
Building low-cost gateways and devices for open
LoRa IoT test-beds

Congduc PHAM1

LIUPPA, University of Pau, France
Email: Congduc.Pham@univ-pau.fr

Abstract. While benefits of IoT are clearly stated the deployment of
such devices in a large scale is still held back by technical challenges such
as short communication distances. Recent long-range radio technologies
such as Semtech’s LoRa are promising to deploy Low Power WAN at
a very low-cost for a large variety of applications. The paper describes
our proposed low-cost and open IoT gateway & devices for both robust
and simple deployment. Quick appropriation & customization by third
parties for test-bed deployment is of utmost importance and the whole
proposed architecture addresses this issue from the very beginning of the
design process.

Key words: Internet of Thing test-bed, LoRa, Low-cost test-beds

1 Introduction

While benefits of IoT are clearly stated for increased process efficiency through
automation & optimization, the deployment of such devices in a large scale is
still held back by technical challenges such as short communication distances.
Using the telco mobile communication infrastructure is still very expensive (e.g.
GSM/GPRS, 3G/4G/LTE) and not energy efficient for autonomous devices that
must run on battery for months. During the last decade, low-power but short-
range radio such as IEEE 802.15.4 radio have been considered by the WSN
community with multi-hop routing to overcome the limited transmission range.
While such short-range communications can eventually be realized on smart
cities infrastructures where high node density with powering facility can be
achieved, it can hardly be generalized for the large majority of surveillance ap-
plications that need to be deployed in isolated or rural environments. Recent
modulation techniques where the long transmission distance (several kilometers
even in NLOS conditions) can be achieved without relay nodes greatly reduces
the complexity of deployment and data collection. The long-range solution has
the following advantages over traditional short-range technologies:

1. avoids relying on operator-based communications; no subscription fees;
2. removes the complexity and cost of deploying/maintaining a multi-hop in-

frastructure;
3. can offer out-of-the-box connectivity facilities.

Figure 1 shows a typical extreme long-range 1-hop connectivity scenario to
a gateway which is the single interface to Internet servers. Most of long-range
technologies can achieve 20km or higher range in LOS condition and about 2km
in NLOS, urban area where the RF signal has to travel through several buildings.

20kms

Fresh water

Fig. 1. Extreme long-range application

Some low-power long-range technologies such as SigfoxTM are still operator-
based and therefore cannot be deployed in an ad-hoc manner. However, other
technologies such as LoRaTM proposed by Semtech radio manufacturer can
be privately used. Such technology can be deployed following the recently pro-
posed LoRaWANTM specifications [1] for large-scale interoperability or using
completely ad-hoc solutions where customization towards specific application’s
profile can be realized. The work presented in this paper mainly focuses on this
last approach. We present here our low-cost LoRa platform & software for de-
ploying ad-hoc LoRa IoT test-beds with a high degree of customization and
flexibility.

The rest of the article is organized as follows. Section 2 details the long-range
technology with focus on the LoRa technology by Semtech and explanations on
low-power, long-range network architecture. In Section 3 we will present our
low-cost architecture, hardware and software designed for test-bed deployment.
Section 4 then describes how a test-bed can be rapidly set-up. We conclude in
Section 5.

2 Review of long-range transmission and LPWAN

2.1 Semtech’s LoRa technology

Semtech’s long-range technology (called LoRa [2, 3]) belongs to the spread spec-
trum approaches where data can be ”spreaded” in both frequencies and time
to increase robustness and range by increasing the receiver’s sensitivity, which
can be as low as -137dBm in 868MHz band or -148dBm in the 433MHz band.
Throughput and range depend on the 3 main LoRa parameters: BW, CR and
SF. BW is the physical bandwidth for RF modulation (e.g. 125kHz). Larger
signal bandwidth allows for higher effective data rate, thus reducing transmis-
sion time at the expense of reduced sensitivity. CR, the coding rate for forward
error detection and correction. Such coding incurs a transmission overhead and

the lower the coding rate, the higher the coding rate overhead ratio, e.g. with
coding rate = 4/(4+CR) the overhead ratio is 1.25 for CR=1 which is the min-
imum value. Finally SF, the spreading factor, which can be set from 6 to 12. The
lower the SF, the higher the data rate transmission but the lower the immunity
to interference thus the smaller is the range. Figure 2 shows for various combi-
nations of BW, CR and SF the time-on-air of a LoRa transmission depending on
the number of transmitted bytes. The maximum throughput is shown in the last
column with a 255B payload. Modes 4 to 6 provide quite interesting trade-offs
for longer range, higher data rate and immunity to interferences.

