
Low cost wireless image sensor networks for visual
surveillance and intrusion detection applications

Congduc Pham
University of Pau, LIUPPA Laboratory

Email: congduc.pham@univ-pau.fr

Abstract—Wireless Image Sensor Networks (WISN) where
sensor nodes are equipped with miniaturized visual CMOS
cameras to provide visual information is a promising technology
for situation-awareness, search&rescue applications or intrusion
detection applications. In this paper, we present an off-the-shelf
image sensor based on an Arduino Due board with a CMOS
uCamII camera. The image sensor works with raw 128x128
image and implements a simple intrusion detection mechanism
based on simple-differencing technique. The total time for getting
the image, encoding it, detecting intrusion and transmitting it
can be less than 2.3s. We detail the performance measures and
using real hardware constraints, we also show how more accurate
simulation model can be built for large-scale multi-hop networked
configurations.

Index Terms—Low-cost image sensors, wireless image sensor
networks, simulation model

I. INTRODUCTION

Wireless Image Sensor Networks (WISN) where sensor
nodes are equipped with miniaturized visual CMOS cameras
to provide visual information is a promising technology for
situation-awareness, search&rescue applications or intrusion
detection applications. Image can be requested on demand or
in a pre-defined order in situation-awareness applications, but
can also be sent upon intrusion detection in security applica-
tions. Obviously, given the low level of resources (memory
and processor) of sensor nodes and the low bandwidth of
the networking technologies traditionally used in wireless
sensor networks (i.e. IEEE 802.15.4 for a radio throughput
of 250kbps), implementing an image sensor with fast but
still efficient image compression and multi-hop transmission
features is still challenging.

There are a number of image sensor boards available or
proposed by the very active research community on image and
visual sensors: Cyclops [1], MeshEyes citemesheyes, Citric
[2], WiCa [3], SeedEyes [4], Eye-RIS [5], Panoptes [6],
CMUcam3&FireFly [7], [8], CMUcam4 and CMUcam5/PIXY
[8], iMote2/IMB400 [9], ArduCam [10],. . . All these platforms
and/or products are very good but are mostly based on ad-hoc
development of the visual part (i.e. development of a camera
board with dedicated micro-controller to perform a number
of processing tasks) or are based on very powerful micro-
controller/Linux-based platforms or do not have an efficient
image encoding and compression scheme adapted to wireless
sensor networks. Our motivations in building our own image
sensor platform for research on image sensor surveillance
applications are:

1) have an off-the-shelf solution so that anybody can re-
produce the hardware and software components: we use
an Arduino-based solution for maximum flexibility and
simplicity in programming and design; we use a simple,
affordable external camera to get RAW image data,

2) integrate and apply a fast and efficient compression
scheme with the host micro-controller (no additional nor
dedicated micro-controller) to produce robust and very
small size image data suitable for large scale surveillance
or search&rescue/situation awareness applications.

The image sensor that we propose works with raw 128x128
image in 8-bit/pixel gray scale. The raw image size is 16384
bytes and can be compressed with various quality factor
to greatly decrease the image size for real-time multi-hop
transmission. A simple intrusion detection mechanism based
on simple-differencing technique shows very good results
while adding no cost in the image processing. The total time
for getting the image, encoding it, detecting intrusion and
transmitting it can be less than 2.3s with a reasonable image
quality. Using the real performance measures for various
steps of the image processing, we also build more accurate
wireless image sensor simulation model to study large-scale
configurations. The results of the simulations are then very
close to those obtained from the real platform.

The rest of the article is organized as follows. Section II
describes the image sensor components: hardware components
and image encoding technique. Section III presents the perfor-
mance measures of the image sensor platform and Section IV
will present the intrusion detection mechanism. Section V will
show how an accurate simulation model can be built to study
large-scale configurations. We conclude in Section VI

II. A LOW COST IMAGE SENSOR WITH OFF-THE-SHELVES
COMPONENTS

A. The image sensor components

We use an Arduino Due board [11] with a CMOS uCamII
camera (56o angle of view) from 4D systems [12]. The
Arduino Due is a micro-controller board based on the Atmel
SAM3X8E ARM Cortex-M3 running at 84MHz with 96KB of
SRAM memory. The uCam is connected to the Arduino board
through an UART interface at 115200 bauds. The uCamII
is capable of providing both raw and JPEG format but we
are not using this last feature as JPEG images have very
low robustness level against packet losses. We use the raw

128x128 in 8-bit/pixel gray scale format which need 16384
bytes of memory for storage. Radio is provided by an XBee S1
IEEE 802.15.4 module. The XBee module is also connected
to the Arduino with an UART but at 125000 bauds as the
communication between the XBee module and the Due is not
reliable at 115200 bauds given the Due’s clock frequency of
84MHz [13]. Fig. 1 shows the image sensor node.

