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Abstract—The european EAR-IT project addresses ”real-life”
experimentations of intelligent acoustic for supporting high
societal value applications in a large-scale smart environment.
For instance a city emergency center can request on-demand
acoustic data samples for surveillance purposes and management
of emergencies. In this paper, we will present experimentations
on streaming encoded acoustic on the SmartSantander large
scale test-bed. We will present the various audio hardware that
were developed to meet the constraints of audio capture and
transmission with low-resources devices. We will highlight the
main sources of delays and will show how multi-hop streaming
of acoustic data can be achieved by carefully taking into account
these performance limitations with appropriate audio aggregation
techniques.

Index Terms—Smart Cities; Sensor networks; Internet of
Thing; Audio streaming; Surveillance

I. INTRODUCTION

There are increasing interests in multimedia contents, such
as images and acoustics, for surveillance applications in order
to collect richer informations from the physical environment.
Multimedia information with small and low-resource infras-
tructures such as wireless sensor networks (WSN) is quite
challenging but the outcome is worth the effort and the range
of surveillance applications that can be addressed with WSN
will significantly increase and new forms of interactions and
decision-making can be implemented.

The EAR-IT project (www.ear-it.eu) proposes exper-
imentations of intelligent acoustics for delivering new in-
novative societal range of services on a large scale. The
main targeted applications are smart-buildings and smart-
cities where one scenario is an on-demand acoustic data
streaming feature for surveillance systems and management of
emergencies. The EAR-IT proposed architecture consists of:
(i) a limited number of powerful Acoustic Processing Units
(APU) with advanced analysis capabilities to accurately detect
events of interest and (ii) a large number of low-cost sensing
devices, noted IoT (Internet of Things) nodes, that can be
used in a complementary way to capture and relay, on an
on-demand basis, acoustic data. The scenario assumes that
acoustic data will be streamed to a central control system
under the supervision of a human operator. The higher density
of low-cost IoT nodes compensates their lower audio quality
when compared to the specific APUs. They can therefore
provide a much higher coverage giving a control center the
possibility to monitor larger parts of the city.

In [1], we described our preliminary acoustic experiments
with a generic sender mote where encoded audio samples
were stored on an SD card and transmitted with an IEEE
802.15.4 device. In this paper, we will present our hardware
developments and experimentations to enable real-time multi-
hop audio streaming of real-time encoded acoustic data with
low-resource devices. There are previous studies on multi-
media sensors [2], [3], [4], [5], [6], [7] but few of them
really consider timing on realistic hardware constraints for
sending/receiving continuous flows of packets. In this paper,
we will first highlight the main performance bottlenecks and
then present our proposed solutions.

The paper is organized as follows: Section II briefly reviews
the EAR-IT test-beds and the various sensor node hardware.
Section III presents our audio board development with real-
time capture and encoding capabilities. Experimental results of
multi-hop acoustic data transmissions on the SmartSantander
infrastructure will be presented in Section IV. Conclusions will
be given in Section V.

II. THE EAR-IT TEST-BEDS

The EAR-IT test-beds consist in 2 test-beds: (i) the Smart-
Santander test-bed and (ii) the HobNet test-bed. The Smart-
Santander test-bed itself is a 3-location infrastructure project.
One main location being the Santander city in north of Spain
with more than 2000 nodes deployed across the city. This
is the site we will use when referring to the SmartSantander
test-bed. The HobNet test-bed is located at MANDAT Intl
which is part of the University of Geneva and it is an in-
door test-bed. Many information can be found on corre-
sponding project web site (www.smartsantander.eu and
www.hobnet-project.eu).

The Santander test-bed consists in a high number of low-
cost Libelium WaspMote boards and a limited number of
Libelium Meshlium gateways (see www.libelium.com).
Most of WaspMote nodes are also repeaters for multi-hops
communication to the gateways. The gateways are basically
Linux boxes with multiple communication interfaces and
have Internet connectivity with a large bandwidth network
technology. The WaspMote node is built around an Atmel
ATmega1281 micro-controller running at 8MHz with 128KB
of flash memory with an XBee 802.15.4 module and one
XBee DigiMesh module. In the SmartSantander test-bed,
the 802.15.4 module is available for experimentations (mesh



traffic can then be performed with this interface) while the
management and service traffic are handled by the Digimesh
module. In this paper, we only consider acoustic data trans-
mission/relaying using the 802.15.4 radio module connected
to the UART1 of the WaspMote. Most of motes in Santander
can reach their gateway in a maximum of 3 hops.