LoRa%
mode BW CR SF 5%bytes 55%bytes

105%
bytes

155%
Bytes

205%
Bytes

255%
Bytes

max%thr.%for%
255B%in%bps

1 125 %4/5 12 0.95846 2.59686 4.23526 5.87366 7.51206 9.15046 223
2 250 %4/5 12 0.47923 1.21651 1.87187 2.52723 3.26451 3.91987 520
3 125 %4/5 10 0.28058 0.69018 1.09978 1.50938 1.91898 2.32858 876
4 500 %4/5 12 0.23962 0.60826 0.93594 1.26362 1.63226 1.95994 1041
5 250 %4/5 10 0.14029 0.34509 0.54989 0.75469 0.95949 1.16429 1752
6 500 %4/5 11 0.11981 0.30413 0.50893 0.69325 0.87757 1.06189 1921
7 250 %4/5 9 0.07014 0.18278 0.29542 0.40806 0.5207 0.63334 3221
8 500 %4/5 9 0.03507 0.09139 0.14771 0.20403 0.26035 0.31667 6442
9 500 %4/5 8 0.01754 0.05082 0.08154 0.11482 0.14554 0.17882 11408
10 500 %4/5 7 0.00877 0.02797 0.04589 0.06381 0.08301 0.10093 20212

time%on%air%in%second%for%payload%size%of

Fig. 2. Time on air for various LoRa modes as payload size is varied

Electromagnetic transmissions in the sub-GHz band of Semtech’s LoRa tech-
nology falls into the Short Range Devices (SRD) category. For instance, in Eu-
rope, electromagnetic transmissions in the EU 863-870MHz ISM Band used by
Semtech’s LoRa technology falls into the Short Range Devices (SRD) category.
The ETSI EN300-220-1 document [4] specifies various requirements for SRD de-
vices, especially those on radio activity. Basically, transmitters are constrained to
1% duty-cycle (i.e. 36s/hour) in the general case. This duty cycle limit applies
to the total transmission time, even if the transmitter can change to another
channel. In most cases, however, the 36s duty-cycle is largely enough to satisfy
communication needs of deployed applications.

2.2 LoRa LPWAN network deployment and architecture

As shown previously in figure 1, the deployment of a LoRa network is centered
around a gateway that usually has Internet connectivity. Although direct com-
munications between devices are possible, most of applications using sensors for
surveillance follow the gateway-centric approach with mainly uplink traffic pat-
terns. Data captured by end-devices are sent to the gateway which will push
data to network servers. Then application servers managed by end-users could
retrieve data from the network servers. If encryption is used for confidentiality,
the application server can be the place where data could be decrypted and pre-
sented to end-users. Following this architecture, the LoRa Alliance proposes a
LoRaWAN [1] specification for deploying large-scale, multi-gateways networks
and full network/application servers.

The full network/application servers and LoRaWAN architecture can be
greatly simplified for small, ad-hoc deployment scenarios where a privately owned

gateway can (i) locally store collected data and use short range wireless radio
(WiFi or Bluetooth) for direct web connection or/and, (ii) push data to some
end-user managed servers or IoT-specific cloud platforms if properly configured.
This is the approach we take in this paper to promote application-specific LoRa
test-beds deployments.

3 Low-cost LoRa gateway & devices

The implementation of the full LoRaWAN specification requires gateways to be
able to listen on several channels and LoRa settings simultaneously. Commercial
gateways therefore use advanced concentrators chips capable of scanning up
to 8 different channels: the SX1301 concentrator is typically used instead of the
SX127x chip serie which is designed for end-devices. They cost several hundredth
euros with the cost of the SX1301-capable board alone to be more than a hundred
euro. In many scenarios (e.g. small farms, developing countries, test-beds,. . .)
it is more important to keep both the cost of the gateway and the system’s
complexity low, and to target small to medium size deployments for specific
use cases instead of the large-scale, multi-purpose deployment scenarios defined
by LoRaWAN. Note that our approach can deploy more than 1 gateway to
serve several channel settings if needed. This solution presents the advantage of
being more optimal in terms to cost as incremental deployment can be realized
and also offer a higher level of redundancy. We believe this statement remains
true even for recent LoRa community-based deployment initiatives such as the
one conducted by TheThingNetworkTM [5] where the deployment mainly targets
large-scale, public and multi-purpose networks.

