
Large-scale Intrusion Detection with Low-cost
Multi-camera wireless image sensors

Congduc Pham
University of Pau, LIUPPA Laboratory

Email: congduc.pham@univ-pau.fr

Abstract—We present a low-cost multi-camera wireless image
sensor platform based on commercial off-the-shelf components
implementing an intrusion detection mechanism for large-scale
surveillance applications. We first show the performance of the
image sensor then present how a criticality-based scheduling
approach can be adapted and integrated into the image sensor
platform taking into account the real hardware constraints
and capabilities. We then demonstrate by simulating large-
scale configurations that although hardware constraints limit the
maximum intrusion detection rate per node, the usage of a low-
cost multi-camera system provides much higher detection quality
than denser single-camera system working at a higher image
capture rate.

Index Terms—Low-cost image sensors, wireless image sensor
networks, multi-camera, intrusion detection

I. INTRODUCTION

A Wireless Image Sensor Networks (WISN) consists of a
set of sensor nodes equipped with miniaturized image cameras.
In this paper, we are more particularly interested in WISN
for surveillance applications that have very specific needs
due to their inherently critical nature associated to security.
Usually, high coverage and energy preservation are orthogonal
properties and obviously a tradeoff needs to be found. In
randomly deployed sensor networks, image sensor node’s
fields of view (FoV) can be redundant leading to overlaps
among the monitored areas. In this case, a common tradeoff
is to define a subset of the deployed nodes to be active while
the other nodes can sleep. The result is a schedule of the
activity of image sensor nodes in such a way that maximizes
the deployment area coverage as well as the network lifetime.

For intrusion detection applications, we proposed in [1], [2]
that nodes with a high redundancy level can increase their
image capture rate because if they run out of energy they
can be replaced by other nodes that can view the same area.
For a given image node i, a set of nodes that can cover a
significant part of node i’s FoV is call a cover-set. Therefore
we proposed to link in a criticality-based model the image
capture rate to both the application’s criticality level and the
node’s number of cover-sets. A low criticality level indicates
that the application does not require a high image frame cap-
ture rate while a high criticality level does. Previous works on
intrusion detection/mission-critical surveillance applications
such as [3], [4], [5], [6], [7], [8] mostly focused on coverage
and energy optimizations without taking explicitly into account
the application’s criticality. In this paper, we show how this
criticality-based scheduling mechanism can be adapted and

integrated into the real image sensor platform, taking into
account limited capture rate allowed by the hardware and the
image processing tasks.

There are a number of image sensor boards available or
proposed by the very active research community on image and
visual sensors: Cyclops [9], MeshEyes [10], Citric [11], WiCa
[12], SeedEyes [13], Eye-RIS [14], Panoptes [15], CMU-
cam3&FireFly [16], [17], CMUcam4 and CMUcam5/PIXY
[17], iMote2/IMB400 [18] and other specific solutions for
ultra low-power platforms such as [19], [20]. Though highly
interesting, all these platforms and/or products mostly rely on
ad-hoc development of the visual part (i.e. development of
a camera board with dedicated micro-controller to perform
a number of processing tasks) or use very powerful micro-
controller/Linux-based platforms. In addition, they usually
lack an efficient image encoding and compression scheme
adapted to very low-bandwidth radio. Our motivations in
building our own image sensor platform for research on image
sensor surveillance applications are:

1) to have an off-the-shelf solution so that anybody can
reproduce the hardware and software components: we
use an Arduino-based solution for maximum flexibility
in programming and design; we use a simple, affordable
external camera to get raw image data. We can therefore
easily extend to a multi-camera system to enhance the
detection quality as shown in the paper.

2) to integrate an efficient image compression scheme
running on host micro-controller (no additional nor
dedicated micro-controller) which addresses the problem
of resource limitations of sensor nodes, as memory size,
processor speed, battery capacity and low-bandwidth
radio, and which produces a packet stream tolerant to
packet losses.

3) to be flexible enough to allow the development and
the integration of additional control mechanisms such
as image change detection (for intrusion detection) and
advanced node activity scheduling. For instance, we will
describe how we integrated our criticality-based image
sensor scheduling method [1], [2] to enable large-scale
intrusion detection applications.

The image sensor we built works with raw 128x128 8-
bbp gray scale image which can be compressed with various
quality factors for reducing the bandwidth usage and end-to-
end delay of image communication over the multi-hop network

path. An intrusion detection mechanism based on simple-
differencing technique shows very good results while adding
no cost in the image processing. In addition, one original
feature with respect to previous works on image sensors is
the generalization from a single-camera system to a multiple-
camera system. With a 3-camera system and wide-angle lenses
omnidirectional sensing can almost be achieved.

Obviously, the maximum image capture rate allowed by a
sensor platform is an important parameter for mission-critical
intrusion detection. From the real image sensor platform
we can measure the maximum image capture and intrusion
detection rate as well as the transmission costs. Then, by using
simulation of the adapted criticality-based scheduling on large-
scale configurations, this article shows that a low-cost multi-
camera system can successfully detect intrusions and provides
a high level of responsiveness.

