figure illustrates that both ver-
sions of CETEN offer better performance than stock TCP
SACK – even though CETEN’s performance does decrease
as the corruption rate increases.

The cause of CETEN’s performance reductions at high
packet corruption rates is largely dropped retransmissions.
TCP SACK relies on the RTO timer to cope with retrans-
missions that are dropped. The RTO timer represents a
lengthy inactive period, as well as a secondcwndreduction.
We do note that even though performance is dropping off at
a packet corruption rate of 20%,CETENA still achieves
more than an order of magnitude increase when compared
to stock TCP.

Another notable aspect of Figure 8 is the difference in
performance betweenCETENA and CETENP – even
though they are intuitively attempting to achieve the same
notion. The notion behindCETENP is that it reduces
cwndroughlythe right number of timesover the course of a
long transfer to compensate for network congestion. How-

ever, on any specific loss eventCETENP could “guess
wrong” and take the “wrong” action. For instance, if a loss
is caused by corruption,CETENP may decide to reduce
cwnd. The hope is that later when there is a congestion-
based lossCETENP will even things out by not reducing
cwnd. However, in the simulations presented in Figure 8
this notion does not play out as planned. When there is only
one connection in the network that connection is solely re-
sponsible for network congestion. Therefore, when conges-
tion occurs andCETENP decides not to reducecwndthe
congestion is still present and more losses will occur. In
effect,CETENP is forced to reducethecwndwhen con-
gestion occurs. So, whileCETENP prevents thecwnd
from being reduced in some cases when corruption occurs,
the connection does not get the entire benefit envisioned,
and hence, experiences lower performance compared to
CETENA. In a network with more statistical multiplex-
ing CETENP may perform better (closer toCETENA)
because a single connection will not be the sole cause of
congestion. Therefore, when a congestion event occurs and
aCETENP connection maintains itscwndthe connection
may not incur further congestion because competing traffic
will also likely be backing off.

The second set of CETEN simulations involves competing
traffic. The four node topology described above is again
employed. In this set of tests we run a single TCP con-
nection in each direction across the network. In addition,
we run five on/off constant-bit rate (CBR) flows across the
network in each direction. The CBR flows are driven by
an exponential random process that has a mean on time of
2.5 sec and a mean off time of 10 sec. When on, each CBR
flow sends at 1 Mbps. Therefore, when all the CBR flows
are running they would consume the bottleneck capacity.
The TCP connection is set up as described for the single
flow tests above. Corruption-based losses are inserted in
both directions of the bottleneck link according to a uniform
random process.

Figure 9 shows TCP performance as a function of the cor-
ruption rate applied to the bottleneck link on a log-log
plot. Again, this plot illustrates the power of CETEN to
increase performance over stock TCP. Also, this plot shows
that CETENP provides better performance enhancement
at high error rates than shown above for single flow experi-
ments. This suggests that the above note aboutCETENP

working better in an environment with a high degree of
statistical multiplexing may be accurate (but must be veri-
fied completely using more complex simulations with com-
peting congestion-aware traffic). With competing traffic
CETEN shows performance improvements of 1–2 orders of
magnitude over stock TCP SACK at high error rates.

14

 100

 1000

 10000

 100000

 1e+06

0.01 0.1 0.2

G
oo

dp
ut

 (
B

ps
)

�

Packet Corruption Rate

CETEN_A
CETEN_P

Stock SACK

Figure 9: CETENP and CETENA vs. stock SACK TCP
with competing traffic.

4.5 Discussion

Our preliminary simulations have shown CETEN to be a
promising approach in mitigating the problems corruption-
based losses pose to TCP performance in wireless and satel-
lite networks. However, many questions remain before
the community could even consider CETEN for wide-scale
adoption, such as: How do we derive corruption-survival
probabilities? Over what time scale? Should TCP and/or
the router keep a running or smoothed average of the con-
gestion and corruption rates? How burdensome is CETEN
on the forwarding engines in routers? What can or should
be done about receivers sending bogus corruption reports in
an attempt to game congestion control (see [42])? These
and many additional questions will be the subject of future
work in this area.

