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Abstract—Wireless Video Sensor Network (WVSN) can be
used for efficient event detection such as intrusion detection or
disaster relief systems. These applications have a high level of
criticality and can not be deployed with the current state of
technology. In this paper, we show how a dynamic criticality
management scheme can provide fast event detection for mission-
critical surveillance applications. Based on a criticality model that
uses modified Bezier curves to determine for each sensor node
the corresponding frame capture rate, simulation results show
that the network lifetime can be increased, that the stealthtime
is kept low and that sentry nodes succeed in detecting intrusions.

Index Terms—Sensor networks, video surveillance, coverage,
event detection, mission-critical applications

I. I NTRODUCTION

This paper focuses on Wireless Video Sensor Networks
(WVSN) where sensor nodes are equipped with miniatur-
ized video cameras. We consider WVSN for mission-critical
surveillance applications where sensors can be thrown in mass
when needed for intrusion detection or disaster relief applica-
tions. Surveillance applications have very specific needs due
to their inherently critical nature associated to security[1],
[2], [3], [4]. Early surveillance applications involving WSN
have been applied to critical infrastructures such as production
systems or oil/water pipeline systems [5], [6]. There have also
been some propositions for intrusion detection applications but
most of these early studies focused on coverage and energy
optimizations without explicitly having the application’s crit-
icality in the control loop. On one hand, it is desirable that
most sensor nodes move to a so-calledhibernate mode in the
absence of events in order to save energy. On the other hand,
it is also highly desirable that some sensor nodes still keepa
relatively high capture rate in order to act as sentry nodes in
the surveillance system to better detect intrusions/events and
to alert other active nodes to move to analerted mode. With
video sensors the higher the capture rate is, the better relevant
events could be detected and identified. However, even in the
case of very mission-critical applications, it is not realistic
to consider that video nodes should always capture at their
maximum rate when in active mode. Therefore, a common
approach is to define a subset of the deployed nodes to be
active while the other nodes can sleep. In [7], [8] the idea
we developed is that when a node has several covers, it can
increase its frame capture rate to act as a sentry node because
if it runs out of energy it can be replaced by one of its covers.
Then, depending on the applications’s criticality, the frame
capture rate of those nodes with large number of cover sets

can varied: a low criticality level indicates that the application
does not require a high video frame capture rate while a high
criticality level does. [8] also proposed to apply a risk-based
approach for scheduling sensor nodes: different parts of the
area of interest may have different risk levels according to
the pattern of observed events such as the number of detected
intrusions. In [9], the authors introduce so-called differentiated
services by dynamically modify the time duration for a node
to work during each round. The authors in [10] propose
to probabilistically support flexible QoS [10] without over-
provisioning resources. As we directly linked the application
criticality to the frame capture rate of a video sensor node,we
want to impact on quality (number of frames) rather than on
whole coverage as in [9].

Based on the criticality models developed in [8], this article
presents the performance of dynamic criticality management
for fast event detection in mission-critical application.There-
fore the main issue that is addressed in this paper is to
demonstrate that our dynamic risk-based approach for schedul-
ing sensor nodes can provide increases network lifetime and
reduced intrusion detection time. The rest of the paper is
organized as follows. Section II quickly presents the dynamic
criticality management models. We then present the main
contribution of this paper that focuses on fast event detection
in section III. We conclude in section IV.

II. CRITICALITY -BASED SCHEDULING OF RANDOMLY

DEPLOYED NODES WITH COVER SETS

Our framework for enabling fast event detection in mission-
critical applications operates in 3 phases. In the first phase
each sensor broadcasts its position. Only one message per
sensor node is required and we assume GPS facilities. In
the second phase each nodev constructs its set of cover sets
Co(v). Interested readers can refer to [11] for more details on
fast cover set construction techniques. The third phase is the
scheduling phase where each node decides to be active or in
sleep mode. Phases 1 and 2 occur only once at the beginning
of the network lifetime, unless mobility is provided. As said
previously, the frame capture rate is an important parameter
that defines the surveillance quality. In [8], we proposed tolink
a sensor’s frame capture rate to the size of its cover set. In our
approach we define two classes of applications. This risk level
can oscillate from a concave to a convex shape as illustrated
in Figure 1 with the following interesting properties:



• Class 1 ”low risk” , does not need high frame capture
rate. This characteristic can be represented by a concave
curve (figure 1 box A), most projections ofx values are
gathered close to 0.