The rest of the article is organized as follows. Section
II describes the generic image sensor components (hardware
components and image processing) and the main performance
measures. Then Section III presents the integration of a
criticality-based image node scheduling mechanism to enable
large-scale deployment and Section IV will show by simu-
lations that the proposed multi-camera system can provide
efficient intrusion detection. We conclude in Section V.

II. MULTI-CAMERA IMAGE SENSOR

A. Hardware components

We use Arduino boards with the CMOS uCamII camera
from 4D systems. The uCamII is shipped with a 56o angle
of view lens but we can also use 76o and 116o lenses. The
uCam is connected to the Arduino board through an UART
interface at 115200 bauds. The uCamII is capable of providing
both raw and JPEG bit streams but we are not using this
last feature as it is impossible from the delivered JPEG bit
stream to build a packet stream tolerant to packet losses. As
a result, we retrieve raw 128x128 8-bpp grey scale images
from the uCamII then we operate image compression on the
Arduino board. We actually have two versions of our image
sensor: one is based on the Arduino Due board and the other
on the Arduino MEGA2560. The Arduino Due is a micro-
controller board based on the Atmel SAM3X8E ARM Cortex-
M3 running at 84MHz with 96KB of SRAM memory. The
MEGA2560 features an ATmega2560 at 16Mhz and has only
8KB of SRAM memory. Although the very limited amount
of memory of the MEGA was a challenge for implementing
image processing tasks, we found that the MEGA board
consumes much more energy than the Due for all operations,
in addition to higher processing time. Therefore in this paper,
we will only consider the Due platform. The radio module can
either be an IEEE 802.15.4 radio provided by a Digi XBee S1
module for short-range communications or a Libelium SX1272
LoRaTM module for long-range communication. However, the
particular case of LoRaTMtransmission will not be treated
in this paper. The XBee is connected through a serial port
at 125000 bauds as communication between the XBee and

Arduino is not reliable at 115200 bauds given the board clock
frequency of 84MHz (or 16MHz for the MEGA).

Then from the 1-camera system it is not difficult to have
a multiple cameras system as the Arduino Due has 4 UART
ports. One port is used for connection to the XBee module
if short-range communication is used, so the 3 others are
available for 3 uCamII cameras. Figure 1(left) shows our
Arduino Due connected to 3 uCamII cameras. 76o and 116o

lenses can be mounted on the uCamII, in addition to the 56o

lens shipped with the uCamII. Figure 1(right) compares the
FoV of the 3 lenses.

Cam 1

Cam 2

Cam 3

56° lens 76° lens

116° lens

Fig. 1. A 3-camera system on the Arduino Due

The cameras are set at 120o from each other to provide near
disk coverage property with 116o lenses. Only one camera can
be active at a given time and the image change detection is
performed on each camera with the corresponding reference
image.

B. Image processing tasks
We describe below the two image processing tasks imple-

mented on the image sensor.
1) Image change detection: We implemented an image

change detection mechanism based on ”simple-differencing”
of pixel: each pixel of the image from the uCam is compared to
the corresponding pixel of a reference image, taken previously
at startup of the image sensor. Little modifications in lumi-
nosity due to the camera imperfect white balance is taken into
account by computing the mean luminosity difference between
the captured image and the reference image. Additionally, if no
image change occurs during 5 minutes, the sensor takes a new
reference image to take into account light condition changes.
Many tests have been performed to validate the intrusion
detection mechanism and we were able to systematically detect
a single person intrusion at 25m without any false alert as
shown in Fig. 2.

Fig. 2. Left: reference image; Right: intruder detected

2) Image compression method: We use an optimized en-
coding scheme proposed in [21] to obtain a packet-tolerant
encoded bit stream. It features the 2 following key points:

1) Image compression must be carried out by independent
block coding in order to ensure that data packets cor-
rectly received at the sink are always decodable.

2) De-correlation of neighboring blocks must be performed
prior to packet transmission by appropriate interleaving
methods in order to ensure that error concealment algo-
rithms can be efficiently processed on the received data.

The compression scheme is a JPEG-like coder and operates
on 8x8 pixel blocks with advanced optimizations on data
computation to keep the computational overhead low. The
combination of the fast JPEG-like proposed encoder with
an optimized block interleaving method [22] allows for an
efficient tuning, the so-called Quality Factor (Q), of the com-
pression ratio/energy consumption trade-off while maintaining
an acceptable visual quality in case of packet loss. The code
has been ported to Arduino with little modifications. Fig. 3
shows the original raw 128x128 image taken with the image
sensor and encoded with various quality factors: Q=90 (high
quality), Q=50 (medium quality) and Q=10 (low quality). The
total size of the compressed image, the number of generated
packets and the PSNR compared to the original image are
shown. For multi-camera system, note that when images
need to be transmitted (upon intrusion), each camera can be
configured with a different image quality factor if necessary.
Fig. 3 also shows the impact of packet losses (20% and 40%).

raw 16384b Q=90; 5125b, 70 pkts

PSNR=29.41

Q=50; 2265b, 28 pkts Q=10; 911b, 11 pkts

PSNR=27.91 PSNR=25.28

Q=50; 20% pkt losses

Q=50; 40% pkt losses

Fig. 3. 128x128 image taken by the image sensor, various quality factor.

We set the maximum image payload per packet to 90 bytes
(in practice, the produced packet size will vary according to
the packetization process) because 9 bytes need to be reserved
in the 802.15.4 payload for header information.

