DEPLOYMENT OF MISSION-CRITICAL SURVEILLANCE APPLICATIONS ON WIRELESS SENSOR NETWORKS

SEMINAR AT IRD/UMMISCO/MSI IFI, HANOI, VIETNAM OCTOBER, 27TH, 2010

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

DÉPLOIEMENT D'APPLICATIONS CRITIQUES DE SURVEILLANCE SUR RÉSEAUX DE CAPTEURS SANS-FILS

SÉMINAIRE IRD/UMMISCO/MSI IFI, HANOI, VIETNAM MERCREDI 27 OCTOBER, 2010

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

WIRELESS SENSOR NETWORK

WIRELESS AUTONOMOUS SENSOR

- IN GENERAL: LOW COST, LOW POWER (THE BATTERY MAY NOT BE REPLACEABLE), SMALL SIZE, PRONE TO FAILURE, POSSIBLY DISPOSABLE
- ROLE: SENSING, DATA PROCESSING, COMMUNICATION

BERKELEY MOTES (CONTD.)

MICA2

MICAz

Imote₂

SUN SPOT

- PROCESSOR : ARM920T 180MHZ 32-BIT
- 512K RAM & 4M FLASH.
- COMMUNICATION : 2.4GHZ, RADIO CHIPSET: TI CC2420 (CHIPCON) – IEEE 802.15.4 COMPATIBLE
- JAVA VIRTUAL MACHINE (SQUAWK)
- LIUPPA IS OFFICIAL PARTNER

SD CARD

RTC

Aux. Battery

Leds

Crystal Oscillator

Solar socket

Reset Button

USB Power Led

Switch OFF/ON

- Liquid Level

- Luminosity

Presence (PIR)
Stretch

GPS Socket

WIRELESS VIDEO SENSORS (1)

Imote2

Multimedia board

WIRELESS VIDEO SENSORS (2)

SURVEILLANCE SCENARIO (1)

- RANDOMLY DEPLOYED VIDEO SENSORS
- NOT ONLY BARRIER COVERAGE BUT GENERAL INTRUSION DETECTION
- MOST OF THE TIME, NETWORK IN SO-CALLED HIBERNATE MODE
- MOST OF ACTIVE SENSOR NODES IN IDLE MODE WITH LOW CAPTURE SPEED
- SENTRY NODES WITH HIGHER CAPTURE SPEED TO QUICKLY DETECT INTRUSIONS

SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

SURVEILLANCE SCENARIO (2)

- NODES DETECTING INTRUSION MUST ALERT THE REST OF THE NETWORK
- 1-HOP TO K-HOP ALERT
- NETWORK IN SO-CALLED ALERTED MODE
- CAPTURE SPEED MUST BE INCREASED
- RESSOURCES SHOULD BE FOCUSED ON MAKING TRACKING OF INTRUDERS EASIER

ALERTED NODE: NODE WITH HIGH SPEED CAPTURE (ALERT INTRUSION).

SURVEILLANCE SCENARIO (3)

SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).

CRITICAL NODE: NODE WITH HIGH SPEED CAPTURE (NODE THAT DETECTS THE INTUSION).

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

- NETWORK SHOULD GO BACK TO HIBERNATE MODE
- NODES ON THE INTRUSION PATH MUST KEEP A HIGH CAPTURE SPEED
- SENTRY NODES WITH HIGHER CAPTURE SPEED TO QUICKLY DETECT INTRUSIONS

NODE'S COVER SET

Q 0

CRITICALITY AND RISK-BASED SCHEDULING

BASIC APPROACH: PM2HW2N/ACM MSWIN 2009 CURRENT APPROACH: IEEE WCNC2010 WITH INTRUSION DETECTION RESULTS: IEEE RIVF2010 WITH RE-INFORCEMENT: IEEE ICDCN2011 JOURNAL PAPER IN JNCA, ELSEVIER

DON'T MISS IMPORTANT EVENTS!

WHOLE UNDERSTANDING OF THE SCENE IS WRONG!!!

