
Investigating and Experimenting CSMA Channel
Access Mechanisms for LoRa IoT Networks

Congduc Pham
Univ. Pau, LIUPPA Laboratory

congduc.pham@univ-pau.fr

Abstract—Given the incredible worldwide uptake of Long-
Range (LoRa) networks for a large variety of innovative Internet-
of-Things (IoT) applications and the high flexibility in deploying
private ad-hoc LoRa networks, it is important to consider
dense environments and to improve the robustness of LoRa
transmissions with more advanced channel access mechanisms.
In this article, we investigate how a Carrier Sense mechanism can
be adapted to decrease collisions in LoRa transmissions for both
short and long messages. We explain the various steps towards the
proposition of a Carrier Sense Multiple Access (CSMA) protocol
adapted to LoRa networks. We show experimental results using
our low-cost IoT LoRa framework to implement innovative long-
range image sensor nodes.

Index Terms—LPWAN; CSMA; Low-power IoT; Low-cost IoT;
rural applications; smart villages

I. INTRODUCTION

Recent Low-Power Wide Area Networks (LPWAN) for
Internet-of-Things (IoT) introduced by Sigfox and Semtech’s
(LoRaTM) are currently gaining incredible interest and are
under intense deployment campaigns worldwide. When con-
sidering both cost and network availability constraints, LoRa
technology [1], which can be privately deployed in a given
area without any service subscription, has a clear advantage
over Sigfox which coverage is entirely operator-managed.

While the LoRaWAN specifications [2] may ease the de-
ployment of LoRa networks by proposing some mitigation
mechanisms to allow for several LoRa networks and thousands
of nodes to coexist (such as multiple channels, orthogonal
spreading factors, dynamic channel discrimination) a LoRa
network working in a given set of parameters still remains
similar to a simple ALOHA system, which performance limi-
tations are well-known [3]. Moreover, due to the extremely
low throughput of these long-range technologies (100bps-
30kbps), the time-on-air (ToA) of message can be very large,
typically in the range of several seconds, thus dramatically
increasing the probability of collisions despite the limitation
on the duty-cycle imposed by regulations. Figure 1 shows
for various combinations of bandwidth (BW) and spreading
factor (SF) the ToA of a LoRa packet (obtained from formula
provided in [1]) as a function of the payload size in bytes.
The maximum throughput is shown in the last column with a
255B-payload packet. Modes 4 to 6 provide quite interesting
trade-offs for longer range, higher data rate and immunity to
interferences but in practice, when maximum range is needed,
mode 1 will be the de facto standard (these are actually the
default parameters in LoRaWAN). In a recent article [4], the

authors have studied the scalability of LoRa networks and they
confirmed the low Data Extraction Rate when the number of
nodes increases.

LoRa	
mode

BW	
(kHz) SF 5	bytes

55	
bytes

105	
bytes

155	
Bytes

205	
Bytes

255	
Bytes

max	
thoughput	

in	bps
1 125 12 0.9585 2.5969 4.2353 5.8737 7.5121 9.1505 223
2 250 12 0.4792 1.2165 1.8719 2.5272 3.2645 3.9199 520
3 125 10 0.2806 0.6902 1.0998 1.5094 1.919 2.3286 876
4 500 12 0.2396 0.6083 0.9359 1.2636 1.6323 1.9599 1041
5 250 10 0.1403 0.3451 0.5499 0.7547 0.9595 1.1643 1752
6 500 11 0.1198 0.3041 0.5089 0.6932 0.8776 1.0619 1921
7 250 9 0.0701 0.1828 0.2954 0.4081 0.5207 0.6333 3221
8 500 9 0.0351 0.0914 0.1477 0.204 0.2604 0.3167 6442
9 500 8 0.0175 0.0508 0.0815 0.1148 0.1455 0.1788 11408
10 500 7 0.0088 0.028 0.0459 0.0638 0.083 0.1009 20212

time	on	air	in	second	for	payload	size	of

Fig. 1. Time on air for various LoRa modes as payload size is varied

Given the incredible worldwide uptake of LoRa networks
for a large variety of innovative IoT applications (such as
image sensors) and the high flexibility in deploying private
ad-hoc LoRa networks, it is important to consider dense envi-
ronments and to improve the robustness of LoRa transmissions
with more advanced channel access mechanisms. Surprisingly,
and to the best of our knowledge, there is limited published
works discussing channel access methods for LoRa. There are
mostly contributions on limitations of current LoRa technol-
ogy [4], [5], [6] rather than on proposing enhancements. In this
article, we investigate how a Carrier Sense (CS) mechanism
can be adapted to decrease collisions in LoRa transmissions
and show experimental results using our low-cost IoT LoRa
testbed.