3.1 Single-connection low-cost LoRa gateway

Our LoRa gateway [6] could be qualified as ”single connection” as it is built
around an SX1272/76, much like an end-device would be. The cost argument,
along with the statement that too integrated components are difficult to repair
and/or replace in the context of ad-hoc deployments or developing countries,
also made the ”off-the-shelves” design orientation an obvious choice. Our low-
cost gateway is therefore based on a Raspberry PI (version 1 or 2) which is both
a low-cost (less than 30 euro) and a highly reliable embedded Linux platform,
see figure 3. There are many SX1272/76 radio modules available and we have
fully tested 3: the Libelium SX1272 LoRa, the HopeRF RFM92W/95W and
the Modtronix inAir9/9B. Normally, any SX1272/76-based radio module using
native SPI interface should work. The total cost of the gateway is as low as 45
euro with the HopeRF or Modtronix LoRa modules.

Together with the ”off-the-shelves” component approach, the software stack
is completely open-source: (a) the Raspberry runs a regular Raspian distribution,
(b) ArduPi and the original SX1272 library provided by Libelium are very simple
to install/understand/modify and (c) the lora gateway program (which receives
and forwards radio packets) is kept as simple as possible.

VCC

GND

SPI_MISO

SPI_CLK

SPI_SEL

SPI_MOSI

VCC

MOSI

MISO

CLK
SEL

Raspbian

ArduPi lib

SX1272 lib

lora_gateway program

Fig. 3. Low cost gateway from off-the-shelves components

We improved the original SX1272 library in various ways to provide support
for both SX1272 and SX1276 chip, enhanced radio channel access (CSMA-like
with SIFS/DIFS) and radio activity time sharing. One of the main objectives of
our architecture and software stack is to provide both robust and simple solution
for either ”out-of-the-box” utilization or quick appropriation & customization by
third parties when deploying test-beds for specific applications.

After compiling the lora gateway program, the most simple way to start
the gateway is in standalone mode as shown is figure 4(left). By default, the
LoRa mode is 4 (BW=500kHz, CR=4/5 and SF=12) and the frequency channel
is 865.2MHz. All packets received by the gateway is sent to the standard Unix-
stdout stream. The gateway can also be started on a given LoRa mode, see Figure
2, with the --mode option. For full customization, --bw, --cr, --sf and --freq

options can indicate a bandwidth, coding rate, spreading factor and frequency
channel combination. For instance, testing one of the LoRaWAN mandatory
channel in the EU 863-868MHz ISM band can be done as follows --bw 125

--cr 5 --sf 12 --freq 868.1.

radio
bridge

program

stdout

stdin

post
processing

Kept as simple
as possible

hi
gh

-le
ve

l l
an

g.

e.
g.

 p
yt

ho
n

Most of user or
application specific
logics is done here!
We provide some
basic features, up to
you to enhance them

stdout

> sudo ./lora_gateway
SX1272 detected
Power ON: state 0
Setting LoRa mode: 4
LoRa mode: state 0
Channel CH_10_868: state 0
Power x: state 0
Get Preamble Length: state 0
Preamble Length: 8
LoRa addr 1 : state 0
SX1272/76 configured as LR-BS.
Waiting RF input for transparent RF-serial bridge

--- rxlora. dst=1 type=0x10 src=10 seq=0 len=5 SNR=5 RSSIpkt=-54
^p1,16,10,0,5,5,-54
^r500,5,12
^t2016-02-17T19:56:17.121
23.45

Accepts remote commands to:

•  Change LoRa mode
•  Change channel
•  Change transmission power
•  Enable/Disable ACK

Fig. 4. Gateway architecture for radio data reception and post-processing stages

For each data packet received, lora gateway provides various information
that can be used by the post-processing stage. These informations are related
to the packet (destination–normally the gateway–, packet type, source addr,
sequence number, data length, SNR and packet’s RSSI), the radio (bandwidth,
coding rate and spreading factor) and the time of reception.