5 Summary

In this paper, we consider the problem of enhancing TCP
performance in the face of corruption losses, and make the
following contributions. We confirm previous studies that
show corruption-based loss causes performance problems
for TCP. In addition, we illustrate a plausible upper bound
on the performance TCP could attain with perfect knowl-
edge about the causes of loss. We present a detailed tax-
onomy of the space of mitigations for the issues caused by
corruption-based loss. This taxonomy is a useful road-map
to researchers who wish to pursue alternative mitigation ap-
proaches. Finally, we offer a preliminary illustration of the
potential benefits of a previously unexplored portion of the
mitigation space. We show that CETEN is a promising
technique for improving TCP performance in environments

with non-negligible corruption-based packet loss. While
promising, CETEN also has numerous theoretical and prac-
tical issues that require attention before the strategy will be
useful for general, wide-scale deployment.

Acknowledgments

The work presented in this paper was conducted with fund-
ing from NASA’s Glenn Research Center and NASA’s Earth
Science Technology Office under contract number NAS3-
99175, as well as from the National Science Foundation
under grant number 0205519. James Sterbenz and Mark
Allman performed a portion of this work while they were
with BBN Technologies. Will Ivancic (NASA GRC), Steve
Polit (BBN Technologies) and the anonymous reviewers
provided very helpful comments on an earlier version of
this manuscript. Shawn Ostermann (Ohio University) and
David Mankins (BBN Technologies) contributed to the
CETEN experiments outlined in Section 4.

References

[1] I.F. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach: A
New Congestion Control Scheme for Satellite IP Networks,”
IEEE/ACM Transactions on Networking, Volume 9, Number
3, Pages 307–321, 2001.

[2] M. Allman, K. Avrachenkov, U. Ayesta and J. Blan-
ton, “Early Retransmit for TCP and SCTP,”Internet-Draft
draft-allman-tcp-early-rexmt-03.txt, December 2003, work
in progress.

[3] M. Allman, W. Eddy, and S. Ostermann, “Estimating Loss
Rates With TCP,”ACM Performance Evaluation Review,
31(3), December 2003.

[4] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion
Control,” Request for Comments: 2581, April 1999.

[5] ATM Forum, ATM User Network Interface
(UNI) Signalling Specification Version 4.1,
af-sig-0061.002, April 2002, available from
www.atmforum.com/standards/approved.html .

[6] F. Baker, ed., “Requirements for IP Version 4 Routers,”Re-
quest for Comments: 1812, June 1995.

[7] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for
Mobile Hosts.”Proceedings of the 15th International Con-
ference on Distributed Computing Systems (ICDCS), May
1995.

[8] H. Balakrishnan and R.H. Katz, “Explicit Loss Notifica-
tion and Wireless Web Performance,”Proceedings of the
IEEE Globecom Internet Mini-Conference, Sydney, Aus-
tralia, November 1998.

[9] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, R.H. Katz,
“A Comparison of Mechanisms for Improving TCP Perfor-
mance Over Wireless Links ,”IEEE/ACM Transactions on

15

Networking, Volume 5, Issue 6, December 1997, pp. 756–
769.

[10] S. Biaz, and N.H. Vaidya, “Distinguishing Congestion
Losses from Wireless Transmission Losses: A Negative Re-
sult,” Proceedings of the Seventh International Conference
on Computer Communications and Networks (IC3N), New
Orleans, October 1998.

[11] E. Blanton, M. Allman, K. Fall and Lili Wang, “A Conserva-
tive Selective Acknowledgment (SACK)-based Loss Recov-
ery Algorithm for TCP,”Request for Comments: 3517, April
2003.

[12] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Performance Enhancing Proxies Intended to Mitigate Link-
Related Degradations,”Request for Comments: 3135, June
2001.

[13] L. Brakmo, S. O’Malley and L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance”,Pro-
ceedings of ACM SIGCOMM, August 1994.

[14] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sansadidi, and R.
Wang, “TCP Westwood: End-to-End Congestion Control for
Wired/Wireless Networks,”Wireless Networks Journal, Vol-
ume 8, Pages 467–479, 2002.

[15] D.W. Davies, “The Control of Congestion in Packet-
Switching Networks,”IEEE Transactions on Communica-
tions, Volume COM-20, Number 3, June 1972, pp. 546–550.