WHAT IS CAPTURED

HOW TO MEET SURVEILLANCE APP'S CRITICALITY

CAPTURE SPEED CAN BE A « QUALITY » PARAMETER

- CAPTURE SPEED FOR NODE V SHOULD DEPEND ON THE APP'S CRITICALITY AND ON THE LEVEL OF REDUNDANCY FOR NODE V
- V'S CAPTURE SPEED CAN INCREASE WHEN AS V HAS MORE NODES COVERING ITS OWN FOV - COVER SET

CRITICALITY MODEL (2)

- R^o CAN VARY IN [0,1]
- BEHAVIOR FUNCTIONS (BV) DEFINES THE CAPTURE SPEED ACCORDING TO R⁰
- **R**⁰ < 0.5
 - CONCAVE SHAPE BV
- **R**^o > 0.5

□ CONVEX SHAPE BV

WE PROPOSE TO USE BEZIER CURVES TO MODEL BV FUNCTIONS

SOME TYPICAL CAPTURE SPEED

□ MAXIMUM CAPTURE SPEED IS 6FPS OR 12FPS

NODES WITH SIZE OF COVER SET GREATER THAN N CAPTURE AT THE MAXIMUM SPEED

N=6	
$P_2(6,6)$	

r^0 $ Co(v) $	1	2	3	4	5	6
0.0	0.05	0.20	0.51	1.07	2.10	6.00
0.2	0.30	0.73	1.34	2.20	3.52	6.00
0.5	1.00	2.00	3.00	4.00	5.00	6.00
0.8	2.48	3.80	4.66	5.27	5.70	6.00
1.0	3.90	4.93	5.49	5.80	5.95	6.00

N=12	
P ₂ (12,3	3

r^{0}	1	2	3	4	5	6	7	8	9	10	11	12
0	.01	.02	.05	0.1	.17	.26	.38	.54	.75	1.1	1.5	3
.2	.07	.15	.25	.37	.51	.67	.86	1.1	1.4	1.7	2.2	3
.4	.17	.35	.55	.75	.97	1.2	1.4	1.7	2.0	2.3	2.6	3
.6	.36	.69	1.0	1.3	1.5	1.8	2.0	2.2	2.4	2.6	2.8	3
.8	.75	1.2	1.6	1.9	2.1	2.3	2.5	2.6	2.7	2.8	2.9	3
1	1.5	1.9	2.2	2.4	2.6	2.7	2.8	2.9	2.9	2.9	2	3

SIMULATION SETTINGS

OMNET++ SIMULATION MODEL

- VIDEO NODES HAVE COMMUNICATION RANGE OF 30M AND DEPTH OF VIEW OF 25M, AOV IS 36°. 175 SENSORS IN AN 75M.75M AREA.
- BATTERY HAS 100 UNITS, 1 IMAGE = 1 UNIT OF BATTERY CONSUMED.
- MAX CAPTURE RATE IS 3FPS. 12 LEVELS OF COVER SET.
- FULL COVERAGE IS DEFINED AS THE REGION INITIALLY COVERED WHEN ALL NODES ARE ACTIVE

RISK-BASED SCHEDULING

STATIC RISK-BASED SCHEDULING R°=CTE IN [0,1]

- DYNAMIC RISK-BASED SCHEDULING
 - □ STARTS WITH A LOW VALUE FOR R° (0.1)
 - ON INTRUSION, ALERT NEIGHBORHOOD AND INCREASES R° TO A R_{MAX} VALUE (0.9)
 - STAYS AT R_{MAX} FOR T_A SECONDS BEFORE GOING BACK TO R^o
- DYNAMIC WITH REINFORCEMENT
 - SAME AS DYNAMIC BUT SEVERAL ALERTS ARE NEEDED TO GET TO R°= R_{MAX}
 - GOING BACK TO R° IS DONE IN ONE STEP

PERCENTAGE OF COVERAGE, ACTIVE NODES (1)

PERCENTAGE OF COVERAGE, ACTIVE NODES (2)

MEAN STEALTH TIME

T₁-T₀ IS THE INTRUDER'S STEALTH TIME VELOCITY IS SET TO 5M/S

MEAN STEALTH TIME

STEALTH TIME, WINAVG[10]

STEALTH TIME, WINAVG[10]

DYNAMIC SCHEDULING

time (second)

DYNAMIC WITH REINFORCEMENT (2)

□ $R^{\circ}=0.1$ → $I_{R}=0.4/0.5/0.6$ → $R_{MAX}=0.9$ □ 2 ALERT MSG TO HAVE $I_{R}=I_{R}+0.1$

THE ADVANTAGE OF HAVING MORE COVER-SET (1)