The rest of the article is organized as follows. Section II
presents our low-cost & long-range IoT platform and the test-
bed used for all the experiments. In Section III we will present
the main Carrier Sense Multiple Access (CSMA) methods
found in wireless networks such as IEEE 802.11 (WiFi) and
IEEE 802.15.4. Then, in Section IV, we present the steps
leading to a CSMA mechanism adapted to the specific case of
LoRa technology and capable of handling both short and long
LoRa messages in real-world deployment scenarios. Results
and discussion will be presented. We conclude in Section V.

II. LOW-COST & LONG-RANGE IOT TEST-BED PLATFORM

Our IoT platform is developed in the context of the EU
H2020 WAZIUP project. It fully takes the Arduino philos-
ophy for low-cost, simple-to-program yet efficient hardware

platforms that is ideally well-suited for do-it-yourself (DIY)
IoT, especially in WAZIUP that addresses rural applications in
developing countries [8]. The Arduino-compatible ecosystem
is large and proposes various board models, from powerful
prototyping boards to smaller and less energy-consuming
boards for final integration purposes.

The test-bed used for all the experiments presented in this
article consists of several nodes and one gateway built with
our low-cost & long-range IoT platform. Several types of
applications, generating different LoRa message sizes, will be
considered: (i) small messages, typically under 15 bytes, for
simple single-sensor devices such as temperature sensors; (ii)
medium-size messages, between 15 and 60 bytes, for simple
multi-sensor devices (air temperature, air humidity, water tem-
perature, dissolved oxygen level,. . .); and (iii) long messages,
typically above 100 bytes, for advanced and innovative sensors
such as image sensors.

raw 16384b Q=50; 20% pkt losses

Q=50; 40% pkt losses

Q=90; 5125b(3.2)
23 pkts PSNR=29.414

Q=50; 2265b(7.2)
10 pkts PSNR=27.912

Q=10; 911b(18)
4 pkts PSNR=25.283

An	Arduino	 Due	will	
constantly	perform
Channel	Activity	
Detection	(CAD)	to	
monitor	 radio	activity

An	Arduino	 Pro	
Mini	will	serve	as	
an	interactive	end-
device to	send	
both	short	and	
medium	size	
message	to	the	gw

A	Teensy32	with	a	uCamII	
camera	will	be	the	source	of	
large	image	packets	to	the	gw

Fig. 2. Various devices of the test-bed

Fig. 2 shows the 3 devices of the test-bed. First, we
have an image sensor based on a Teensy32 board and a 4D
System uCamII camera configured for 8bpp gray-scale and
128x128 images that will generate long LoRa messages. The
image sensor runs on 4 AA batteries and is fully autonomous
with low-power features. The image encoding scheme is
adapted for low-resource devices, supports high packet-loss
rates and features an image quality factor parameter to ajust
the compression ratio. The control software periodically takes
a snapshot (one per hour for instance) and transmit the encoded
image to the gateway (which will decode the image and make
it available through an embedded web page). As can be seen
in Fig. 2, using a quality factor of 10 offers a high trade-
off between image size (compression ratio of 18) and visual
quality. A typical generated image with a quality factor of 10
is about 900 bytes that can be transmitted within the ETSI
limit of 36s of radio time allowed per hour. More detail on
our long-range image sensor device for situation-awareness
scenarios can be found in [9].

Second, we use an Arduino Due to constantly monitor
the channel activity. It uses the dedicated Channel Activity

Detection (CAD) features of LoRa radio chip. As CAD is an
important component used for performing CS we will present
this feature in more details in Section IV. This device will be
attached to a computer to get the output corresponding to the
observed channel activity which will be presented in graphs
for better visualization.