C. Performance measures

1) Image processing: Fig. 4 shows the encoded image
size with the compression ratio and the number of produced
packets for various quality factors. Column A shows the
image encode time which is quite constant. Column B shows
the ”encode+pkt time” which is the overhead of the image

encoding process including the encoding itself and the packe-
tization stage, but without transmission. The time to read the
raw image data from the uCam is also shown in column R
(1512ms) and it actually does not depend much on the uCam-
Arduino connection baud rate (here 115200 bauds) because
the limitation is mainly due to memory read operations from
the Arduino UART ring buffer. R+B represents the latency
between the snapshot taken by the camera and the time all
the packets of the encoded image are produced (once again
without transmission).

If we take into account the transmission overhead shown
in column C, column D shows the ”encode+pkt+transmission
time”. The packetization and the transmission tasks are per-
formed in a row for each packet. Values in column B and
column D have been globally measured and can be used to
get column C which is the time taken globally for transmitting
the produced packets: more packets means higher transmission
time. If we use a quality factor of 50, the total time between the
snapshot taken by the uCam and the end of the transmission of
the image is 1512+879=2391ms. Column E shows the image
sensor cycle time with transmission of image packets.

N R A B C&=&D&)&B D E=R+D F

Quality&
Factor&
Q

size&in&bytes&
(compression&
ratio)

number&
of&

packets&
(with&

MSS=90)

reading&
time&
from&
ucam

encode&
time

encode&+&
pkt&time

transmis)
sion&time&
(deduced)

encode&+&
pkt&+&

transmis)
sion&time

cycle&
time,&with&
transmis)

sion

rcv&
time&at&

the&
sink

90 5125&&&(3.2) 70 1512 512 782 539 1321 2833 799
80 3729&&&(4.4) 48 1512 511 704 384 1088 2600 599
70 2957&&&(5.5) 37 1512 519 686 304 990 2502 447
60 2552&&&(6.4) 32 1512 509 662 263 925 2437 390
50 2265&&&(7.2) 28 1512 500 646 233 879 2391 349
40 2024&&&(8.1) 25 1512 516 657 207 864 2376 317
30 1735&&&(9.5) 21 1512 516 649 177 826 2338 278
20 1366&&&(12) 17 1512 518 638 140 778 2290 231
10 911&&&&(18) 11 1512 516 628 93 721 2233 177

Fig. 4. Cycle time measured on the Due-based platform as a function of the
image compression ratio. All times are in ms.

To quantify the cost of the intrusion detection mechanism,
we measured the time to get data from the uCam when the
”simple-differencing” method is included and when it is not.
We did not observe any difference: the time to read data from
the uCam and perform the pixel comparison is still 1512ms.

2) Transmission: We measured the time between 2 image
packets sent by the image sensor (when sending image packets
as fast as possible) with a promiscuous IEEE 802.15.4 sniffer
connected to the wireshark packet analysis tool. We found
that the mean time between 2 image packets is between 11ms
and 12ms. These measures are very consistent with previous
measures shown in Fig. 4. For instance, if we take column C
divided by the number of packets, C/N , we find about 8ms.
If we take (B − A)/N for quality factor above 50 we find
3ms to 4ms. Therefore the inter-arrival time at packet sniffer
can be decomposed as about 8ms for the transmission time
and 3ms to 4ms for the packetization time.

In Fig. 4, column F showed the receive time measured at a
sink which will decode and display the image. The receive
time represents the elapsed time between the first packet
received and the last packet received which already takes

into account the transmission time at the source. Fig. 5 then
shows the 1-hop image display latency which is the elapsed
time between the snapshot at the source image sensor and the
display of the image at the sink 1-hop away (column R+B+F).
The smaller the latency, the more responsive is the system.
Since the time to transmit a packet is not very large, we can
actually see that having Q up to 70 is not very penalizing.

3.09	
2.82	

2.65	 2.56	 2.51	 2.49	 2.44	 2.38	 2.32	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

90	 80	 70	 60	 50	 40	 30	 20	 10	

Ti
m
e	
in
	 se

co
nd

	

Quality	 factor	

Comparison	 of	 RCV	 7me	 &	 1-‐hop	 latency	

RCV	 0me	 (measured)	 1-‐hop	 latency	 (image	 display)	

Fig. 5. Image received time and 1-hop image display latency

For multi-hop transmission using relay nodes, our previous
work on performance measures of various relay platforms
can be read in [23], [24]. We found for instance that the
MicaZ platform provides the smallest relaying time (15ms
for a 100-byte packet) among various commonly found plat-
forms: TelosB, iMote2 and Arduino MEGA/Due. In multi-
hop transmission, the 1-hop image display latency shown in
Fig. 5 will then be increased by the relay time at each node
multiplied by the number of intermediate relay nodes. As the
relay time is quite small compared to the other image sensor’s
time overheads, the cost of multi-hop relaying in not high.