HobNet is a test-bed that focuses on Smart Buildings.
Although the HobNet test-bed has several sites, within the
EAR-IT project only the UNIGE test-bed at the University of
Geneva with TelosB-based motes is concerned. Sensor nodes
in the HobNet test-bed consist in AdvanticSys TelosB motes
(mainly CM5000 and CM3000) that are themselves based on
the TelosB architecture. These motes are built around an TI
MSP430 microcontroller with an embedded Texas Instrument
CC2420 802.15.4 compatible radio module. The important dif-
ference compared to the previous Libelium WaspMote is that
the radio module is connected to the microcontroller through
an SPI bus instead of a serial UART line which normally
would allow for much faster data transfer rates. AdvanticSys
motes run under the TinyOS system (www.tinyos.net).
The last version of TinyOS is 2.1.2 and our tests use this
version.

III. AUDIO BOARD FOR REAL-TIME CAPTURE AND
ENCODING

A. Audio sampling constraints
At the system level 4KHz or 8KHz periodic 8-bit audio

sampling means that the microcontroller must be able to
handle 1 byte of raw audio data once every 250us or 125us
respectively. Then, when a sufficient number of samples have
been buffered, these audio data must be sent while still
maintaining the sampling process. Most of IoT nodes are
based on low speed microcontroller making simultaneous raw
audio sampling and transmission nearly impossible when using
only the mote microcontroller. To solve these performance
issues, one common approach is to dedicate one of the 2
tasks to another microcontroller: (1) use another microcon-
troller to perform all the transmission operations (memory
copies and buffering, frame formatting, . . . ) or (2) use another
microcontroller to perform the sampling operations (generates
interruptions, reads analog input, performs A/D conversion
and possibly encodes the raw audio data). With the hardware
platforms used in the EAR-IT project we can investigate these
2 solutions :

1) Libelium WaspMote uses an XBee radio module which
has an embedded internal microcontroller that is capable
of handling all the sending operations when running
in so-called transparent mode (serial line replacement
mode);

2) Develop a daughter audio board for the AdvanticSys
TelosB mote that will perform the periodic sampling,
encode the raw audio data with a given audio codec and
fill in a buffer that will be periodically read by the host
microcontroller, i.e. the TelosB MSP430.

Solution 1 has been experimented and we successfully
sampled at 8KHz to generate a 64000bps raw audio stream

which is handled transparently by an XBee module running
in transparent mode. Although interesting this solution is
quite limited because the transparent mode does not allow for
dynamic destination address configuration making multi-hop
transmission nearly impossible and, more importantly, makes a
high usage of the radio bandwidth. Therefore we will describe
in this paper solution 2 using the AdvanticSys mote as the
host board and we will present experimentation of multi-hop
transmission using both Libelium WaspMote and AdvanticSys
TelosB motes as relay nodes.

B. Audio board design

The audio board will have its own microcontroller and will
handle the sampling operations and will encode in real-time
the raw audio data into Speex codec (www.speex.org).
8KHz sampling and 16-bits samples will be used to produce
an optimized 8kbps encoded Speex audio stream (speex en-
coding library is provided by Microchip). This audio board
is designed and developed through a collaboration with
IRISA/CAIRN research team and Feichter Electronics com-
pany (www.feichter-electronics.com).

The audio board has a built-in omnidirectional MEMs
microphone (ADMP404 from Analog Devices) but an external
microphone can also be connected. The microphone signal
output is amplified, digitized and filtered with the WM8940
audio codec. The audio board is built around a 16-bit Mi-
crochip dsPIC33EP512 microcontroller clocked at 47.5 MHz
that offers enough processing power to encode the audio data
in real-time.

Fig. 1. TelosB with the audio board

From the system perspective, the audio board sends the
audio encoded data stream to the host microcontroller through
an UART component. The host mote will periodically read
the encoded data to periodically get fixed size encoded data
packets that will be transmitted wirelessly through the com-
munication stack. Fig. 1 shows the AdvanticSys mote with
the developed audio board. The speex codec at 8kbps works
with 20ms audio frames: every 20ms 160 samples of raw
audio data are sent to the speex encoder to produce a 20-
bytes audio packet that will be sent to the host microcontroller
through an UART line. These 20 bytes will be read by the host
microcontroller and 4 framing bytes are added to the audio
data. The first two framing bytes will be used by the receiver
to recognize an audio packet. Then sequence number can be
used to detect packet losses. The last framing byte stores the
audio payload size (in our case it is always 20 bytes).



IV. EXPERIMENTATIONS

A. Experimental test-bed
The experiment uses 1 audio source mote consisting of an

AdvanticSys TelosB mote with the developed audio board,
relay nodes consisting of both Libelium WaspMote and Ad-
vanticSys motes and a receiver consisting of an AdvanticSys
TelosB mote connected to a Linux computer to serve as a radio
gateway.