Third, an Arduino Pro Mini running an interactive sender
program can perform several tasks such as sending periodic
messages of a given size as well as interactively send messages
of arbitrary size. This device will be attached to a computer
to get the output corresponding to the various steps of the
CSMA mechanisms that will be implemented and that will be
described in Section IV.

III. CHANNEL ACCESS IN WIRELESS NETWORKS

We focus in competition-based channel access mechanisms
at the MAC layer where nodes compete to get the channel.
In this category, random access protocols such as the early
ALOHA and various variants of CSMA, are widely used
in wireless networks because of their relatively simplicity
and their distributed operation mode that does not require
coordination nor overwhelming signaling overheads. There has
been a notable amount of research done on the performance
of ALOHA and CSMA in wireless networks. It is beyond the
scope of this paper to go through all these contributions but
interested readers can start with [10], [11], [12].

A. IEEE 802.11

Among many CSMA variants, the one implemented in the
IEEE 802.11 (WiFi) is quite representative of the approach
taken by most of random access protocols with so-called
backoff procedure. Fig. 3 illustrates the IEEE 802.11 CSMA
mechanism used in the basic Distributed Coordinated Function
(DCF) mode which is the common operation mode of WiFi
networks with a base station. In this basic mode, the optional
RTS/CTS mode is not used. The basic DCF IEEE 802.11
CSMA/CA (Collision Avoidance) works as follows:

• A node senses the channel to determine whether another
node is transmitting before initiating a transmission

• If the medium is free for a DCF inter-frame space
(DIFS) the transmission will proceed (green DIFS)

• If the medium is busy (red DIFS), the node defers its
transmission until the end of the current transmission and
waits an additional DIFS before generating a random
number of backoff slot time in the range [0,W − 1].

• The backoff timer is decreased as long as the medium
is sensed to be idle, and frozen when a transmission is
detected on the medium, and resumed when the channel
is detected as idle again for more than DIFS

• When the backoff reaches 0, the node transmits its packet
• The initial W is set to 1. W is doubled for each retry

(exponential backoff) until it reaches a maximum value
The random backoff timer is applied after a busy channel

because it is exactly in that case that the probability of a
collision is at its highest value. This is because several users
could have been waiting for the medium to be available again.

DATA

Di

Dj

Time slot

Successful DIFS

DIFS

0..(W-1)

DATA

DIFS

DIFS

Unsuccessful DIFS

Stop counting if
channel
becomes busy

802.11	mainly	 runs	in	
infrastructure	mode	where	a	
base	station	is	the	central	point	
of	the	network	

Fig. 3. IEEE 802.11 DCF CSMA/CA

B. IEEE 802.15.4

Closer to the domain of IoT, IEEE 802.15.4, that was very
popular for wireless sensor networks (WSN), proposes both
non-beacon-enabled mode with unslotted CSMA/CA channel
access mechanism and beacon-enabled networks with slotted
CSMA/CA. Here, we are describing the non-beacon-enabled
mode (as shown in Fig. 4) as the beacon-enabled needs
a coordinator and higher level of synchronization that is
definitely not suited for LoRa IoT networks.

• Before a transmission, a node waits for a random number
of backoff periods in the range [0..2BE − 1]. BE is set
to 3 initially

• If at the end of the waiting time the medium is sensed to
be free the transmission will proceed

• If the medium is busy, the node defers its transmission,
increases BE until it reaches a maximum value and waits
for an additional [0..2BE − 1] backoff periods

(2BE-1).bp

DATA

Di

Dj

aUnitBackoffPeriod

CCA: RSSI < -95dBm?

