DYNAMIC RISK-BASED SCHEDULING AND MOBILITY OF SENSORS FOR SURVEILLANCE SYSTEM

ROSIN WORKSHOP IROS 2010, TAIPEI, TAIWAN MONDAY, OCTOBER 18th

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

WIRELESS VIDEO SENSORS (1)

Imote2

Multimedia board

WIRELESS VIDEO SENSORS (2)

SURVEILLANCE SCENARIO (1)

- RANDOMLY DEPLOYED VIDEO SENSORS
- NOT ONLY BARRIER COVERAGE BUT GENERAL INTRUSION DETECTION
- MOST OF THE TIME, NETWORK IN SO-CALLED HIBERNATE MODE
- MOST OF ACTIVE SENSOR NODES IN IDLE MODE WITH LOW CAPTURE SPEED
- SENTRY NODES WITH HIGHER CAPTURE SPEED TO QUICKLY DETECT INTRUSIONS

SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

SURVEILLANCE SCENARIO (2)

- NODES DETECTING INTRUSION MUST ALERT THE REST OF THE NETWORK
- 1-HOP TO K-HOP ALERT
- NETWORK IN SO-CALLED ALERTED MODE
- CAPTURE SPEED MUST BE INCREASED
- RESSOURCES SHOULD BE FOCUSED ON MAKING TRACKING OF INTRUDERS EASIER

ALERTED NODE: NODE WITH HIGH SPEED CAPTURE (ALERT INTRUSION).

SURVEILLANCE SCENARIO (3)

SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).

CRITICAL NODE: NODE WITH HIGH SPEED CAPTURE (NODE THAT DETECTS THE INTUSION).

◎ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

- NETWORK SHOULD GO BACK TO HIBERNATE MODE
- NODES ON THE INTRUSION PATH MUST KEEP A HIGH CAPTURE SPEED
- SENTRY NODES WITH HIGHER CAPTURE SPEED TO QUICKLY DETECT INTRUSIONS

NODE'S COVER SET

0 S

CRITICALITY AND RISK-BASED SCHEDULING

DON'T MISS IMPORTANT EVENTS!

WHOLE UNDERSTANDING OF THE SCENE IS WRONG!!!

WHAT IS CAPTURED

HOW TO MEET SURVEILLANCE APP'S CRITICALITY

CAPTURE SPEED CAN BE A « QUALITY » PARAMETER

- CAPTURE SPEED FOR NODE V SHOULD DEPEND ON THE APP'S CRITICALITY AND ON THE LEVEL OF REDUNDANCY FOR NODE V
- V'S CAPTURE SPEED CAN INCREASE WHEN AS V HAS MORE NODES COVERING ITS OWN FOV - COVER SET

CRITICALITY MODEL (2)

- R^o CAN VARY IN [0,1]
- BEHAVIOR FUNCTIONS (BV) DEFINES THE CAPTURE SPEED ACCORDING TO R⁰
- **R**⁰ < 0.5
 - □ CONCAVE SHAPE BV
- **R**^o > 0.5

□ CONVEX SHAPE BV

WE PROPOSE TO USE BEZIER CURVES TO MODEL BV FUNCTIONS

SOME TYPICAL CAPTURE SPEED

□ MAXIMUM CAPTURE SPEED IS 6FPS OR 12FPS

NODES WITH SIZE OF COVER SET GREATER THAN N CAPTURE AT THE MAXIMUM SPEED

N=6	
P ₂ (6,6)

r^0 $ Co(v) $	1	2	3	4	5	6
0.0	0.05	0.20	0.51	1.07	2.10	6.00
0.2	0.30	0.73	1.34	2.20	3.52	6.00
0.5	1.00	2.00	3.00	4.00	5.00	6.00
0.8	2.48	3.80	4.66	5.27	5.70	6.00
1.0	3.90	4.93	5.49	5.80	5.95	6.00

	r^{0}	1	2	3	4	5	6	7	8	9	10	11	12
	0	.01	.02	.05	0.1	.17	.26	.38	.54	.75	1.1	1.5	3
	.2	.07	.15	.25	.37	.51	.67	.86	1.1	1.4	1.7	2.2	3
	.4	.17	.35	.55	.75	.97	1.2	1.4	1.7	2.0	2.3	2.6	3
)	.6	.36	.69	1.0	1.3	1.5	1.8	2.0	2.2	2.4	2.6	2.8	3
	.8	.75	1.2	1.6	1.9	2.1	2.3	2.5	2.6	2.7	2.8	2.9	3
	1	1.5	1.9	2.2	$\overline{2.4}$	2.6	2.7	2.8	2.9	2.9	$\overline{2.9}$	$\overline{2}$	3

