Packet Classification in the NIC for
Improved SMP-based Internet Servers

Eric Lemoine™? CongDuc Pham®, and
Laurent Lefévre®

ICN'04

(1) Sun Microsystems Laboratories Europe (Grenoble, France)
(2) UMR CNRS - ENS Lyon - UCB Lyon - INRIA 5668

WSIUN Pk =

microsystems




Context

e Shared-memory multiprocessor (SMP) based
Internet servers

— Multiprocessor machines are well suited to Internet
server type applications

e Internet server applications use multiple threads with
independent activities



Problem Statement

e TCP processing must be distributed across CPUs

- Load-balancing
— Parallelism (10 Gigabit Ethernet is out there!)

 [nternet servers need simultaneous transfers

e How to distribute TCP processing across CPUs in
an efficient and robust manner?



Parallel TCP processing

e |f packets are randomly distributed across CPUs:

— Cache misses on per-connection states
- Lock contentions on per-connection states
— Reordering



Connection-level Parallelism
INahum, OSDI'94]

The connection is the unit of concurrency

Emulation results in [Nahum, OSDI'94] show
good scalability to the number of CPUs

Appropriate to Internet servers
Internet servers need parallel transfers

— Implies parallel receives due to TCP CA algorithm
Inbound packets must be classified under TCP
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 * Interrupt handler

NIC

Lock contentions
Memory contentions
Low packets/int ratio

Prone to Receive Livelock



Recelve Livelock

Receive Livelock
occurs when this TCP/IP Low-priority context
queue is full

High-priority context
(Interrupt handler)

NIC




Solution to Recelve Livelock

[Mogul, TOCS'97]

e Mixture of interrupt and polling modes

— Recelve interrupts are disabled as long as there are

packets in the driver's receive queue

 Implemented in the Linux kernel
(as of 2.4.20) [Salim, Usenix'01]
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Proposed Architecture

e Classify incoming packets in the NIC

 Make use of per-CPU receive queues in the driver
e Use Mogul's solution to Receive Livelock
e Efficiency:
- No movements of packets between CPUs
* Robustness:

— Recelve Livelock-free



Proposed Architecture

TCP/IP .
;
* No lock contentions on the recv queues
Classifier
NIC e No memory contentions on packet data

structures

* High packets/interrupt ratio

e Receive Livelock-free
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Prototyping Environment

e Myricom's Myrinet
- Programmable NICs
— Full-duplex 2Gbps

e Linux kernel
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KNET Prototype Implementation

e Linux network subsystem

- per-CPU kernel-threads dedicated to network
processing

e Modifications to the NIC driver
- per-CPU recelve queues
e Modifications to the NIC firmware

— packet classifier
- per-CPU recelve queues
— per-queue interrupt activation/deactivation

12



Experimental platform

e Hardware
— 4-processor Pl 500Mhz

Clien

— Myrinet2000 (LANai9, 200Mhz)

| Clien

e Software
- Linux-2.4
- Web servers: Webfs, Apache2
— Traffic generators: Sclient, WebStone2.5

|| Clien

Clien
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Webfs/Sclient (20K-file) using sendfile()
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Conclusion

e Packet classification in the NIC enables

— Robustness (by design)
— Efficiency
e Our implementation leads to 20+% gains
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Future Work

e MSI (Message Signalled Interrupt)

— Device can interrupt any CPU

e Eliminate scheduling latency
e Eliminate lock contentions

e Chip Multi-Threading (CMT)

- L2$ can be shared among threads
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Thank you!