3.2 Post-processing and link with IoT cloud platforms

Advanced data post-processing tasks are performed after the radio stage by us-
ing Unix redirection of lora gateway’s outputs as shown by the orange ”post-
processing” block in figure 4(middle). We promote the usage of high-level lan-
guage such as Python to implement all the data post-processing tasks such as
access to IoT cloud platforms and even AES decryption features. Our gateway
is distributed with a Python template that explains and shows how to upload
data on various IoT cloud platforms. Examples include DropboxTM, FirebaseTM,
ThingSpeakTM, freeboardTM, SensorCloudTM, GrooveStreamTM & FiWareTM as il-
lustrated in figure 4(right).

This architecture clearly decouples the low-level gateway functionalities from
the high-level post-processing features. By using high-level languages for post-
processing, running and customizing data management tasks can be done in
a few minutes. ”Out-of-the-box” data upload to IoT cloud can be realized as
most of these platforms propose free accounts that can satisfy a large number
of foreseen IoT applications. For instance, a small farm can deploy in minutes
the sensors and the gateway using a free account with ThingSpeak platform to
visualize captured data in real-time.

3.3 Gateway running without Internet access

One additional important issue that needs to be taken into account when de-
ploying test-beds is the intermittent or no access to the Internet for the gateway.
In all cases, received data are locally stored on the gateway in a NoSql database
(e.g. MongoDB) and the gateway can interact with the end-users’ smartphone
through WiFi or Bluetooth as depicted in figure 4(middle). WiFi or Bluetooth
dongles for Raspberry can be found at really low-cost and the smartphone can be
used to display captured data (a web server is run by the gateway using JQuery

for forms and graphs) or notify users of important events a without the need of
Internet access as this situation can clearly happen in very remote areas.

3.4 Low-cost LoRa end-devices

Long-Range communication library

Libelium LoRa
HopeRF
RFM95W

Modtronix
inAir9/9B

LoRa radios that
our library already
supports

Fig. 5. Low-cost LoRa end-device for customization

Our communication library (the same library is used for the gateway) is mainly
tested on Arduino boards. Figure 5 shows all the Arduino boards that have suc-
cessfully been tested, from the Uno to the Nano platform. We use the MEGA as
a prototyping platform. For better integration purposes, we use the Arduino Pro
Mini or Nano which can be bulk purchased for about 2 euro per piece. They can
be used to provide a generic platform for sensing and long-range transmission.

We provide templates for quick and easy new behaviour customization while
integrating all the necessary code for advanced channel access and data encryp-
tion if needed. By default, they run ”out-of-the-box” with the gateway.

4 Deploying a test-bed

We describe in this section how a test-bed can be deployed and set-up with the
previously described components. We will use a ThingSpeak channel for storing
received data to the cloud.

4.1 Post-processing data

The post-processing Python template post processing.py contains a sec-
tion to look for predefined data prefix for IoT clouds. The prefix \! is used
to indicate the usage of a ThingSpeak channel. It is followed by an op-
tional write key, an optional field index and the value to report. For in-
stance \!SGSH52UGPVAUYG3S#1#21.6 will be processed to upload 21.6 to the
ThingSpeak channel which write key is SGSH52UGPVAUYG3S on field index 1.
Using default write key and field index can be done with \!##21.6.

The post-processing stage can also enforce the presence of a valid applica-
tion key. This application key is coded on 4 bytes and is inserted before the
prefixed data. A list of valid application key is defined in the Python post-
processing script. For the test, we use an application key list consisting in
[’\x05\x06\x07\x08’].

4.2 Deploying gateways

The gateway can simply be started by launching lora gateway with redirection
of the output to the post processing stage as follows: sudo ./lora gateway |

python ./post processing.py. Note that several gateways can be deployed to
improve coverage or reliability. They can also work on the same LoRa parameters
or on different settings for test purposes. All gateway’s outputs can be further
logged in a log file. We use the Dropbox file sharing service for log files therefore
all the logs can be made available on various number of platforms.