3) Energy consumption: To measure the energy consump-
tion we inserted additional power consumption by toggling a
led to better identify the various phases of the image sensor
operations. For all the energy tests, the transmitted image was
encoded using a quality factor of 50 which generates between
25 and 29 packets. Fig. 6 shows an entire cycle of camera
sync, camera config, data read, data encode and packetization
with transmission on the Due.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.5 1.5 2.5 3.5 4.5 5.5 6.5

E
Read%data% Transmit%

Ba
se
lin
e%

co
ns
um

p3
on

%

Encode%

2.773%J% 1.420%J%1.004%J%

Global%sync,%config,%read,%encode,%transmit%
consump3on%is%6.009%J%

1.39%J%/%second%

Arduino%Due%
sync%cam,%config%cam,%
read,%encode,%transmit%

Sy
nc
%c
am

%
0.
39
8%
J%

Le
d%
50
0m

s%

Co
nfi

g%
ca
m
%

0.
40
5%
J%

Le
d%
20
0m

s%

Le
d%
10
0m

s%

Le
d%
10
0m

s%

Le
d%
50
0m

s%

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.5 1.5 2.5 3.5 4.5 5.5 6.5

E
Read%data% Transmit%

Ba
se
lin
e%

co
ns
um

p3
on

%

Encode%

2.773%J% 1.420%J%1.004%J%

Global%sync,%config,%read,%encode,%transmit%
consump3on%is%6.009%J%

1.39%J%/%second%

Arduino%Due%
sync%cam,%config%cam,%
read,%encode,%transmit%

Sy
nc
%c
am

%
0.
39

8%
J%

Le
d%
50
0m

s%

Co
nfi

g%
ca
m
%

0.
40

5%
J%

Le
d%
20
0m

s%

Le
d%
10
0m

s%

Le
d%
10
0m

s%

Le
d%
50
0m

s%

Fig. 6. Energy consumption for the Arduino Due

The current baseline energy consumption of the Due has
been measured at 1.39J/s. This value is however not rele-
vant as we did not implement any advanced power saving
mechanisms such as putting the micro-controller in deep sleep
mode or lower frequency, or performing ADC reduction,
nor powering off the radio module. It is expected that the
baseline consumption can be much further decreased with
more advanced power management policy. Most interestingly,
after removing the energy consumed by the led, we found
that an entire cycle for image acquisition, encoding and
transmission consumes about 6J. The largest consumed energy
part on the Due comes from polling the serial line to get
the image data from the uCam (through the system serial
buffer). The encoding process actually consumes less than half
that amount of energy. The cost of periodic image change
detection, without encoding and transmission is similar to
the ”Read data” cost. Therefore, we found that the ”Global
sync, config, read&compare” consumption is 3.571J. If we
use a 1200mAh 9V battery, i.e. 38880J, the image sensor can
perform 10887 cycles of intrusion detection when assuming
very low energy consumption in idle mode.

III. LARGE SCALE INTRUSION DETECTION SYSTEM

The criticality-based scheduling described in [1], [2] links
the image capture rate of a node to the application’s criticality
level and the node’s number of cover sets. We show in this
section how the model’s parameters can be adapted to the real
image platform constraints.

A. Review of criticality-based node scheduling
The criticality-based model uses concave and convex curves

as illustrated in Fig. 7. These type of curves have the following
interesting properties for mission-critical applications:

• a concave curve has most projections of x values on the y-
axis close to 0 (Fig. 7 box A). Such curve could represent
”low criticality” applications that do not need high image
capture rate;

• a convex curve where most projections of x values on
the y-axis are close to the maximum frame capture
rate (Fig. 7 box B). Such curve could represent ”high
criticality” applications that need high image capture rate.

Fr
am

es
 /

se
co

nd

cover sets

A

B

Fig. 7. The Behavior curve functions

We use Bezier curves to model the 2 application classes. 3
points can define a convex (high criticality) or concave (low

criticality) curve: P0(0, 0) is the origin point, P1(bx, by) is the
behavior point and P2(hx, hy) is the threshold point where hx

is the highest number of cover-sets and hy is the maximum
frame capture rate determined by the sensor node hardware
capabilities. As illustrated in Fig. 7, by moving the behavior
point P1 inside the rectangle defined by P0 and P2, we are
able to adjust the criticality level using either a convex or a
concave form. P1 therefore defines a criticality level r0 which
is between 0 and 1, 1 being the highest criticality level which
requires fast image capture rate. Fig. 8(left) shows the image
capture rate curve for a criticality level of 0.8, a maximum
image capture rate set to 3fps and a maximum number of
cover-sets of 12 (nodes with higher number of cover sets will
only consider 12 cover sets), i.e. P2(hx, hy) = (12, 3).

With this criticality-based scheduling approach image nodes
with high number of cover-sets will have a higher frame
capture rate, therefore increasing their probability to detect
intruders. These nodes can therefore act as sentry nodes even
though there is no explicit election procedure. Fig. 8(right)
shows some nodes with their number of cover-sets, cs, and
their associated image capture rate, fps. The black node in
the center has the highest capture rate in its neighborhood and
will therefore have higher probability of detecting intruders.

n fps = 2.63
cs = 8

fps = 0.75
cs = 1

fps = 1.61
cs = 3

fps = 0.75
cs = 1

fps = 1.24
cs = 2

fps = 1.90
cs = 4

fps = 0.75
cs = 1

fps =1.24
cs = 2

fps = 1.24
cs = 2

fps = 2.14
cs = 5

fps = 0.75
cs = 1

fps : frames/second
cs : # cover sets

0.00#

0.75#

1.24#
1.61#

1.90#

2.14#

2.33#

2.49#

2.63#

2.75#

2.85#

2.93#

3.00#

0#

1#

2#

3#

4#

0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12#

Ca
pt
ur
e(
ra
te
(in
(fp

s(

Number(of(cover3set(

Capture(rate(for(cri4cality(level(of(0.8((

Fig. 8. Left: Capture rate according to criticality level and number of cover-
sets. Right: Image node capture rate under criticality-based scheduling.