(2BE-1).bp (2BE-1).bp

DATA

BE=BE+1

Channel busy

Digi Xbee
802.15.4

MicaZ CC2420 TelosB CC2420

802.15.4	runs	mainly	in	WSN	
under	the	mesh	 topology	where	
multi-hop	 routing	will	forward	
data	to	a	sink

Fig. 4. IEEE 802.15.4 non-beacon unslotted CSMA

Compared to IEEE 802.11, IEEE 802.15.4 always imple-
ments a backoff timer prior to any transmission and simply
increases the backoff timer interval each time the channel is
found busy for the same packet, without constantly checking
the channel to know when it is going back to idle. There
are several reasons for these differences. One reason is that
simply increasing the backoff timer interval is less energy
consuming than determining the end of the current transmis-
sion, especially if the transmission of a packet can take a long
time (802.15.4 usually runs at 250kbps while 802.11 runs
at 11Mbps and above). Another reason is because the node
and traffic density of IEEE 802.15.4 networks is expected to
be much smaller than those of WiFi networks. There is an

additional reason 802.15.4’s CSMA is different from 802.11’s
CSMA: 802.15.4 for WSN mainly runs under mesh topology
(i.e. P2P and without central coordinator) with a shorter radio
range (i.e. low transmit power), therefore the spatial reuse is
higher, contributing again to decrease the traffic density at any
given point in the network.

Again, there has been a huge amount of research in im-
proving the basic 802.15.4 MAC protocol to better support
multi-hop and duty-cycled low-power WSN. Reader can refer
to [13] for a survey of MAC protocols for WSN.

IV. WHAT CAN BE DONE FOR LORA?

A. LoRa’s channel activity detection (CAD)

Before investigating what CSMA approach can be adapted
for LoRa, it is necessary to know how a LoRa channel can be
defined busy or idle to implement a CS mechanism. As LoRa
reception can be done below the noise floor the use of the RSSI
is not reliable enough. For clear channel assessement, there is a
special Channel Activity Detection (CAD) procedure that can
be realized by a LoRa chip. We use the dedicated Arduino
Due device to constantly perform CAD procedure and the
interactive device to send periodic messages (see previous Fig.
2). Fig. 5 shows 2 cases: (i) 44 byte message (40 bytes payload
+ 4 byte header) every 15s with a CAD procedure every 100ms
and (ii) 244 byte message (240+4) every 15s with a CAD
procedure every 1000ms. In Fig. 5 the red rectangle and green
rectangle denote channel active duration and inactive duration
respectively, and a blue spot denotes a successful CAD. As
can be seen the LoRa CAD procedure can correctly detect all
the LoRa transmission, and not only the preamble.

0
0.2
0.4
0.6
0.8
1

1.2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ch
an
ne
l	A

ct
iv
ity
	D
et
ec
tio
n	

(C
AD

)

Time	in	milli-seconds

0
0.2
0.4
0.6
0.8
1

1.2

0 10000 20000 30000 40000 50000 60000 70000

Ch
an
ne
l	A

ct
iv
ity
	D
et
ec
tio
n	

(C
AD

)

Time	in	milli-seconds

BW=125kHz
CR=4/5
SF=12
244 bytes
ToA=8.82s
CAD every 1000ms

15s

BW=125kHz
CR=4/5
SF=12
44 bytes
ToA=2.27s
CAD every 100ms

15s

Fig. 5. Test of the LoRa CAD mechanism

B. Adaptation from 802.11

As a first attempt towards a CSMA protocol for LoRa, we
start by adapting the previously shown 802.11 CSMA protocol
and not the 802.15.4 one, although 802.15.4 is widely used in
WSN and early IoT implementation, for 2 reasons. The first
reason is that LoRa network architecture is mainly a single-hop
star topology from devices to gateway, which is very similar to
the WiFi topology with a base station. Therefore, the concept
and the management of the 802.11’s random backoff timer
after a busy channel looks efficient for such environment. The
second reason for not starting from 802.15.4 comes from its
initial random waiting without channel sensing method that is

more suitable for low density networks than for high density
networks that will definitely be the case for LoRa networks.

To adapt the 802.11 CSMA protocol, we first need to define
how the DIFS operation can be implemented. Usually, IFS
should be related somehow to the symbol period Tsym. For
LoRa, Tsym depends on BW and SF as follows: Tsym =
2SF /BW . For instance, LoRa mode 1 use BW=125kHz and
SF=12 therefore Tmode 1

sym = 212/125000 = 0.032768. In [14],
it is reported that the CAD duration is between 1.75Tsym and
2.25Tsym depending on the spreading factor, see Fig. 6. We
performed some experimental tests to verify the real CAD
duration against what is given in [14]: Fig. 6 also shows the
minimum and the maximum values measured with a 1ms-
accuracy clock (the Arduino millis() function). We can
see that the measured CAD durations are quite consistent.