N=12 P₂(12,3)

HETEROGENEOUS AOV

SIMULATION SETTINGS

OMNET++ SIMULATION MODEL

- VIDEO NODES HAVE COMMUNICATION RANGE OF 30M AND DEPTH OF VIEW OF 25M, AOV IS 36°. 175 SENSORS IN AN 75M.75M AREA.
- BATTERY HAS 100 UNITS, 1 IMAGE = 1 UNIT OF BATTERY CONSUMED.
- MAX CAPTURE RATE IS 3FPS. 12 LEVELS OF COVER SET.
- FULL COVERAGE IS DEFINED AS THE REGION INITIALLY COVERED WHEN ALL NODES ARE ACTIVE

RISK-BASED SCHEDULING

STATIC RISK-BASED SCHEDULING R°=CTE IN [0,1]

- DYNAMIC RISK-BASED SCHEDULING
 - □ STARTS WITH A LOW VALUE FOR R° (0.1)
 - ON INTRUSION, ALERT NEIGHBORHOOD AND INCREASES R° TO A R_{MAX} VALUE (0.9)
 - □ STAYS AT R_{MAX} FOR T_A SECONDS BEFORE GOING BACK TO R[°]
- DYNAMIC WITH REINFORCEMENT
 - SAME AS DYNAMIC BUT SEVERAL ALERTS ARE NEEDED TO GET TO $R^\circ = R_{MAX}$
 - GOING BACK TO R° IS DONE IN ONE STEP

PERCENTAGE OF COVERAGE, ACTIVE NODES (1)

PERCENTAGE OF COVERAGE, ACTIVE NODES (2)

MEAN STEALTH TIME

T₁-T₀ IS THE INTRUDER'S STEALTH TIME VELOCITY IS SET TO 5M/S

MEAN STEALTH TIME

STEALTH TIME, WINAVG[10]

STEALTH TIME, WINAVG[10]

DYNAMIC SCHEDULING

time (second)

DYNAMIC WITH REINFORCEMENT (2)

□ $R^{\circ}=0.1$ → $I_{R}=0.4/0.5/0.6$ → $R_{MAX}=0.9$ □ 2 ALERT MSG TO HAVE $I_{R}=I_{R}+0.1$

THE ADVANTAGE OF HAVING MORE COVER-SET (1)

2

1

3

5

6

4

Co(v)

N=6
$P_{a}(6.6)$
1 2(0,0)

 r^0

		0.0			0.05	0.20	0.	51	1.07	2.10	6.	00	
:)		0.2			0.30	0.73	1.	34	2.20	3.52	6.	00	
"		0.5			1.00	2.00	3.	00	4.00	5.00	6.	00	
		0.8			2.48	3.80	4.	66	5.27	5.70	6.	00	
		1.0			3.90	4.93	5.	49	5.80	5.95	6.	00	
	r^0	1	2	3	4	5	6	7	8	9	10	11	12
	0	.01	.02	.05	0.1	.17	.26	.38	.54	.75	1.1	1.5	3
	.2	.07	.15	.25	.37	.51	.67	.86	1.1	1.4	1.7	2.2	3
2)	.4	.17	.35	.55	.75	.97	1.2	1.4	1.7	2.0	2.3	2.6	3
,3)	.6	.36	.69	1.0	1.3	1.5	1.8	2.0	2.2	2.4	2.6	2.8	3
	.8	.75	1.2	1.6	1.9	2.1	2.3	2.5	2.6	2.7	2.8	2.9	3
	1	1.5	1.9	2.2	2.4	2.6	2.7	2.8	2.9	2.9	2.9	2	3