B. Adapting the model to real image sensor capabilities

As described above, for a given criticality level, the maxi-
mum image capture rate, the maximum number of cover-sets
and the number of cover-sets give the current image capture
rate for a node. For a single-camera node the FoV can be
represented by a triangle and more complex computations are
required to find overlaps and build the node’s cover-sets [25].
With our multi-camera system, by using 3 cameras with 116o

lenses, the coverage is almost omnidirectional therefore disk
coverage can be assumed which reduces the cost of sensor
deployment and greatly simplify the coverage computation
to determine the redundancy level of each sensor. For the
maximum image capture rate, the developed image sensor
needs a time between each snapshot of about 0.220s (cam
sync time) + 0.220 (cam config time) + 1.512s (time to read
image data and perform the intrusion detection)=1.952s giving
a maximum image capture rate of about 0.52fps. Note that as
only one camera can be active at a given time, the multiple

cameras are activated sequentially (e.g. round robin manner
for instance). Fig. 9 shows the adapted criticality model using
P2 = (8, 0.52). The top figure plots for a criticality level is
0.8 (high criticality level), while the bottom figure shows the
0.2 case (low criticality level). In both graphs, the right-most
axis shows the time between 2 snapshots in seconds.

5.6	

3.6	 2.8	

2	 2.2	 2.1	 2.0	 1.9	

0.00	

0.18	

0.28	

0.35	

0.41	
0.45	

0.48	
0.50	 0.52	

0	

1	

2	

3	

4	

5	

6	

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

0	 1	 2	 3	 4	 5	 6	 7	 8	

	 "
m
e	
be

tw
ee
n	
2	
sn
ap

sh
ot
	 in
	 se

co
nd

	 	

Ca
pt
ur
e	
ra
te
	 in
	 fp

s	

Number	 of	 cover-‐set	

Capture	 rate	 and	 "me	 between	 2	 snapshots	

-me	 between	 2	 snapshots	 fps	

52.9	

22.9	

13.2	

9	
5.9	 4.1	 2.9	 1.9	 0.00	 0.02	

0.04	
0.08	

0.12	

0.17	

0.24	

0.35	

0.52	

0	

10	

20	

30	

40	

50	

60	

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

0	 1	 2	 3	 4	 5	 6	 7	 8	

	 "
m
e	
be

tw
ee
n	
2	
sn
ap

sh
ot
	 in
	 se

co
nd

	 	

Ca
pt
ur
e	
ra
te
	 in
	 fp

s	

Number	 of	 cover-‐set	

Capture	 rate	 and	 "me	 between	 2	 snapshots	

-me	 between	 2	 snapshots	 fps	

Fig. 9. Criticality model adapted to the image sensor hardware

Our image sensor platform can be configured dynamically
at runtime by setting (i) its number of cover-sets, (ii) the
maximum number of cover-sets and (iii) the criticality level.
The maximum number of cover-sets taken for the criticality
curve can be configured between 6 and 12. We set the number
of maximum cover-sets to 8. A higher value (such as 12
in Fig. 8) provides much larger inter-snapshot time when
the number of cover-sets is small. Using a smaller value
(such as 8 or 6) has the advantage to give more significant
difference in inter-snapshot time when the number of cover-
sets is varied. According to the surveillance application profile,
the maximum number of cover-sets can be defined prior to
deployment, or can even be set dynamically during the image
sensor operation.

IV. SIMULATING LARGE-SCALE SCENARIOS

The simulation model we built for our previous contri-
butions on criticality-based scheduling is developed under
the OMNET++/Castalia framework. The model integrates the
image encoding scheme and allows for ”real” image packet
transmissions under the communication stack and physical
radio models (IEEE 802.15.4 in non-beacon CSMA mode).
The simulation configuration file indicates the image file that

will be transmitted upon intrusion detection. An implemen-
tation of a geographical routing protocol enables multi-hop
transmission of image packets from an image sensor source to
a predefined sink node which will then decode and display the
received image. We use a dynamic criticality approach where
the entire network starts with a low criticality level, e.g. 0.2,
and upon intrusions, alert messages will set the criticality level
at a higher value, e.g. 0.8, for a given period of time before
going back to normal operation. We randomly deployed 80
sensor nodes in a 400mx400m area and reproduced our image
sensor features and constraints:

• camera angle of view of 76o & 116o,
• depth of view of 35m,
• 1 & 3 cameras/sensor (disk coverage is then assumed)
• maximum frame capture rate of 0.52fps,
• maximum number of cover-set is 8,
• 128x128 image (the one of Fig. 3)
• Quality Factor Q is set to 50, 2265B, 28 packets
• time before image data can be processed is 1.512s,
• encoding time is 500ms (Due’s performance),
• inter-packet generation time is 11ms.
Random intrusions are sequentially introduced in the sim-

ulation model and move at a 5m/s velocity. Nodes can detect
an intrusion if the intruder is covered by their FoV at the time
of the image capture. Upon intrusion detection by a node,
the stealth time of the intrusion is recorded and the node
will broadcast an alert message to its 1-hop neighbors so that
they can increase their criticality level themselves. Then the
node sends the image packets to the sink. Fig. 10 shows the
screenshot of the simulation with one image sent by node 46
to node 3 (sink). Node 72 serves as relay node under the GPSR
routing protocol.