LoRa	
mode

Tsym	
(ms)

CAD	
duration	
(Tsym)

CAD	
duration	
(ms) min	value max	value

1 32.768 1.86 60.948 60 62
2 16.384 1.86 30.474 29 31
3 8.192 1.77 14.500 14 16
4 8.192 1.86 15.237 15 16
5 4.096 1.77 7.250 7 8
6 4.096 1.81 7.414 7 9
7 2.048 1.75 3.584 3 5
8 1.024 1.75 1.792 1 3
9 0.512 1.79 0.916 1 1
10 0.256 1.92 0.492 0 1

Experimental	

Experimental	measures

Fig. 6. Theoretical CAD duration and experimental measures

In our current implementation DIFS does not depend
directly on Tsym but on the duration of the CAD mech-
anism therefore we assign an integer number of CAD to
DIFS. Our communication library provides a low-level
doCAD(counter) function that takes an integer number
of CAD, i.e. counter, performs sequentially the requested
number of CAD and returns 0 if all CAD have been successful
(no channel activity). If one CAD detects activity the function
exits with value greater than 0. The DIFS procedure shown
in Fig. 7 works that way and once a failed CAD has been
observed the node exits the DIFS procedure and continuously
checks for a free channel.

In Fig. 7, DIFS is assigned 9 CAD which gives a duration
of about 9× 61ms = 549ms for LoRa mode 1. At this point
of the study, the duration of DIFS is not really important as
we only need to be able to assert a free channel for a given
duration. The value of 9 CAD provides enough time to detect
channel activity and also provides the possibility to define a
much shorter timer (using 3 CAD for instance), such as the
802.11’s SIFS, to implement priority schemes is needed, and
still be able to detect channel activity. Then the random backoff
timer is also defined as a number of CAD because the channel
should be checked in order to froze or continue the decrease
of the backoff timer. The upper bound, W , of the random
backoff timer can be set in relation to the number of CAD
defined for DIFS. For instance, if DIFS = 9 CAD then W
can be defined as n × DIFS. For instance, if n = 2 then
W = 2× 9 = 18 CAD.

Di

Dj

Successful CAD

0..(W-1)

DATA

Unsuccessful CAD

Time slot

Stop counting if
channel becomes
busy

Libelium LoRa
HopeRF
RFM92W/95W

Modtronix
inAir4/9/9B

NiceRF
LoRa1276

DIFS

DIFS DIFS

LoRa	mainly	runs	in	gateway-
centric	mode	where	a	gateway	is	
the	central	point	of	the	network	

DATA

Fig. 7. CSMA mechanism adapted from IEEE 802.11

It is also possible to double W for each retry (exponential
backoff) until it reaches a maximum value. However, while
802.11 initiates a retry when no ACK is received after a given
time, the usage of acknowledgement is not common in LoRa as
it is very costly for the gateway (the gateway is considered as
a normal node and therefore its radio duty-cycle can be limited
by regulations). Therefore there is no such retry concept with
unacknowledged transmissions. Nevertheless, when 802.11
doubles W for each retry the underlying assumption for the
transmission errors is a denser channel. Here, we can follow
the same guideline and double W each time the channel
cannot be found free for an entire DIFS, starting from the
second DIFS attempt. In the current implementation we set
W = 18 CAD initially and we can double it 3 times so
the maximum value is W = 144 CAD which will give a
maximum wait timer of 8784ms for LoRa mode 1. If we add
the value of the successful DIFS which is 9 CAD, i.e. 549ms,
then the maximum total wait timer after a busy channel is
about 9333ms which correspond roughly to the ToA of the
maximum LoRa packet size. This property remains roughly
true for all the defined LoRa modes and therefore can avoid
waiting longer than necessary.

Fig. 8 shows an experiment with the image sensor sending
4 image packets (about 240 bytes per packet) while the
interactive device is sending medium-size messages of 40
bytes. The output is from the interactive device and it can
be seen that the adapted CSMA protocol can nicely avoid
the collision by deferring the transmission of the interactive
message. In the illustrated experiment, transmission is deferred
only once before transmission succeeds as the time between
2 image packets is greater than a DIFS plus the random
backoff timer of 17 CAD.