[16] S. Dawkins, G. Montenegro, M. Kojo, V. Magret, and N.
Vaidya, “End-to-end Performance implications of Links with
Errors,”Request for Comments: 3155, August 2001.

[17] W. Eddy, “Improving TCP Performance with Path Error
Rate Information,”Master’s Thesis, Ohio University, March
2004.

[18] W. Eddy, S. Ostermann, and M. Allman, “New Techniques
for Making Transport Protocols Robust to Corruption-Based
Loss,”Under submission, January 2004.

[19] K. Fall and S. Floyd, “Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP,”ACM Computer Communi-
cation Review, Volume 26, Number 3, July 1996, pp. 5–21.

[20] S. Floyd, and K. Fall, “Promoting the Use of End-to-End
Congestion Control in the Internet,”IEEE/ACM Transac-
tions on Networking, August 1999, pp. 458–472.

[21] S. Floyd, “TCP and Explicit Congestion Notification,”ACM
Computer Communication Review, Volume 24, Number 5,
October 1994, pp. 10–23.

[22] C. Hayes, “Analyzing the Performance of New TCP Exten-
sions Over Satellite Links,”Master’s Thesis, Ohio Univer-
sity, August 1997.

[23] V. Jacobson, “Congestion Avoidance and Control,”Proceed-
ings of ACM SIGCOMM ’88, Stanford, CA, USA, August
1988.

[24] M.A. Jolfaei, B. Heinrichs, and M.R. Nazeman, “Improved
TCP Error Control for Heterogeneous WANs,”Proceedings
of the IEEE National Telesystems Conference, San Diego,
CA, USA, May 1994.

[25] D. Katabi, M. Handley, and C. Rohrs, “Internet Congestion
Control for Future High Bandwidth-Delay Product Environ-
ments,”Proceedings of ACM SIGCOMM, August 2002.

[26] S. Kent, and R. Atkinson, “Security Architecture for the In-
ternet Protocol,”Request for Comments: 2401, November
1998.

[27] R. Krishnan, M. Allman, C. Partridge, and J.P.G. Sterbenz,
“Explicit Transport Error Notification (ETEN) for Error-
Prone Wireless and Satellite Networks”, Technical Report
TR-8333, BBN Technologies, March 2002.

[28] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Options,”Request for Com-
ments: 2018, October 1996.

[29] A.J. McAuley, “Reliable Broadband Communication Using
a Burst Erasure Code”,Proceedings of ACM SIGCOMM ’90,
Philadelphia, PA, USA, September 1990.

[30] M. Mellia, M. Meo and C. Casetti, “TCP Smart Framing:
a Segmentation Algorithm to Improve TCP performance,”
Proceedings of the 2nd International Workshop on QoS in
Multiservice IP Networks (QoS-IP 2003), February 2003.

[31] ns-2 simulator,http://www.isi.edu/nsnam/ns/index.html

[32] V. Paxson, J. Mahdavi, A. Adams and Matt Mathis, “An
Architecture for Large-Scale Internet Measurement,”IEEE
Communications, Volume 36, Number 8, August 1998, pp.
48–54.

[33] V. Paxson and M. Allman, “Computing TCP’s Retransmis-
sion Timer,”Request for Comments: 2988, November 2000.

[34] J. Postel, “Internet Control Message Protocol,”Request for
Comments: 792, September 1981.

[35] J. Postel (editor), “Transmission Control Protocol,”Request
for Comments: 793, September 1981.

[36] K. Ramakrishnan, and S. Floyd, “A Proposal to add Explicit
Congestion Notification (ECN) to IP,”Request for Com-
ments: 2481, January 1999.

[37] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,”Request for
Comments: 3168, September 2001.

[38] K.K. Ramakrishnan, and R. Jain, “A Binary Feedback
Scheme for Congestion Avoidance,”ACM Transactions on
Computer Systems, Volume 8, Number 2, May 1990, pp.
158–181.

[39] L. Rizzo, “Effective Erasure Codes for Reliable Computer
Communication Protocols”,ACM Computer Communica-
tion Review, Volume 27, Number 2, April 1997, pp. 24–36.