Co(v)

	r^0				1	2		3	4	5	(5		
N=6		0.0			0.05	0.20	0.	51	1.07	2.10	6.	00		
D (6 6)		0.2			0.30	0.73	1.	34	2.20	3.52	6.	00		
r ₂ (0,0)		0.5			1.00	2.00	3.	00	4.00	5.00	6.	00		
		0.8			2.48	3.80	4.	66	5.27	5.70	6.	00		
		1.0			3.90	4.93	5.	49	5.80	5.95	6.	00		
														_
	r^0	1	2	3	4	5	6	7	8	9	10	11	12	
	0	.01	.02	.05	0.1	.17	.26	.38	.54	.75	1.1	1.5	3	
	.2	.07	.15	.25	.37	.51	.67	.86	1.1	1.4	1.7	2.2	3	
N = Z	.4	.17	.35	.55	.75	.97	1.2	1.4	1.7	2.0	2.3	2.6	3	
$P_2(12,3)$.6	.36	.69	1.0	1.3	1.5	1.8	2.0	2.2	2.4	2.6	2.8	3	
	.8	.75	1.2	1.6	1.9	2.1	2.3	2.5	2.6	2.7	2.8	2.9	3	
	1	1.5	1.9	2.2	2.4	2.6	2.7	2.8	2.9	2.9	2.9	2	3	

OCCLUSIONS/ DISAMBIGUATION

8M.4M RECTANGLE → GROUPED INTRUSIONS

MULTIPLE VIEWPOINTS ARE DESIRABLE SOME COVER-SETS « SEE » MORE POINTS THAN OTHER

THE ADVANTAGE OF HAVING MORE COVER-SET (2)

STEALTH TIME WITH GROUPED INTRUSIONS

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

of cover sets

RESEARCH DIRECTIONS

PERVASIVE AND UBIQUITOUS SYSTEMS

SCHEDULING ORGANIZATION

CONTROLLED PROPAGATION (1)

SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

ORGANIZATION

CONTROLLED PROPAGATION (2)

CONTROLLED PROPAGATION (3)

	NOT A SIMPLE PROPAGATION OR
	BRUADCASTALGURITIM
SCHEDULING	NOT ALL NODES NEED TO BE AT THE
	MAXIMUM (SAME) ALERT LEVEL
	WHICH NODES SHOULD BE MORE
	THAN OTHERS?
ORGANIZATION	- BORROW FROFAGATION MODEL
	FROM OTHER DISCIPLINES
	EPIDEMIC PROPAGATION,
	PERCOLATION, WAVE PROPAGATION,
	ACCORDING TO THE MODEL, MAP
	THE PARAMETER OF A
	SURVEILLANCE SYSTEM TO THE
	MODEL'S PARAMETERS

CONTROLLED PROPAGATION (4) EX: TSUNAMI GENERATION

SCHEDULING

ORGANIZATION

sensor nodes near the border may need to be « alerted » than others, they could have an amplification factor greater than those near the centre

SCHEDULING COVER-SET

	ON INTRUSION, IT IS DESIRABLE
SCHEDULING	TO USE MORE CAMERA TO CIRCUMVENT OCCLUSIONS TO HELP FOR DISAMBIGUATION
	□ IT IS NOT NECESSARY THAT ALL
ODCANITZATTON	ACTIVATED CAMERA CAPTURE
ORGANIZATION	AT A SAME RATE
	HOW TO DEFINE THE CAPTURE RATE FOR EACH NODE OF THE SAME COVER SET? CONSENSUS?
RESOURCE	CAMERA ROTATION CAPABILITIES?
	TAKE INTO ACCOUNT ROUTING OF FLOWS?

INTERACTIONS OF MOBILE NODES AND FIXED NODES

	STUDY THE INTERACTIONS UNDER THE
	CRITICALITY MANAGEMENT SCHEME
SCHEDULING	FIXED SENSORS CAN DECREASE THEIR CRITICALITY LEVEL ON PROXIMITY OF A MOBILE NODE
	SOME MOBILITY CAN BE TRIGGERED BY
	ALERTS
ORGANIZATION	APPLIED THE CRITICALITY MODEL FOR MOBILITY DEGREE?
	WHAT TRAJECTORY FOR MOBILE
	NODES? WHAT FUNCTIONALITY?
RESOURCE	MOBILE NODES AS RELAY
CONTROL	MOBILE NODES AS AGGREGATORS
	MOBILE NODES AS VALIDATORS

MAC LEVEL & ROUTING

DESIGN MAC LAYER FOR EMERGENCY TRAFFIC SCHEDULING CROSS-LAYER APPROACH? TASSILI PROJECT WITH ALGERIA DESIGN MULTI-PATH ROUTING FOR EFFICIENT VIDEO TRANSFER CROSS-LAYER APPROACH? COLLABORATION WITH CRAN/ NANCY RFSOURCE CONTROL.

TOWARDS WIDE-AREA SITUATION AWARENESS

Madrid Hospital

THE TOOLS

OMNET++/CASTALIA