Sending. Length is 40
##
Packet number 1
Payload size is 40
ToA is w/4B header 2270
--> CarrierSense2: do CAD for DIFS=9CAD
--> DIFS duration 61
###1
--> Channel busy. Retry CAD until free channel
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
--> found busy during 30 CAD
--> wait duration 1891ms
--> retry
--> DIFS duration 547ms
--> counting for 17 CAD

--> found busy during 0
LoRa Sent in 2390ms
LoRa Sent w/CAD in 6231
Packet sent, state 0

DIFS

DATA

17

DATA

Stop counting if channel
becomes busy

DATA

30 CAD

DIFS

DIFS DIFS

No pkt loss 1 pkt lost 2 pkt lost

Fig. 8. Experimental test of the proposed CSMA adaptation

Fig. 8 also shows the received image without any packet
loss and 2 examples of received images when there is no
channel access mechanism (pure ALOHA). It all our tests, the
proposed CSMA protocol adapted from 802.11, and further
referred to as CSMALoRa

802.11, totally avoids packet losses for
both the image sensor and the interactive device.

C. CAD reliability issues

By testing further the CSMA mechanism in various long-
range deployment, we observed a fast decrease of the CAD’s
reliability when distance increases: although a transmission
can be successful at several kilometers, CAD starts to not
reliably detect the whole transmission when the distance to the
sender is about 1km (with dense vegetation, CAD reliability
can start to decrease even at 400m). Fig. 9 shows CAD
reliability with the same traffic pattern previously shown in
Fig. 5 but with the sender and the Arduino Due device
performing CAD separated by 400m with some trees between
them. As can be seen, the CAD procedure fails to detect
channel activity many times during an on-going transmission.

0
0.2
0.4
0.6
0.8
1

1.2

430000 440000 450000 460000 470000 480000 490000 500000 510000

Ch
an
ne
l	A

ct
iv
ity
	D
et
ec
tio
n	

(C
AD

)

Time	in	milli-seconds

15s

244 bytes
ToA=8.82s
CAD every 1000ms

Fig. 9. CAD fails to detect activity of on-going transmissions

This CAD unreliability issue in real-world deployment
scenario has a huge negative impact on the CS mechanism.
For instance, in the previous proposed CSMA adaptation from
802.11, it is not possible anymore to rely on CAD to detect
when the channel will become really free after a busy state
nor to rely on a successful DIFS as a free channel indication
to start transmission. However, what can be observed in Fig.
5 and verified by the tests that we performed, is that during a
long transmission the probability that all CAD attempts fail is
quite low. In all our tests, and up to 1km in NLOS conditions,
there have always been some successful CAD during any
transmission.

D. Proposed CSMA mechanism

The CAD reliability issue raised previously calls for a differ-
ent approach to prevent collisions. First, the previous DIFS
is extended to the ToA of the longest LoRa packet in a given
LoRa mode, e.g. 9150ms for 255 bytes in LoRa mode 1 (see
Fig. 1). During this extended DIFS(ToAmax), CAD pro-
cedure is performed periodically (for instance every 1000ms
as in Fig. 5–bottom). The purpose of DIFS(ToAmax) is to
maximize the probability to detect an on-going transmission
which can possibly be a long message with many unsuccessful
CADs, thus appearing by mistake as a short message.

Then, when a CAD fails during a DIFS(ToAmax), in-
stead of continuously waiting for a free channel followed
by a DIFS+random backoff timer where CAD is checked
constantly; here, there is a simple constant waiting period (pure

delay) of ToAmax. Again, the purpose of the constant delay
of ToAmax is to avoid performing CAD and transmission
retries during the transmission of a possible long message,
as a successful CAD does not guarantee a free channel. After
the delay, the transmitter will try again to see a free channel
for at least a DIFS(ToAmax) and the process continues until
a maximum number of retries have been performed.

DATA

Di

Dj

Successful CAD

DATA

DIFS(ToAmax)

Unsuccessful CAD

DIFS(ToAmax)

DELAY(ToAmax)

DIFS(ToAmax)

Fig. 10. New CSMA proposition

It all our experiments with the new proposed CSMA pro-
tocol, noted CSMALoRa

new , we totally avoids packet losses for
both the image sensor and the interactive device even when
the nodes are hundredth of meters away from each others.