First intrusion seen by node 46,
image packets are sent and relayed
by node 72, then received and
displayed by node 3 (sink) at time
12.5. 28/28 pkts, received latency is
0.42s and image was sent 0.47s
earlier.

Node 46
Node 3 (sink)
2-hop away
from node 46

Node 72
relays to
node 3

Fig. 10. Screenshot of the simulation environment with image transmission

In Fig. 11 we compare the coverage of a 80 x 1-uCamII
system (top-left) to a 80 x 3-uCamII system (top-right) and to a
240 x 1-uCamII system (bottom-left) with 76o lenses and when
the image sensors are randomly deployed in an 400mx400m
area. The depth of view of the cameras has been set to 35m.
The FoV in red is the one of camera 1, for both 1-camera and
3-camera systems. The blue is for camera 2 and the green for
camera 3, in the 3-camera system. We can see that the coverage
is greatly improved, at a much lower cost than having 3 times
more full sensor boards (bottom-left). With 116o lenses, using
3 cameras can almost provide omnidirectional vision. Fig.
11(bottom-right) shows the coverage using such lenses.

The cameras are activated in a round-robin manner, accord-
ing to the criticality-based scheduling mechanism. We have
not studied whether the round-robin activation is adapted or
not as the intrusion appear randomly. It is possible to change
the camera activation policy but this is out of the scope of the
current paper.

80 image sensors, 1 camera/sensor
aov=76°, dov=35m: 36.34%

80 image sensors, 3 camera/sensor
aov=76°, dov=35m: 71.55%

240 image sensors, 1 camera/sensor
aov=76°, dov=35m: 71.19%

80 image sensors, 3 camera/sensor
aov=116°, dov=35m: 91.61%

Fig. 11. Comparison of coverage by various image sensor systems

We evaluate the performance of the intrusion detection
system with the stealth time which is the time during which an
intruder can travel in the field without being seen. We showed
in [26] that the criticality-based node scheduling approach
can increase both the surveillance quality and the network
lifetime compared to a static frame capture rate approach. In
this paper, we will validate (i) that the adapted image capture
rate model corresponding to the real developed hardware
constraints can still offer high intrusion detection quality and,
(ii) the efficiency of the multi-camera system even with simple

round-robin camera activation. In Fig. 12 we plot the mean
stealth time for the 80-node 1-camera 76o configuration but
using the configuration of [26] where the maximum image
capture rate was arbitrarily set to 3fps and the maximum
number of cover-sets was 12 (see Fig. 8).

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 3 f p s 1 2 c s − 8 0 − 7 6 − 1 . v e c)

2 0 0 4 0 0 6 0 0 8 0 0

5

1 0

5s

10s

80-node 1-camera 76°, 3fps and 12 cover-
sets

94 detected intrusions

0s

Simulation time

200s 400s 600s 800s 1000s

M
ea

n
st

ea
lth

 ti
m

e

Fig. 12. Mean stealth time in the 80-node using P2 = (12, 3.0)

Now, we use the adapted frame capture rate model corre-
sponding to the real hardware capabilities (see Fig. 9). In Fig.
13 we plot the mean stealth time for the 80-node configuration
(1-camera 76o, 3-camera 76o & 3-camera 116o) and the 240-
node configuration (with 1-camera 76o system).

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 8 0 − 7 6 − 1 . v e c)

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 8 0 − 7 6 − 3 . v e c)

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 8 0 − 1 1 6 − 3 . v e c)

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 2 4 0 − 7 6 − 1 . v e c)

2 0 0 4 0 0 6 0 0 8 0 0

0

5

1 0

5s

10s

80-node 1-camera 76°
80-node 3-camera 76°
80-node 3-camera 116°
240-node 1 camera 76°

55 detected intrusions

357 detected intrusions

989 detected intrusions

0s

Simulation time

200s 400s 600s 800s 1000s

M
ea

n
st

ea
lth

 ti
m

e

Fig. 13. Mean stealth time in the 80-node/240-node configurations

The first observation is that a lower image capture rate does
increase the mean stealth time in the 80-node 1-camera 76o

configuration when compared to Fig. 12. Now, if we compare
the 1-camera system to the 3-camera system, while the 80-
node 1-camera system needs about 10s to detect the intruder as
it moves across the area, we can see that the 3-camera system
can greatly reduce the mean stealth time of intruders: both the
76o and the 116o setup can detect most intrusions in less than
0.5 second when it appears in the area although the maximum
image capture rate is only 0.52fps. The 116o setup shows a
slightly smaller stealth time than the 76o setup but we can see
that having 3 cameras greatly increases the responsiveness of
the system (in addition to the number of detected intrusions),
even with 76o cameras. We also show the performance of
the 240-node 1-camera system that has the same number of

cameras than the 80-node 3-camera system. We can see that
although the mean stealth time can decrease to about 1.75s
to detect the intrusion, this setup can not achieve the same
detection latency than a 3-camera system with 3 times smaller
number of nodes.