The audio source can be controlled wirelessly with 3
commands: ”D” command defines the next hop address, ”C”
command controls the audio board power (off/on) and ”A”
command defines the audio frame aggregation level which will
be described later on. The relay nodes can also be controlled
wirelessly and they mainly accept the ”D” command to define
the next hop address. The receiver will get audio packets from
the AdvanticSys radio gateway, check for the framing bytes
and feed the speex audio decoder with the encoded audio
data. The audio decoder will produce a raw audio stream that
can be played in real-time with play or stored in a file by
using standard Unix redirection command. A play-out buffer
threshold can be specified for play to compensate for variable
packet jitter at the cost of higher play-out latencies.

We selected a location in Santander near the marina, see Fig.
2(left), to install the audio source and the relay nodes on the
same street lamps than the one deployed by the Santander test-
bed, see Fig. 2(right). We did not perform tests on the HobNet
test-bed yet, but we use both HobNet (AdvanticSys TelosB)
and Santander (Libelium WaspMote) hardware as relay nodes.

Fig. 2. Test of acoustic data streaming: topology

We placed our nodes on the street lamps indicated in Fig.
2(left), at locations 11, 392, 395 and the top-right gateway. The
audio node is on location 11, the receiver is at the top-right
gateway location and the 2 relay nodes are at location 392
and 395. With 2 relay nodes, the number of hops is 3. Most
of IoT nodes deployed in Santander can reach their associated
gateway in a maximum of 3 hops. The original IoT nodes of
the Santander test-bed are placed on street lamp as shown in
Fig. 2(left). We strapped our nodes as depicted by Fig. 2(right).

In all the tests described here, the transmission power is set
to the maximum radio module power (on the CC2420 of the
AdvanticSys TelosB, TinyOS sets the transmission power by
default to 0dBm) or to the maximum allowed transmission
power (in the case of XBee Pro module for instance on
the Libelium WaspMote the European regulation sets the
maximum transmission power to 10dBm).

B. Packet inter-arrival time & packet loss rate

We use the wireshark packet analyzer with a promiscu-
ous sniffer mote to obtain packet statistics. First, the sniffer
is placed at location 392 and we observed no packet losses.
Second, the sniffer is placed at the top-right gateway and Fig. 3
shows the packet inter-arrival time captured at that location for
an audio capture of about 1 minute. In total there were 3040
packets of 24 bytes. We disabled MAC level retransmission to
measure the packet loss rate when no reliability mechanism is
added.

Fig. 3. Packet inter-arrival time

From location 11 to the top-right gateway, we observed 176
lost packets. The packet loss rate is about 5.78%. On Fig. 3,
most of packets have an inter-arrival time of about 20ms and
packet losses can be clearly identified with higher inter-arrival
time. The vertical graduations on the graph can indicate the
number of packets that have been lost: the graduation at 0.04
indicates 1 lost packet, the next graduation indicates 2 lost
packets, etc. Here, the maximum number of lost packets in a
burst is 7 (packet index 1466).

C. Multi-hop: using AdvanticSys relay nodes

We have performed a number of benchmarks to determine
for each sensor platform the minimum relaying time when the
payload is varied.
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Fig. 4. AdvanticSys TelosB mean relaying performance

We experimentally measured the packet read time (the time
needed to read a packet into the application memory space)



and the relay time under static routing. We can see in Fig. 4
that on average an AdvanticSys TelosB relay node needs about
19ms to relay a 25-byte packet. However, as shown in Fig. 5
with packet index from 60 to 80, we can see that sometimes
relaying can take more than 20ms. As the audio source sends
a 24-byte packet once every 20ms, it may happen that some
packets are dropped at the relay node. We observed packet
loss rates between 10% and 15% at the receiver.
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Fig. 5. AdvanticSys TelosB relaying performance raw measures

In order to reduce the packet drop rate, we can aggregate
2 audio packets at the source to provide a 40ms time window
for the relaying nodes. In this case, the radio packet payload
is 48 bytes and the average relaying time is about 22ms as
shown in Fig. 4. Fig. 5 also shows that most of the relaying
time are below 30ms (packet index from 160 to 180) therefore
avoiding the relay nodes to queue incoming packets. With this
strategy, we observe a packet loss rate near to 0. This is due
to very little intra-path interferences because the audio source
only sends a packet once every 40ms while the contention on
the radio channel is in the order of a few ms.

D. Using WaspMote relay nodes

Fig. 6 shows for the WaspMote both packet read time
and the relaying time as the packet size is varied. In all
our experimentations, for baud rates of 38400, 125000 and
250000, tread remains constant and depends only on the
data size. The reason why tread only depends on the data
size, at least at the application level, is as follows: most of
communication APIs use a system-level receive buffer and
when a packet arrives at the radio, a hardware interrupt is
raised and appropriate callback functions are used to fill in
the receive buffer that will be read later on by the application.
Therefore, the baud rate has only an impact on the time needed
to transfer data from the radio module to the receive buffer.
The time needed to transfer the data from the receive buffer
to the application depends on the speed of memory copy
operations, therefore depending mainly on the frequency used
to operate the sensor board and the data bus speed. As we can
see in Fig. 6, tread on the WaspMote is about 20ms and trelay
is about 60ms for a 25-byte packet.