E. Discussions

1) CAD frequency during DIFS(ToAmax): A CAD pro-
cedure takes between 0.5ms and 61ms, from mode 10 down
to mode 1, as shown in Fig. 6 while the ToA of the longest
LoRa packet, ToAmax, is respectively between 100ms and
9150ms as shown in Fig. 1. Therefore, depending on the CAD
failure probability (not detecting an on-going transmission) it
is possible to increase or decrease the number of CAD during a
DIFS(ToAmax) to ensure at least 1 successful CAD to detect
an on-going transmission. In our tests, we set the number
of CAD to 9, similar to the number of CAD defined for a
DIFS in section IV-B. Therefore the time between 2 CAD
is ToAmax/(9 − 1). For instance, in LoRa mode 1 where
ToAmax =9150ms, there will be one CAD every 1143ms.

Di

Dj

9

DATA

Stop counting if channel
becomes busy

DIFS

DIFS DIFS

DATA (ToAmax)

DATA (ToAmax)

DIFS(ToAmax)

DATADIFS(ToAmax)

DELAY(ToAmax)

DIFS(ToAmax)

1

2 3 4

Fig. 11. Scenario for comparing CSMALoRa
802.11 and CSMALoRa

new

2) Energy considerations: We can compare the energy
consumption between CSMALoRa

802.11 and CSMALoRa
new with

the scenario depicted in Fig. 11: a long packet is transmitted
by device j after a successful DIFS and there is an attempt
from device i right at the beginning of this transmission. In
Fig. 11 there are 2 lines for each device, the first line shows

CSMALoRa
802.11 while the second line shows CSMALoRa

new . To
perform the energy comparison, we measured for the Arduino
Pro Mini and the Teensy32 the drawn current when performing
CAD, when waiting using the delay() function and when
waiting using deep sleep (DS) mode: Arduino Pro Mini (CAD:
12mA; delay(): 5.7mA; DS: 54uA); Teensy32 (CAD:
36mA; delay(): 29.5mA; DS: 110uA). As expected, deep
sleep mode provides a very low energy consumption compared
to the delay() function and CAD operation. Therefore it is
possible to state that EDIFS = EDIFS(ToAmax) = 9×ECAD.
With this approximation, sensing for a free channel before
transmission at device j – block 1 – has comparable energy
consumption level in CSMALoRa

802.11 and CSMALoRa
new .

Then, for device i, with CSMALoRa
802.11, checking until the

end of the transmission – block 2 – can be comparable
a DIFS(ToAmax) with periodic CAD performed 9 times.
Therefore the energy consumption can be approximated again
to 9 × ECAD. With CSMALoRa

new , DIFS(ToAmax) fails at
the first CAD to continue with DELAY (ToAmax) which has
negligible energy consumption using deep sleep mode for the
waiting. Therefore, block 2 for CSMALoRa

new has an energy
consumption of 1× ECAD.

Block 3 for both CSMA protocols is comparable to block
1. Then, for device i with CSMALoRa

802.11 there is the random
backoff timer – block 4. Assuming that the channel is always
free for the pending transmission then the mean timer value
is W/2. As W is initially set to 18 CAD then the random
backoff timer has a mean duration of 9 CAD, thus an energy
consumption of 9× ECAD.

Finally, for the scenario depicted in Fig. 11, CSMALoRa
802.11

has a total energy consumption of 4 × [9 × ECAD] while
CSMALoRa

new has an energy consumption of 2× [9×ECAD]+
1 × ECAD which is about half the energy consumption of
CSMALoRa

