Risk Management in Intrusion Detection Applications with Wireless Video Sensor Networks

Abdallah Makhoul University of Franche-Comté LIFC Laboratory Rachid Saadi INRIA Rocquencourt Congduc Pham University of Pau LIUPPA Laboratory

Abdallah Makhoul

abdallah.makhoul@univ-fcomte.fr

- Introduction of wireless video sensor networks
- Surveillance applications
- Coverage and scheduling
- Application Criticality
- Experimental Results

Video Sensor Node

Surveillance Applications

- Surveillance video applications :
 - Quality of the captured image
 - Unnecessary to send image with high bandwidth
 - Energy consideration
 - Redundancy and coverage

Node's cover set

 $Co(v) = \{V_1, V_2, V_3, V_4\}$

 V_2

 V_4

6

 V_3

- Each node v has a Field of View, FoV_v
- $Co_i(v) = set of nodes v' such as$ $\bigcup_{v' \in Coi(v)} FoV_{v'} covers FoV_v$
- Co(v)= set of Co_i(v)

Finding v's cover set

Active node selection

Application's criticality

- All surveillance applications may not have the same criticality level, r⁰ ∈ [0,1]
 - Environmental, security, healthcare,...
- Capture speed should decrease when r⁰ decreases
- Sensor nodes could be initialized with a given r⁰
 prior to deployment

How to meet app's criticality

- Capture speed can be a « quality » parameter
- Capture speed for node v should depend on the app's criticality and on the level of redundancy for node v
- V's capture speed can increase when as V has more nodes covering its own FoV - cover set

Evolution of the video network nodes

(A)

SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).

O DLE NODE: NODE WITH LOW SPEED CAPTURE.

(B)

(C)

- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- CRITICAL NODE: NODE WITH HIGH SPEED CAPTURE
 (NODE THAT DETECTS THE INTUSION).

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

Criticality model (1)

- Link the capture rate to the size of the cover set
- / High criticality
 - Convex shape
 - Most projections of x are close to the max capture speed
- Low criticality
 - Concave shape
 - Most projections of x are close to the min capture speed
- Concave and convex shapes automatically define sentry nodes in the network

12

Criticality model (2)

- r⁰ can vary in [0,1]
- BehaVior functions (BV) defines the capture speed according to r⁰
- ^{r0} < 0.5
 - Concave shape BV
- ^{r0} > 0.5
 - Convex shape BV
- We propose to use Bézier curves to model BV functions

Some typical capture speed

- Maximum capture speed is 6fps
- Nodes with size of cover set greater than 6 capture at the maximum speed

r^0 $ Co(v) $	1	2	3	4	5	6
0.0	0.05	0.20	0.51	1.07	2.10	6.00
0.2	0.30	0.73	1.34	2.20	3.52	6.00
0.5	1.00	2.00	3.00	4.00	5.00	6.00
0.8	2.48	3.80	4.66	5.27	5.70	6.00
1.0	3.90	4.93	5.49	5.80	5.95	6.00

Simulation settings

- OMNET++ simulation model
- Video nodes have communication range of 30m and video sensing range of 25m, FoV is a sector of 60°
- Battery has 100 units
- Full coverage is defined as the region initially covered when all nodes are active

Percentage of active nodes

Average capture speed

Conclusions & future works

- Criticality model with adaptive scheduling of nodes
- Optimize the resource usage by dynamically adjusting the provided service level
- Extension for risk-based scheduling in intrusion detection systems

9

Congestion control