XBee 802.15.4 module,
connected to UART2 at
125000 bauds

Green led,
indicates
that uCam
is ready

Red led,
indicates that
uCam is
taking picture
and encoding
is undergoing

uCamII camera, connected to
UART1 at 115200 bauds

Arduino Due board, AT91SAM3X8E at
84MHz, 96KB SRAM, 512KB flash

uCamII configured for
RAW 128x128 8-bit/
pixel gray scale

Fig. 1. Image sensor built with Arduino Due and uCAM camera

B. The image encoding process

Even if with low-power radio, such as IEEE 802.15.4,
the MAC layer retransmission feature provides quite efficient
and low-overhead reliability, early studies have confirmed
that image communication needs to be especially tolerant
to packet losses which automatically make traditional JPEG
compression scheme unsuitable as it suffers from very high
spatial correlation: an entire image could be impossible to
decode with only a few packets missing. We therefore use an
optimized encoding scheme proposed in [14] which features
the 2 following key points:

1) Image compression must be carried out by independent
block coding in order to ensure that data packets cor-
rectly received at the sink are always decodable.

2) De-correlation of neighboring blocks must be performed
prior to packet transmission by appropriate interleaving
methods in order to ensure that error concealment algo-
rithms can be efficiently processed on the received data.

The compression scheme is a JPEG-like coder and operates
on 8x8 pixel blocks with advanced optimizations on data
computation to keep the computational overhead low. The
combination of the fast JPEG-like proposed encoder with
an optimized block interleaving method [15] allows for an
efficient tuning, the so-called Quality Factor (Q), of the com-
pression ratio/energy consumption trade-off while maintaining
an acceptable visual quality in case of packet loss. The code
has been ported to Arduino with little modifications. Fig. 2
shows a 128x128 image taken with the image sensor and
encoded with various quality factor, from 100 down to 5. The
total size of the compressed image, the number of generated
packets and the PSNR compared to the original image are

shown. We can see that a quality factor of 20 is visually still
acceptable while providing a compression ratio of almost 12!

BMP 16384b Q=100; 9768b, 158 pkts

PSNR=51.344

Q=90; 5125b, 70 pkts

PSNR=29.414

Q=80; 3729b, 48 pkts

PSNR=28.866

Q=70; 2957b, 37 pkts Q=60; 2552b, 32 pkts Q=50; 2265b, 28 pkts Q=40; 2024b, 25 pkts

Q=5; 576b, 7 pkts Q=10; 911b, 11 pkts Q=20; 1366b, 17 pkts Q=30; 1735b, 21 pkts

PSNR=28.477 PSNR=28.024 PSNR=27.912 PSNR=27.423

PSNR=26.038 PSNR=26.933 PSNR=25.283 PSNR=23.507

Fig. 2. 128x128 image taken by the image sensor, various quality factor

Q=50; 20% pkt losses Q=50; 40% pkt losses Q=50; 60% pkt losses

Fig. 3. Impact of packet losses on image quality

Fig. 3 shows the impact of packet losses on the image
quality: 20%, 40% and 60% of packet losses. Traditional JPEG
compression can hardly support more than 10% packet losses.

The encoding stage takes as input the raw image (16384
bytes). It produces for each pixel an integer variable coded as
a short data type (2 bytes) on the Arduino Due. We therefore
need an 32768-byte array. In total, in order to store the image
data from the camera and to run the encoding process, the
image sensor needs at least 48KB of RAM memory.

The packetization stage after the encoding can use various
packet size. We set the maximum image payload per packet to
90 bytes (this is the maximum image payload, in practice, the
produced packet size will vary according to the packetization
process) because 6 bytes need to be reserved in the 802.15.4
payload for framing bytes (2B), quality factor (1B), real packet
size (1B) and offset in the image (2B).