802.11 – exactly 36/19 time less. If the channel is
found busy in block 3, then block 2 is repeated N times with
an energy consumption ratio of 1:9 for CSMALoRa

new . Thus,
in ”heavy” traffic load, CSMALoRa

new definitely shows a much
lower energy consumption than CSMALoRa

802.11: (3+N)× [9×
ECAD] for CSMALoRa

802.11 and 2× [9×ECAD] +N ×ECAD

for CSMALoRa
new . With N = 2 for instance, the ratio becomes

45/20 which is now more than half.
If we take into account the CAD success probability (de-

tecting an on-going transmission), noted PCAD =]0, 1], then
block 2 for CSMALoRa

new will have an energy consumption of
2 × [9 × ECAD] + N × 1

PCAD
× ECAD. Fig. 12 shows the

energy consumption when varying N and PCAD.
3) Latency: CSMALoRa

new obviously increases the sending
latency because DIFS(ToAmax) is much larger than DIFS
(9150ms compared to 549ms for LoRa mode 1 and 255 bytes
messages). Also, instead of continuously checks for a free
channel in block 2, the node attempting to transmit always
waits for DELAY (ToAmax). However, as LoRa networks are
mainly used for delay-tolerant IoT applications, we believe this
latency issue has less importance than the capacity of limiting
collisions in dense scenarios which was the primary design
choice for CSMALoRa

new .

0
10
20
30
40
50
60
70
80

1 2 3 4 5

Nu
m
be
r	o

f	E
ca
d

Number	of	retries

Energy	consumption	comparison

CSMA	adapted	from	802.11 New	proposed	CSMA,	 Pcad=1

New	proposed	CSMA,	 Pcad=0.75 New	proposed	CSMA,	 Pcad=0.5

New	proposed	CSMA,	 Pcad=0.25 New	proposed	CSMA,	 Pcad=0.1

Fig. 12. Energy comparison of CSMALoRa
802.11 and CSMALoRa

new

V. CONCLUSIONS

In this article, we investigated how a Carrier Sense mech-
anism can be adapted to decrease collisions in LoRa trans-
missions. We proposed a CSMA protocol adapted to LoRa
networks, capable of handling both short and long messages.
Experimental tests with image sensor nodes for innovative
long-range image transmission showed very promising results
where long on-going transmissions can be secured to avoid
collisions even when the nodes are hundredth of meters away
from each others.

ACKNOWLEDGMENTS

This work is supported by the WAZIUP project with funding
from the EU’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 687607.

REFERENCES

[1] Semtech, “LoRa modulation basics. rev.2-05/2015,” 2015.
[2] L. Alliance, “LoRaWAN specification, v1.0.2,” 2016.
[3] R. Nelson and L. Kleinrock, “The spatial capacity of a slotted ALOHA

multi-hop packet radio network with capture,” IEEE Trans. Comm.,
vol. 32, 1984.

[4] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa
low-power wide-area networks scale?” in ACM MSWiM’16.

[5] D. Bankov, E. Khorov, and A. Lyakhov, “On the limits of LoRaWAN
channel access,” in EnT’16.

[6] K. Mikhaylov, J. Petaejaejaervi, and T. Haenninen, “Analysis of
capacity and scalability of the LoRa low power wide area network
technology,” in 22th European Wireless Conference, 2016.

[7] ETSI, “Electromagnetic compatibility and radio spectrum matters
(ERM); short range devices (SRD); radio equipment to be used in the
25MHz to 1000MHz frequency range with power levels ranging up to
500mW; part 1: Technical characteristics and test methods,” 2012.

[8] C. Pham, A. Rahim, and P. Cousin, “Low-cost, long-range open IoT
for smarter rural african villages,” in IEEE ISC2’16.

[9] C. Pham, “Low-cost, low-power and long-range image sensor for visual
surveillance,” in ACM SMARTOBJECTS’16, 2016.

[10] M. Kaynia and N. Jindal, “Performance of ALOHA and CSMA in
spatially distributed wireless networks,” in IEEE ICC’08.

[11] Y. Yang and T.-S. P. Yum, “Delay distributions of slotted ALOHA and
CSMA,” IEEE Trans. Comm., vol. 51, 2003.

[12] F. A. Tobagi, “Distribution of packet delay and interdeparture time in
slotted ALOHA and CSMA,” J. Assoc. Comput. Mach., vol. 29, 1982.

[13] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC essentials
for WSN,” IEEE Comm. Surveys and Tutorials, 12(2), 2010.

[14] Semtech, “Sx1272/73 - 860MHz to 1020MHz low power long range
transceiver. rev.2-07/2014,” 2014.