In Fig. 14 we show a 40-node configuration (1-camera 76o,
3-camera 76o & 3-camera 116o) and a 120-node configuration
with 1-camera system. The 40-node 1-camera 76o needs about
20s while the 40-node 3-camera can detect most intrusions in
less than 1s.

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 4 0 − 7 6 − 1 . v e c)

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 4 0 − 7 6 − 3 . v e c)

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 4 0 − 1 1 6 − 3 . v e c)

s t e a l t h T i m e i n S N . i n t r u s i o n (v i d e o S e n s o r − 1 2 0 − 7 6 − 1 . v e c)

2 0 0 4 0 0 6 0 0 8 0 0

0

1 0

2 0

10s

20s

Simulation time

40-node 1-camera 76°
40-node 3-camera 76°
40-node 3-camera 116°
120-node 1 camera 76°

19 detected
intrusions

156 detected intrusions

985 detected intrusions
0s

200s 400s 600s 800s 1000s

M
ea

n
st

ea
lth

 ti
m

e

Fig. 14. Mean stealth time in the 40-node/120-node configurations

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

1	 28
	

55
	

82
	

10
9	

13
6	

16
3	

19
0	

21
7	

24
4	

27
1	

29
8	

32
5	

35
2	

37
9	

40
6	

43
3	

46
0	

48
7	

51
4	

54
1	

56
8	

59
5	

62
2	

64
9	

67
6	

70
3	

73
0	

75
7	

78
4	

81
1	

83
8	

86
5	

89
2	

91
9	

94
6	

97
3	

St
ea
lth

	 (
m
e	
in
	 se

co
nd

	

Intrusion	 index	

80	 nodes	 3-‐camera,	 76°	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1	 28
	

55
	

82
	

10
9	

13
6	

16
3	

19
0	

21
7	

24
4	

27
1	

29
8	

32
5	

35
2	

37
9	

40
6	

43
3	

46
0	

48
7	

51
4	

54
1	

56
8	

59
5	

62
2	

64
9	

67
6	

70
3	

73
0	

75
7	

78
4	

81
1	

83
8	

86
5	

89
2	

91
9	

94
6	

97
3	

St
ea
lth

	 (
m
e	
in
	 se

co
nd

	

Intrusion	 index	

40	 nodes	 3-‐camera,	 76°	

Fig. 15. Stealth time of intrusions in 40-node and 80-node configurations

In Fig. 15(top) we show the stealth time of all intrusions
of the 80-node 3-camera system 76o and compare it to a 40-
node 3-camera 76o system in Fig. 15(bottom). While the mean
stealth time in both case is very small (see Fig. 13 and Fig.
14), we can better differenciate them in terms of stealth time
distribution. For instance, the 40-node case has more than 30%
of stealth time greater than 0.2s and more than 8% greater
than 0.4s. The 80-node case has less than 3% of stealth time

greater than 0.2s and about 0.3% greater than 0.4s. However,
the detection quality is still very promising with the 40-node
3-camera system when compared to 1-camera configurations
with 40, 80, 120 and 240 nodes. The results clearly show that
using multiple cameras can provide fast and efficient intrusion
detection with a small number of image nodes.

V. CONCLUSIONS

We presented a generic low-cost image sensor built from
commercial off-the-shelf electronic components for maximum
flexibility and availability to the research community. The
performance measures of the image sensor to operate the
image encoding and transmission process show that the 1-
hop image display latency can be less than 2.5s with a
reasonable image quality. We generalized the single-camera
system to a multi-camera system for better coverage at a
low cost. With such multi-camera system which can provide
almost omnidirectional sensing, we integrated and adapted
to real hardware constraints a criticality-based image node
scheduling mechanism to enable large-scale deployment of
image sensors. Simulations of large-scale scenarios showed
that fast and efficient intrusion detection can be realized with
a small number of multi-camera image nodes.

ACKNOWLEDGMENT

We would like to thank V. Lecuire from CRAN laboratory
for the image encoding code that has been included in both
the simulation model and the image sensor.

REFERENCES

[1] A. Makhoul, R. Saadi, and C. Pham, “Risk management in intrusion
detection applications with wireless video sensor networks,” in IEEE
WCNC, 2010.

[2] C. Pham, A. Makhoul, and R. Saadi, “Risk-based adaptive scheduling
in randomly deployed video sensor networks for critical surveillance
applications,” Journal of Network and Computer Applications, vol. 34,
pp. 783–795, 2011.

[3] J. Kostrzewa, W. H. Meyer, W. A. Terre, S. Laband, and G. W.
Newsome, “Use of a miniature infrared cots sensor in a several military
applications,” in Proc. SPIE, vol. 4743, 2002, pp. 141–149.

[4] O. Dousse, C. Tavoularis, and P. Thiran, “Delay of intrusion detection
in wireless sensor networks,” in ACM MobiHoc, 2006.