• Class 2 ”high risk” , needs high frame capture rate. This
characteristic can be represented by a convex curve (fig-
ure 1 box B), most projections ofx values are gathered
close to themax frame capture rate.

Fig. 1. The Behavior curve functions

[8] proposes to use a Bezier curve to model the 2 application
classes. The advantage of using Bezier curves is that with only
three points we can easily define a ready-to-use convex (high
criticality) or concave (low criticality) curve:P0, P1, andP2.
P0(0, 0) is the origin point,P1(bx, by) is the behavior point
andP2(hx, hy) is the threshold point wherehx is the highest
cover cardinality andhy is the maximum frame capture rate
determined by the sensor node hardware capabilities.

As illustrated in Figure 1, by moving the behavior point
P1 inside the rectangle defined byP0 andP2, we are able to
adjust the curvature of the Bezier curve, therefore adjusting
the risk levelr0 introduced in the introduction of this paper.
Table I shows the corresponding capture rate for some relevant
values ofr0. The cover set cardinality|Co(v)| ∈ [1, 12] and
the maximum frame capture rate is set to 3fps.

r0 1 2 3 4 5 6 7 8 9 10 11 12

0 .01 .02 .05 0.1 .17 .26 .38 .54 .75 1.1 1.5 3
.2 .07 .15 .25 .37 .51 .67 .86 1.1 1.4 1.7 2.2 3
.4 .17 .35 .55 .75 .97 1.2 1.4 1.7 2.0 2.3 2.6 3
.6 .36 .69 1.0 1.3 1.5 1.8 2.0 2.2 2.4 2.6 2.8 3
.8 .75 1.2 1.6 1.9 2.1 2.3 2.5 2.6 2.7 2.8 2.9 3
1 1.5 1.9 2.2 2.4 2.6 2.7 2.8 2.9 2.9 2.9 2 3

TABLE I
CAPTURE RATE IN FPS WHENP2 IS AT (12,3).

III. FAST EVENT DETECTION WITH DYNAMIC CRITICALITY

MANAGEMENT

We used the OMNET++ discrete event simulator
(http://www.onmetpp.org) to randomly deploy150 sensor

nodes in a75m ∗ 75m area. Sensors have an36o AoV. Each
sensor node captures with a given number of frames per
second (between 0.01fps and 3fps) according to the model
defined in figure 1. Nodes with 12 or more cover sets will
capture at the maximum speed. Simulation ends when there
are no active nodes anymore. Figure 2 shows the percentage
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Fig. 2. Percentage of coverage and actives nodes asr0 is varied.

of coverage and the percentage of active nodes for 4 levels
of criticality: r0 = 0.2, 0.4, 0.6 and 0.8. The corresponding
capture rates are those shown in table I. The x-axis is in
logarithmic scale. We define the full area coverage as the
region covered initially by the whole network (i.e when all
the deployed nodes are active). Nodes with high capture rate
will use more battery power until they run out of battery. In
this case, the cover sets they belong to will not be a valid
cover set anymore for the other nodes. It is the number of
valid cover sets that defines the capture rate and not the
number of cover sets found at the beginning of the cover sets
construction procedure.

In order to show the benefit of the adaptive behavior, we
computed the mean capture rate for each of the simulations
of figure 2 and then used that value as a fixed capture rate for
all the sensor node in the simulation model.r0 = 0.2 gives a
mean capture rate of0.32fps,r0 = 0.4 gives0.56fps,r0 = 0.6
gives0.83fps andr0 = 0.8 gives1.18fps. The results of the
fixed frame capture rate are illustrated in figure 3.
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Fig. 3. Percentage of coverage and actives nodes with fixed capture rate.
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Fig. 4. Mean stealth time. Top:r0
= 0.2, fps = 0.32, r0

= 0.4, fps =

0.56. Bottom: r0 = 0.6, fps = 0.83, r0 = 0.8, fps = 1.18.
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Fig. 5. Stealth time, winavg with 10-sample batch.r0
= 0.2, fps = 0.32

(top). r0 = 0.4, fps = 0.56.

