Packet Classification in the NIC for
Improved SMP-based Internet Servers

Eric Lemoine™? CongDuc Pham®, and
Laurent Lefévre®

ICN'04

(1) Sun Microsystems Laboratories Europe (Grenoble, France)
(2) UMR CNRS - ENS Lyon - UCB Lyon - INRIA 5668

WSIUN Pk =

microsystems

Context

e Shared-memory multiprocessor (SMP) based
Internet servers

— Multiprocessor machines are well suited to Internet
server type applications

e Internet server applications use multiple threads with
independent activities

Problem Statement

e TCP processing must be distributed across CPUs

- Load-balancing
— Parallelism (10 Gigabit Ethernet is out there!)

 [nternet servers need simultaneous transfers

e How to distribute TCP processing across CPUs in
an efficient and robust manner?

Parallel TCP processing

e |f packets are randomly distributed across CPUs:

— Cache misses on per-connection states
- Lock contentions on per-connection states
— Reordering

Connection-level Parallelism
INahum, OSDI'94]

The connection is the unit of concurrency

Emulation results in [Nahum, OSDI'94] show
good scalability to the number of CPUs

Appropriate to Internet servers
Internet servers need parallel transfers

— Implies parallel receives due to TCP CA algorithm
Inbound packets must be classified under TCP

TCP/IP

Classifier|

!

In-kernel Classifier

 * Interrupt handler

NIC

Lock contentions
Memory contentions
Low packets/int ratio

Prone to Receive Livelock

Recelve Livelock

Receive Livelock
occurs when this TCP/IP Low-priority context
queue is full

High-priority context
(Interrupt handler)

NIC

Solution to Recelve Livelock

[Mogul, TOCS'97]

e Mixture of interrupt and polling modes

— Recelve interrupts are disabled as long as there are

packets in the driver's receive queue

 Implemented in the Linux kernel
(as of 2.4.20) [Salim, Usenix'01]

A

TCP/IP

NIC

Proposed Architecture

e Classify incoming packets in the NIC

 Make use of per-CPU receive queues in the driver
e Use Mogul's solution to Receive Livelock
e Efficiency:
- No movements of packets between CPUs
* Robustness:

— Recelve Livelock-free

Proposed Architecture

TCP/IP .
;
* No lock contentions on the recv queues
Classifier
NIC e No memory contentions on packet data

structures

* High packets/interrupt ratio

e Receive Livelock-free
10

Prototyping Environment

e Myricom's Myrinet
- Programmable NICs
— Full-duplex 2Gbps

e Linux kernel

11

KNET Prototype Implementation

e Linux network subsystem

- per-CPU kernel-threads dedicated to network
processing

e Modifications to the NIC driver
- per-CPU recelve queues
e Modifications to the NIC firmware

— packet classifier
- per-CPU recelve queues
— per-queue interrupt activation/deactivation

12

Experimental platform

e Hardware
— 4-processor Pl 500Mhz

Clien

— Myrinet2000 (LANai9, 200Mhz)

| Clien

e Software
- Linux-2.4
- Web servers: Webfs, Apache2
— Traffic generators: Sclient, WebStone2.5

|| Clien

Clien

13

30086

£880

=144

240e

£euy

4)5)%

1800

Throughput <# connections per sec

1606

Webfs/Sclient (20K-file)

KNET ——
CLAS ——
NAPT —8—

|
£

|
514

|
40

|
514

| |
ST

¥ concurrent connections

g0

KNET: 12% gain over CLAS
17% gain over NAPI

KNET: 45 rx pkts/int
5% CPU in driver rx

CLAS (In-kernel classific):
5.6 rx pkts/int
12% CPU in driver rx
6% CPU in locks

NAPI (New Linux net sys):
40 rx pkts/int

14

Webfs/Sclient (20K-file) using sendfile()

3cie

e141%)%

axe1alY

ad=151Y

240

ccihy

By

1566

1606

Throughput <# connmecltions per sec

AAAAA
;;;;;
vvvvvv

KNET: 17% gain over CLAS
30% gain over NAPI

nnnnn
o = i S By o R R R R

-

KNET sendfile

CLAS/sendfile

NA&FP I /sendfile

¥ concurrent connections

KNET benefits more from
sendfile

15

3che

151417

sl

2684

CH connmections per sec

2464

cciy

2y

Throughput

Apache2/WebStone

KNET —&—
CLAS —F+—
NAPT —8—

| | | | |
2l 38 40 58 bW

| | |
‘8 38 90

¥ concurrent connections

10k

KNET: 20% gain over CLAS
27% gain over NAPI

16

Conclusion

e Packet classification in the NIC enables

— Robustness (by design)
— Efficiency
e Our implementation leads to 20+% gains

17

Future Work

e MSI (Message Signalled Interrupt)

— Device can interrupt any CPU

e Eliminate scheduling latency
e Eliminate lock contentions

e Chip Multi-Threading (CMT)

- L2$ can be shared among threads

18

Thank you!