4.3 Simple end-device for telemetry

The generic sensing template is used to drive a temperature sensor. The end-
device will simple send \!##21.6 if the sensed temperature is 21.6. The ap-
plication key uint8 t my appKey[4]={5, 6, 7, 8} is inserted before. Figure

6(right) illustrates the Arduino Nano with a HopeRF RFM95W module run-
ning a temperature code based on the generic sensing template. By default, it
takes a measure every 10 minutes and stay in sleep mode between 2 measures.

Hello world

Fig. 6. Left: Interactive LoRa end-device; right: temperature LoRa device

At this point, the basic test-bed is set-up as the gateway will receive and
upload on the ThingSpeak channel the measured temperature. The ThingSpeak

channel can also be used to store and plot the SNR of received packets. If the log
files use Dropbox sharing, then one can also check the log files for link quality
(SNR and missing packets).

4.4 Interactive end-device for deployment tests

We also provide an interactive end-device template that can be used to inter-
actively send ASCII strings to the gateway. Such device can be plugged and
fixed to a laptop for field tests as illustrated in figure 6(left) which features an
Arduino MEGA2560 with a Modtronix inAir9B radio. The serial monitor of the
Arduino IDE is used for both input and output. Input strings beginning with
/@ are interpreted as command strings for the host program. Figure 7 shows the
list of currently available commands.

Commands for configuring the LoRa parameters, for sending periodic mes-
sages and for requesting an acknowlegment (ACK) from the gateway are those
that are useful in test situation. For instance, a range test can be easily realized
by sending a message and requesting an ACK from the gateway: /@ACK#hello.
As the gateway can also accept remote commands in ASCII format for configur-
ing various LoRa parameters, the interactive end-device can be used to remotely
configure the gateway for various test purposes. For instance the following com-
mand sequence /@ACK#/@M2#, /@M2#, /@ACK#hello switches both the gateway
and the end-device to loRa mode 2 and check whether connectivity is still main-
tained. When an ACK is requested, the SNR value of the received message is

sent back to the device in the ACK by the gateway. At the end-device, the SNR
of both the message and the ACK is displayed so that both uplink and downlink
quality can be monitored.

Command Action
/@M1# 0set0LoRa0mode01
/@C12# 0use0channel012
/@PL/H/M/x/X# 0set0power0to0Low,0High,0Max,0extreme0(PA_BOOST),0eXtreme0(+20dBm)
/@A9# 0set0node0addr0to09
/@ACK#hello0w/ack00sends0"hello0w/ack"0and0request0an0ACK
/@ACKON# 0enables0ACK0(for0all0messages)
/@ACKOFF# 0disables0ACK
/@CAD# 0performs0an0SIFS0CAD,0i.e.030or060CAD0depending0on0the0LoRa0mode
/@CADON3# 0uses030CAD0when0sending0data0(normally0SIFS0is030or060CAD,0DIFS=3SIFS)
/@CADOFF# 0disables0CAD0(IFS)0when0sending0data
/@RSSI# 0toggles0checking0of0RSSI0before0transmission0and0after0CAD
/@EIFS# 0toggles0for0extended0IFS0wait
/@T5000# 0send0a0message0at0regular0time0interval0of05000ms.0Use0/@T0#0to0disable0periodic0sending
/@TR5000# 0send0a0message0at0random0time0interval0between0[2000,05000]ms.
/@Z200# 0sets0the0packet0payload0size0to02000for0periodic0sending
/@S50# 0sends0a050B0user0payload0packet0filled0with0'#'.0The0real0size0is055B0with0the0protocol0header
/@D56# 0set0the0destination0node0to0be056,0this0is0permanent,0until0the0next0D0command
/@D56#hello 0send0"hello"0to0node056,0destination0addr0is0only0for0this0message
/@D1#/@M1# 0send0the0command0string0"/@M1#"0to0node010(i.e.0gateway)

Fig. 7. LoRa end-device command list

4.5 Adding advanced features

Improved channel access. The framework we provide is interesting especially
for adding and testing new features. For instance, a CSMA-like mechanism with
SIFS/DIFS has been implemented using the Channel Activity Detection (CAD)
functionality of the LoRa chip and can further be customized. It can be acti-
vated with command /@CADON3# where 3 is the number of CAD for an SIFS. A
DIFS is defined as 3 SIFS. Prior to packet transmission a DIFS period free of
activity should be observed, see figure 8(left). If ”extended IFS” is activated with
command /@EIFS# then an additional number of CAD followed by a DIFS is
required. If RSSI checking is activated with command /@RSSI90# then the RSSI
should be below -90dB for the packet to be transmitted. By running a back-
ground periodic source of LoRa packets, we observed that the improved channel
access succeeds in reducing packet collisions. The current framework is used to
study the impact of channel access methods in a medium-size LoRa deployment.