Fig. 6. Libelium WaspMote relaying performance

Therefore the issue we have here is that the source node
is sending at the rate of a 24-byte packet every 20ms while
the WaspMote relay node needs about 60ms to relay it.
We observed packet drop rates above 70% that dramatically
degrade the audio quality. With a maximum payload of 100
bytes, the maximum packet aggregation level is 4 (giving a
96-byte radio packet). However, aggregating 4 audio packets
only gives a time window of 80ms which is still not enough
for the WaspMote as Fig. 6 shows that a minimum of 108ms
is needed to relay a 100-byte packet. In this case, we have no
other choice than dropping audio packets at the source node:
6 audio packets will be captured providing a time window of
120ms but only 4 will be aggregated in a radio packet, giving
a relay time of about 108ms. The extra 12ms give enough time
for the relay node of limit packet drops. With this strategy, the
initial packet drop rate at the source is 2/6 = 33%. The radio
transmission has a packet drop rate close to 0 and always less
than 5%. Once again, the intra-path interference is very small.
The final packet drop rate is on average between 33% and
35%.

E. Audio quality

In order to measure the receiving audio quality, we use
the ITU-T P.862 PESQ software suite for narrowband audio
to get an audio quality indicator (MOS-LQO) between the
original audio data and the received audio data. Fig. 7 shows
for various packet loss rates the MOS-LQO indicator value
when each radio packet is 20 bytes long, i.e. 1 audio packet
in 1 radio packet. The first vertical bar (at 4.308) is the MOS-
LQO value when comparing the speex encoded audio data to
the uncompressed audio format1. It is usually admitted that a
MOS-LQO of at least 2.6 is of reasonably good quality. When
there is a packet loss, it is possible to detect it by the gap in the
sequence number and use the appropriate speex decoder mode.
The red bars indicates the MOS-LQO values when packet
losses are detected. Without the packet loss detection feature,
missing packets are simply ignored and the speex decoder will
simple decode the flow of available received packets. We can
see that it is always better to detect packet losses.

1Reader can listen at the various audio files at
web.univ-pau.fr/˜cpham/SmartSantanderSample/speex
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Fig. 7. Audio quality with 1 audio packet in 1 radio packet when packet
loss rate is varied

In Fig. 7 we can see that the previous case with an
AdvanticSys relay node without audio packet aggregation
(between 10% and 15% packet loss rate) still has an acceptable
MOS-LQO value. Using aggregation (2 audio packets in 1
radio packet) makes the packet loss rate to be below 5% and
therefore provides a good audio quality as indicated in Fig. 8.

When using Libelium WaspMote as relay nodes, our specific
aggregation strategy for this hardware platform introduces at
the source node a packet drop rate of 33%. Fig. 7 shows
that in this case, without additional packet losses in the radio
transmission, we can achieve a MOS-LQO value between 1.61
and 1.94 in the best case. However, the audio file is still very
understandable for a human operator.
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Fig. 8. Audio quality with 2 audio packets in 1 radio packet when packet
loss rate is varied

F. Energy consumption of the audio source mote

We also investigated the energy consumption of the audio
source node with the developed audio board. Fig. 9 shows
the cumulated energy consumption. The first part of the figure
shows the idle period where the audio board is powered off and
the radio module is in active state. Then, starting at time 43s,
the audio board is powered on to capture and encode in real-
time during about 20s. The audio packets are sent wirelessly.
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Fig. 9. Cumulated energy consumption

During idle period, the consumed energy is about 0.068J/s
(68mW). During audio capture with the radio sending, the
consumed energy is about 0.33J/s (330mW). With a 2 AA-
battery that approximately have an energy of 18700J, we could
continuously capture and transmit during more than 15 hours!
Therefore periodic audio streaming scenarios are very possible
in the context of smart cities where most of sensor nodes can
usually be recharged at night.

V. CONCLUSIONS

In this paper, we presented experimentations on the various
EAR-IT test-beds for real-time acoustic data streaming. We
developed an audio board to sample an encode in real-time
acoustic data. The audio board can be plugged on IoT nodes
enabling real-time on-demand acoustic data scenario. Prior
to the streaming experimentation itself, we first qualified
the EAR-IT hardware and highlighted the main sources of
delays. We showed that there are incompressible delays due to
hardware constraints and software API that limit the relaying
throughput. These constraints can be alleviated with appropri-
ate audio frame aggregation strategies and the experiments we
performed with the speex codec demonstrated that streaming
acoustic data is feasible on Smart Cities infrastructures with
reasonably high audio quality and sensor node lifetime.
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