N=12 P₂(12,

OCCLUSIONS/ DISAMBIGUATION

8M.4M RECTANGLE → GROUPED INTRUSIONS

MULTIPLE VIEWPOINTS ARE DESIRABLE SOME COVER-SETS « SEE » MORE POINTS THAN OTHER

THE ADVANTAGE OF HAVING MORE COVER-SET (2)

STEALTH TIME WITH GROUPED INTRUSIONS

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

of cover sets

<5 <10 <15

0•

>15

••

0 •

<5 <10 <15 >15

SENSOR MOBILITY

INTRODUCING MOBILITY

TO IMPROVE COVERAGE TO REDUCE ENERGY-CONSUMPTION

PRACTICAL MOBILITY CONSTRAINTS

TRANSMISSION POWER LEVELS

Register code	TX RF Power (dBm)	TX RF Power (mW)
31	0	1
27	-1	0.7943
23	-3	0.3162
19	-5	0.2512
15	-7	0.1995
11	-10	0.1000
7	-15	0.0631
3	-25	0.0032

MICAz

MAXIMUM DISTANCE OF THE RECEIVER

MOBILITY IS JUSTIFIED WHEN THE ENERGY OF TRANSMISSION FOR LONG-LIVED FLOWS (VIDEO) CAN BE DECREASED WHEN THE RECEIVERS ARE CLOSER TO THE SOURCE

TX RF Power (mW)	distance	difference
1	100m	0m
0.7943	89.13	10.87m
0.3162	70.79	18.33m
0.2512	56.23	14.56m
0.1995	44.67	11.57m
0.1000	31.62	13.05m
0.0631	17.78	13.84m
0.0032	5.62	12.16m

PRELIMINARY MODEL (1)

- OPTIMIZATION PROBLEM OF ENERGY CONSUMPTION, WITH COVERAGE CONSTRAINTS AND MOBILITY CONSTRAINTS
- ILP TECHNIQUES TO MODEL THE CONSTRAINTS, THEN SOLVE USING CPLEX
- A SENSOR'S MOVE IS ASSUMED TO DRAIN MUCH MORE ENERGY THAN TRANSMISSION FOR THE SAME

DISTANCE

 $\forall i, j, i', j' : m_{i,j,i',j'} / c_{i,j,i',j'} = \rho > 1$

PRELIMINARY MODEL (2)

COVERAGE CONSTRAINTS IMPOSES A GIVEN NUMBER OF SENSORS/AREA

Fig. 5. Illustrative Example: coverage and connectivity constraints

PRELIMINARY RESULTS ON SENSOR'S MOBILITY

40 NODES, 20% ARE MOBILE 10x10 AREA GRID SYSTEM ρ IS THE COST RATIO OF MOBILITY TO COMMUNICATION PER BIT, ρ>1

VARYING THE MOBILE NODE PROPORTION

VARYING THE NUMBER OF VIDEO SOURCES

CONCLUSIONS

- SIMPLE METHOD FOR COVER-SET COMPUTATION FOR VIDEO SENSOR NODE
- TAKES INTO ACCOUNT SMALL AOV AND AOV HETEROGENEITY
- USED JOINTLY WITH A CRITICALITY-BASED SCHEDULING, CAN INCREASE THE NETWORK LIFETIME WHILE MAINTAINING A HIGH LEVEL OF SERVICE (MEAN STEALTH TIME)

PERSPECTIVES

- STUDY THE INTERACTIONS OF MOBILE NODES AND FIXED NODES, UNDER THE CRITICALITY MANAGEMENT SCHEMES
 - MOBILE NODES COULD ALLOW NEIGHBORING SENSORS TO DECREASE THEIR CRITICALITY LEVEL, EVEN ON ALERT

□ INFORMATION DISSIMINATION PROCESS

SOME MOBILITY CAN BE TRIGGERED BY ALERTS

□ X% OF MOBILE NODES CAN ONLY MOVE ON ALERTS

- WHAT TRAJECTORY FOR MOBILE NODES? WHAT FUNCTIONALITY?
 - MOBILE NODES AS RELAY
 - MOBILE NODES AS AGGREGATORS
 - MOBILE NODES AS VALIDATORS