DIFS	

DATA	

Di

Dj

DIFS	 DIFS	

WAIT	DIFS	[1..8]	

Unsuccessful CAD

Successful CAD

W	 Random wait #DIFS [1..8]

5	
CAD	 DIFS	

DIFS	 7	CAD	 DIFS	 3 DIFS	

DATA	

Extended IFS

RSSI < -90dBm
W	 Random wait #CAD [1..8]

E-IFS E-IFS

local	

n=10
remote = 324000

D1 D2
D3

D4

D5 D6

D7

D8

D9

D10

Di

local	

local	

(a)

(b)

(c)

lTAT
i = ToA(Sm

i)
m=1

k

∑ lRAT
i

lRAT
i = lRAT 0

i

GAT = lRAT 0
i

i=1

n

∑

lRAT
i = 0

lTAT
i = ToA(Sm

i)
m=1

k

∑

rATU
i = lTAT

i − lRAT 0
i

lTAT
i = rATU

i = 0REG	
 lRAT 0
i

INI
T	

n
G AT

	
 …

…

…

0

0

0
device	

Di	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 36000	
 36000	
 lRAT 0
i

Gi
AT=360000

Gi
AT=360000

Gi
AT=360000

α

lRAT 0 lastlRAT 0

Fig. 8. Left: CSMA-like mechanism for increased robustness; Right: activity time
sharing

Activity time sharing. We also implemented an exploratory activity time
sharing mechanism for a pool of devices managed by a single organization. We
propose to overcome the tight 36s/hour radio activity of a device by considering
all the sensor’s individual activity time in a shared/global manner. The approach
we propose in this paper will allow a device that ”exceptionally” needs to go
beyond the activity time limitation to borrow some from other devices. A global
view of the global activity time, GAT , allowed per 1 hour cycle will be maintained
at the gateway so that each device knows the potential activity time that it can
use in a 1-hour cycle. Figure 8(left) shows how the deployed long-range devices
Di sharing their activity time initially register (REG packet) with the gateway
by indicating their local Remaining Activity Time liRAT0, i.e. 36s. The gateway
stores all liRAT0 in a table, computes GAT and broadcasts (INIT packet) both n
(the number of devices) and GAT . This feature is currently tested for providing
better surveillance service guarantees.

5 Conclusions

Targeted for small to medium size deployment of test-beds, our low-cost, open
long-range IoT framework allows for quick appropriation & customization by
third parties. Developed within the EU H2020 WAZIUP project which addresses
the challenges of low-cost IoT deployment in developing, low-income sub-saharan
Africa countries, the platform is tested by WAZIUP’s partners with a large-scale
test-bed to be set-up in Senegal. The platform is also currently used by several
organizations and companies for deploying LoRa test-beds and conducting field
tests for various surveillance applications [6]: agriculture, oceanographic obser-
vation, pest traps monitoring. . . .

Acknowledgments

This work is support by the WAZIUP project with funding from the EU’s H2020
research and innovation program under grant agreement No 687607.

References

1. LoRaAlliance, “LoRaWAN specification, v1.0,” 2015.
2. Semtech, “LoRa modulation basics. rev.2-05/2015,” 2015.
3. S. Jeff McKeown, “LoRaTM- a communications solution for emerg-

ing LPWAN, LPHAN and industrial sensing & IoT applications.
http://cwbackoffice.co.uk/docs/jeff 20mckeown.pdf,” accessed 13/01/2016.

4. ETSI, “Electromagnetic compatibility and radio spectrum matters (ERM); short
range devices (SRD); radio equipment to be used in the 25 MHz to 1 000 MHz
frequency range with power levels ranging up to 500 mw; part 1.” 2012.

5. TheThingNetwork, “http://thethingsnetwork.org/,” accessed 13/01/2016.
6. C. Pham, “A DIY low-cost LoRa gateway. http://cpham.perso.univ-

pau.fr/lora/rpigateway.html,” accessed 13/01/2016.