[5] Y. Zhu and L. M. Ni, “Probabilistic approach to provisioning guaranteed
qos for distributed event detection,” in IEEE INFOCOM, 2008.

[6] E. Freitas, T. Heimfarth, C. Pereira, A. Ferreira, F. Wagner, and
T. Larsson, “Evaluation of coordination strategies for heterogeneous
sensor networks aiming at surveillance applications,” in IEEE Sensors,
2009.

[7] M. Keally, G. Zhou, and G. Xing, “Watchdog: Confident event detection
in heterogeneous sensor networks,” Real-Time and Embedded Technol-
ogy and Applications Symposium, IEEE, 2010.

[8] R. Kozma, L. Wang, K. Iftekharuddin, E. McCracken, M. Khan,
K. Islam, and R. Demirer, “Multi-modal sensor system integrating cots
technology for surveillance and tracking,” in IEEE Radar Conference,
May 2010, pp. 1030–1035.

[9] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava, “Cyclops: In situ image sensing and interpretation in
wireless sensor networks,” in ACM SenSys, 2005.

[10] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan, “Mesheye: A
hybrid-resolution smart camera mote for applications in distributed
intelligent surveillance,” in Information Processing in Sensor Networks,
2007. IPSN 2007. 6th International Symposium on, April 2007, pp. 360–
369.

[11] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. Lobaton,
M. Meingast, S. Oh, S. Wang, P. Yan, A. Yang, C. Yeo, L.-C. Chang,
J. Tygar, and S. Sastry, “Citric: A low-bandwidth wireless camera
network platform,” in Distributed Smart Cameras, 2008. ICDSC 2008.
Second ACM/IEEE International Conference on, Sept 2008, pp. 1–10.

[12] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin, “Camera mote with
a high-performance parallel processor for real-time frame-based video
processing,” in Advanced Video and Signal Based Surveillance, 2007.
AVSS 2007. IEEE Conference on, Sept 2007, pp. 69–74.

[13] Evidence Embedding Technology, “Seed-eye board, a multimedia
wsn device. http://rtn.sssup.it/index.php/hardware/seed-eye,” accessed
20/12/2013.

[14] . Rodrguez-Vzquez, R. Domnguez-Castro, F. Jimnez-Garrido, S. Moril-
las, J. Listn, L. Alba, C. Utrera, S. Espejo, and R. Romay, “The eye-ris
cmos vision system,” in Analog Circuit Design, H. Casier, M. Steyaert,
and A. Van Roermund, Eds. Springer Netherlands, 2008, pp. 15–32.

[15] W.-C. Feng, E. Kaiser, W. C. Feng, and M. L. Baillif, “Panoptes:
Scalable low-power video sensor networking technologies,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 1, no. 2, pp. 151–167, May
2005.

[16] A. Rowe, D. Goel, and R. Rajkumar, “Firefly mosaic: A vision-enabled
wireless sensor networking system,” in Real-Time Systems Symposium,
2007. RTSS 2007. 28th IEEE International, Dec 2007, pp. 459–468.

[17] Evidence Embedding Technology, “Cmucam: open source pro-
grammable embedded color vision sensors. http://www.cmucam.org/,”
accessed 19/12/2014.

[18] S. Paniga, L. Borsani, A. Redondi, M. Tagliasacchi, and M. Cesana,
“Experimental evaluation of a video streaming system for wireless
multimedia sensor networks,” in Proceedings of the 10th IEEE/IFIP
Med-Hoc-Net, 2011.

[19] L. Gasparini, R. Manduchi, M. Gottardi, and D. Petri, “An ultralow-
power wireless camera node: Development and performance analysis,”
Instrumentation and Measurement, IEEE Transactions on, vol. 60,
no. 12, pp. 3824–3832, 2011.

[20] D. M. Pham and S. M. Aziz, “Object extraction scheme and protocol for
energy efficient image communication over wireless sensor networks,”
Computer Networks, vol. 57, no. 15, pp. 2949 – 2960, 2013.

[21] V. Lecuire, L. Makkaoui, and J.-M. Moureaux, “Fast zonal dct for energy
conservation in wireless image sensor networks,” Electronics Letters,
vol. 48, no. 2, 2012.

[22] C. Duran-Faundez and V. Lecuire, “Error resilient image communication
with chaotic pixel interleaving for wireless camera sensors,” in Proceed-
ings of ACM Workshop on Real-World Wireless Sensor Networks, 2008.

[23] C. Pham, V. Lecuire, and J.-M. Moureaux, “Performances of multi-
hops image transmissions on ieee 802.15.4 wireless sensor networks for
surveillance applications,” in IEEE WiMob, 2013.

[24] C. Pham, “Communication performances of ieee 802.15.4 wireless
sensor motes for data-intensive applications: A comparison of waspmote,
arduino mega, telosb, micaz and imote2 for image surveillance,” Journal
of Network and Computer Applications, vol. 46, no. 0, pp. 48 – 59, 2014.

[25] C. Pham and A. Makhoul, “Performance study of multiple cover-set
strategies for mission-critical video surveillance with wireless video
sensors,” in IEEE WiMOB, 2010.

[26] C. Pham, “Network lifetime and stealth time of wireless video sensor in-
trusion detection systems under risk-based scheduling,” in IEEE ISWPC,
2011.