[40] N. Samaraweera, “Non-Congestion Packet Loss Detection
for TCP Error Recovery Using Wireless Links,”IEE Pro-
ceedings in Communications, Volume 146, Number 4, Au-
gust 1999, pp. 222–230.

[41] N. Samaraweera, and G. Fairhurst, “Explicit Loss Indication
and Accurate RTO Estimation for TCP Error Recovery Us-
ing Satellite Links,” IEE Proceedings in Communications,
Volume 144, Number 1, February 1997, 47–53.

16

[42] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson,
“TCP Congestion Control with a Misbehaving Receiver,”
ACM Computer Communications Review, Volume 29, Num-
ber 5, October 1999, pp. 71–78.

[43] N. Shacham and P. McKenny, “Packet Recovery in High-
Speed Networks using Coding and Buffer Management”,
Proceedings of IEEE INFOCOM ’90, San Francisco, CA,
June 1990.

[44] J. Stone, and C. Partridge, “When the CRC and TCP Check-
sum Disagree,”Proceedings of ACM SIGCOMM 2000,
Stockholm, Sweden, August 28 – September 1, 2000.

Rajesh Krishnan is a Senior Scientist at BBN Technolo-
gies, Cambridge, MA, USA. At BBN’s Internetwork Re-
search Department since 1997, he has led and contributed to
several research efforts in the field of networking. He holds
the Ph.D. (2004) and M.S. (1996) degrees in Computer En-
gineering from Boston University, Boston, MA, USA, and
the B.E. (1991) degree with Honours in Electrical Engineer-
ing from the Regional Engineering College, Durgapur, West
Bengal, India. From 1991-1994, he worked for the Tata En-
gineering and Locomotive Company Limited, Jamshedpur,
Bihar, India. He is a member of the ACM, the IEEE, and
the IEEE Communications Society.

James P.G. Sterbenzis a Visiting Research Scientist in
the Computer Networks Research Group at the University
of Massachusetts, Amherst. He has been PI for several
DARPA and NASA funded research programs in the areas
of survivable, disruption-tolerant, mobile, wireless, and ac-
tive networking, and TCP and Web performance. He has
previously held senior research staff and management posi-
tions at BBN Technologies, GTE Laboratories, and IBM,
and holds a D.Sc. in Computer Science from Washing-
ton University in St. Louis. He is program co-chair for
IEEE Hot Interconnects 2004, and was program co-chair
of IWAN 2003, 2002, and PfHSN’99. He is past chair of
the IEEE Communications Society Technical Committee on

Gigabit Networking, chair of the IFIP Protocols for High
Speed Networks Steering Committee, member of the IFIP
Active Networks steering committee, senior member of the
IEEE, member of the ACM, IEE (UK), IEICE (Japan), the
Internet Society Interplanetary Special Interest Group, and
on the editorial board of IEEE Network. He is author of the
book High-Speed Networking: A Systematic Approach to
High-Bandwidth Low-Latency Communication.

Wesley M. Eddy is currently a researcher at NASA’s Glenn
Research Center. The work described here was completed
while he was a student at Ohio University, where he earned
the B.S. and M.S. degrees in computer science in 2002 and
2004. His research interests include protocols for mobile
hosts and extending transport protocols for NASA missions.

Craig Partridge is a Chief Scientist at BBN Technologies,
where he has done data communications research for the
past 20 years. He is best known for designing how Internet
email is routed, and for his work on high performance net-
working. A Fellow of the IEEE and the ACM, Dr. Partridge
received his A.B., M.Sc. and Ph.D. degrees from Harvard
University.

Mark Allman is a computer scientist with the Interna-
tional Computer Science Institute. His current research in-
terests are in the areas of transport protocols, congestion
control, measuring network dynamics and network security.
Mark is involved in the Internet Engineering Task Force,
where he has chaired several working groups and BoFs and

17

is currently a member of the Transport Area Directorate.
Mark also chairs the Internet Measurement Research Group
within the Internet Research Task Force. Mark has served
on the program committee for numerous conferences and
workshops. Mark holds B.S. and M.S. degrees in computer
science from Ohio University and is a member of the ACM.

18