We can see that using the adaptive frame rate is very
efficient as the network lifetime is2900s for r0 = 0.2 while
the 0.32fps fixed capture rate last only620s. However, in
order to evaluate the quality of surveillance we show in figure
4(top) the mean stealth time whenr0 = 0.2, fps = 0.32,
r0 = 0.4 and fps = 0.56, and in figure 4(bottom) the case
when r0 = 0.6, fps = 0.83, r0 = 0.8 and fps = 1.18. The
stealth time is the time during which an intruder can travel in
the field without being seen. The first intrusion starts at time
10s at a random position in the field. The scan line mobility
model is then used with a constant velocity of 5m/s to make
the intruder moving to the right part of the field. When the

intruder is seen for the first time by a sensor, the stealth time
is recorded and the mean stealth time computed. Then a new
intrusion appears at another random position. This processis
repeated until the simulation ends. Figures 5 and 6 plot the
stealth time using a window average filter of 10 samples.
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Fig. 6. Stealth time, winavg with 10-sample batch.r0 = 0.6, fps = 0.83
(top). r0

= 0.8, fps = 1.18.

For the particular case of disambiguation, we introduce a
8m.4m rectangle at random positions in the field. The rectangle
has 8 significant points as depicted in figure 7 and moves at the
velocity of 5m/s in a scan line mobility model (left to right).
Each time a sensor node covers at least 1 significant point or
when the rectangle reaches the right boundary of the field, it
appears at another random position. This process starts at time
t = 10s and is repeated until the simulation ends. The purpose
is to determine how many significant points are covered by the
initial sensorv and how many can be covered by using one of
v’s cover set. For instance, figure 7 shows a scenario wherev’s
FoV covers 3 points, the left cover set ({v3, v1, v4}) covers 5
points while the right cover set ({v3, v2, v4}) covers 6 points.

Fig. 7. Rectangle with 8 significant points.v and 2 different cover sets.

In the simulations, each time a sensorv covers at least 1
significant point of the intrusion rectangle, it determineshow
many significant points are covered by each of its cover sets.
The minimum and the maximum number of significant points
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Fig. 8. Number of covered points of an intrusion rectangle. Sliding winavg
of 20-sample batch (top), mean (bottom).

covered byv’s cover sets are recorded along with the number
of significant pointsv was able to cover initially. Figure 8
shows these results. The top part shows the values using a
sliding window averaging filter with a batch window of 20
samples. The bottom part shows the evolution of the mean
value. We can see that node’s cover sets always succeed in
identifying more significant points.

stealthTime r°=0.8 (winavg10)

stealthTime 1.18fps (winavg10)
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Fig. 9. Stealth time, winavg with 10 samples batch.r0 = 0.8, fps = 1.18
andr0 = 0.8 with rectangle intrusion.

Figure 9 shows that with the rectangle intrusion, that could
represent a group of intruders instead of a single intruder,the
stealth time is greatly reduced.

With a criticality level ofr0 = 0.8, the surveillance quality
of very high while the network lifetime is nearly two times
longer than the fixed capture rate scenario. Figure 10 shows
that our sentry node selection strategy succeeds in enabling
fast detection of intruders in the field. The left part of the figure
shows the sensors’ position and their respective number of
cover sets. Those nodes with a high number of cover sets will
capture faster according to table I. The right part of the figure
shows the number of intrusions detected by each node. The
bigger the dot, the higher the number of detected intrusionsby
that node is. We can clearly see that there is a strong relation
between nodes with high number of cover sets and those that
have been able to detect the intrusions.

Fig. 10. Node’s cover set size and node’s detected intrusionnumber. 150
nodes,r0 = 0.8.

IV. CONCLUSION

This paper presented the performance results of a dynamic
criticality management model that enable fast event detection
for mission-critical surveillance applications with video sensor
networks. We show that our approach saves energy and
improves the network lifetime while providing small stealth
time in case of an intrusion detection system. These results,
although preliminary, show that besides providing a model
for translating a subjective criticality level into a quantitative
parameter of the surveillance system, our proposed approach
for visual sensor nodes can also optimize the resource usage
by dynamically adjusting the provided service level.
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