

SmartSantander at a glance

SmartSantander aims at providing a European **experimental test facility** for the **research** and **experimentation** of architectures, key enabling technologies, **services** and applications for the Internet of Things (IoT) in the context of the **smart city**.

Sensor Network Deployment

Traffic Monitoring Sensors Deployment

EAR-IT the sounds of smart environmen SmartSantander software architectur

Audio Sensing Technologies from IoTMotes (Sensor Nodes)domain

Def.: "is a node in a WSN that is capable of gathering sensory information, performing **some** processing and do **certain** communication with other connected nodes in the network"

Current IoT Motes Specs

Fundamental Energy/Power constraints

- Low processing power
- Low storage capabilities
- Low-cost sensors

the sounds of smart environment

(e.g. electrect microphone)

Audio Sensing Technologies from Acoustic Sensing domain

APUs – Acoustic Processing Units

the sounds of smart environment

Computer-like performance processing platform able to run robust accosting sensing framework;

"Soundboard" - high quality sound, customized and stackable sound card;

High-quality & responsive microphones;

Vast Application Potential

Ambient Assisted Living

(Audio) Surveillance

SmartSantander meets EAR-IT

Upon concrete noise pattern detected by the APU, legacy sensors collect data for several purposes \Rightarrow Two use cases as a starting point.

www.ear-it.eu // The EAR-IT project is an EU FP7 funded project

EAR-IT Use Case 1: Emergency Detection

Use the APU to detect an alarm \Rightarrow Legacy SmartSantander noise sensors to get the direction of such an event (police car, ambulance,...).

Emergency Detection Deployment

EAR-IT Use Case 2 : Traffic Monitoring

Use the APU to measure the traffic density and correlating it with pollution values (NO_2 , CO,...) collected by legacy fixed and mobile nodes in the area.

EAR-IT Use Case 2 : Traffic density estimation

- The whole SmartSantander infrastructure is used in the deployment (IoT-s, APU, database, remote control)
- Traffic monitoring IoT-s are used for development and validation
- The examined street is a one-way road with 3 lanes

www.ear-it.eu // The EAR-IT project is an EU FP7 funded project

Traffic Density Monitoring Deployment

www.ear-it.eu // The EAR-IT project is an EU FP7 funded project

the sounds of smart environment

Audio streaming on IoT nodes Congduc Pham

IMAGES ARE FROM LIBELIUM COMPANY

HobNet test-bed at UNIGE

MSP430F1611 microcontroller 8Mhz, 48K flash, 10K RAM 2.4GHz IEEE 802.15.4 CC2420 Programmed under TinyOS

EAR-IT the sounds of smart environment

Qualification phase 1

• Phase 1

- Determine upper bounds on performances of a single IoT node
- Determine upper bounds on performances of multi-hop transmissions

WaspMote multi-hop overheads

AdvanticSys multi-hop overheads

• Phase 2

www.ear-it.eu

• Performances in a networked environment: node density, traffic loads

- Use representive locations in Santander for on-site test campaigns
- Deploy on IoT nodes traffic generators & sniffers
- Use mobile traffic generators & sniffers for dynamic traffic patterns
- Throughput, packet losses, latency,...

Test on SmartSantander

WaspMote+XBee in raw mode

 Electret mic with amplifier

the sounds of smart environment

 XBee in AP0 mode (transparent mode)

2110

- 8-bit 4Khz sampling gives 32000bps
- 8Khz sampling gives 64000bps, requires custom API

Multi-hop audio solution

Use dedicated audio board for

Allows for multi-hop, encoded audio streaming scenarios

1-hop test-bed w/audio board

0x0090

SPEEX AUDIO ENCODING 8KBPS

IT the sounds of smart environment

A1/2/3/4 aggregate audio frames D0100 set the 16-bit dest. mac addr C0/1 power off/on the audio board

 0×0100

python 115200SerialToStdout.py | ./speex_sampledec_wframing essai.raw |
play --buffer 100 -t raw -r 8000 -s -2 -

DECODE & PLAY RECEIVED AUDIO

LIBELIUM WASPMOTE

ADVANTICSYS CM5000, CM3000

Fully configurable:

Destination node Additional relay delay Clock synchronization R0/1 enable/disable relay mode D0013A2004086D828 set the 64-bit dest. mac addr D0080 set the 16-bit dest. mac addr

0x0200

0x0090

R0/1 enable/disable relay mode D0100 set the 16-bit dest. mac addr

0xC823

SPEEX AUDIO ENCODING 8KBPS

A1/2/3/4/6 aggregate audio frames D0200 set the 16-bit dest. mac addr C0/1 power off/on the audio board

python 115200SerialToStdout.py | ./speex_sampledec_wframing essai.raw |
play --buffer 100 -t raw -r 8000 -s -2 -

DECODE & PLAY RECEIVED AUDIO

0x0100

RELAY

Relay node performances

Relay node performances

Energy consumption (1)

Energy consumption (2)

the sounds of smart environment

AR-IT

Thank you for your attention.

<u>Philippe.cousin@eglobalmark.com</u> <u>Congduc.Pham@univ-pau.fr</u>

Photo credit: sxc.hu