III. PERFORMANCE OF THE IMAGE SENSOR PLATFORM

A. Global measures
We present in this section the performance measures of

the various processing stages run on the image sensor. Fig.

4 presents as a function of the quality factor Q the measured
”global encode+pkt time” in column A. This is the overhead
of the image encoding process including the encoding itself
and the packetization stage, but without transmission.

N R A B%=%D%(%A` C%=%B%/%N D E%=%D%/%N

Quality%

Factor%Q

size%in%

bytes%

(MSS=90)

Number%

of%packets

time%to%

read%data%

from%

ucam

global%

encode%+%pkt%

time%

(measured)

global%

transmit%

time%

(computed)

transmit%

time/pkt%

(computed)

global%

encode%+%pkt%

+%transmit%

time%

(measured)

encode+tran

smit%

time/pkt%(in%

ms)

100 9768 158 1.512 1.027 1.064 0.0067 2.091 13.2342

90 5125 70 1.512 0.782 0.539 0.0077 1.321 18.8714

80 3729 48 1.512 0.704 0.384 0.0080 1.088 22.6667

70 2957 37 1.512 0.686 0.304 0.0082 0.99 26.7568

60 2552 32 1.512 0.662 0.263 0.0082 0.925 28.9063

50 2265 28 1.512 0.646 0.233 0.0083 0.879 31.3929

40 2024 25 1.512 0.657 0.207 0.0083 0.864 34.5600

30 1735 21 1.512 0.649 0.177 0.0084 0.826 39.3333

20 1366 17 1.512 0.638 0.14 0.0082 0.778 45.7647

10 911 11 1.512 0.628 0.093 0.0085 0.721 65.5455

5 576 7 1.512 0.624 0.058 0.0083 0.682 97.4286

Fig. 4. Global encoding, packetization and transmission time

The time to read the raw image data from the uCam is also
shown in column R and R+A represents the latency between
the snapshot taken by the camera and the time all the packets
of the encoded image are produced (once again without trans-
mission). If we take into account the transmission overhead,
column D shows the ”global encode+pkt+transmit time”. The
packetization and the transmission tasks are performed in a
row for each packet. Values in column A and column D have
been globally measured and can be used to derive column B
which represents the time taken globally for transmitting the
produced packets: more packets means higher transmission
time. Fig. 5 shows the part of the encoding+packetization
(column A) and the part of the transmission (column B).
Stacking both parts gives column D.

0	

0.5	

1	

1.5	

2	

2.5	

100	 90	 80	 70	 60	 50	 40	 30	 20	 10	 5	

Ti
m
e	
in
	 se

co
nd

s	

Quality	 factor	

global	 transmit	 8me	 (computed)	 global	 encode	 +	 pkt	 8me	 (measured)	

Fig. 5. Encoding time and transmission time

Column C shows the computed mean time for transmitting
a packet which is quite constant. The time to read data from
uCam is also constant and actually does not depend much
on the uCam-Arduino connection baud rate (here 115200
bauds) because the limitation is mainly due to memory read
operations from the Arduino UART ring buffer. We increased
the connection baud rate to 921600 bauds and did not see any
improvement in the data read time. If we use a quality factor of
20, the total time between the snapshot taken by the uCam and
the end of the transmission of the image is 1.512+0.778=2.29s.

B. Detailed measures

Fig. 6 shows the detailed timing of the encoding stage and
the packetization stage, measured alone, without the glue code
that would make the whole image processing tasks to run. We
can see that the encoding time, shown in column F, is quite
constant, except for Q=100. With the maximum quality factor
value, the encoding stage has little to do, which explains the
smaller encoding time. Column G shows the time taken to
produce each packet. Once again, this time is quite constant
and has been rounded to 3ms/packet.

F G H$=$F$+$G$*$N I$=$H$+$C$*$N J K$=$(C$+$G)*N

Quality$
Factor$Q

encode$time$
(measured)

packetization$
(pkt)$time$

(measured$&$
rounded)

encode$+$pkt$
time$

(computed)

encode$+$
pkt$+$

transmit$
time$

(computed)
RCV$time$

(measured)
RCV$time$
(computed)

100 0.379 0.0030 0.8530 1.917 1.708 1.538
90 0.512 0.0030 0.7220 1.261 0.799 0.749
80 0.511 0.0030 0.6550 1.039 0.599 0.528
70 0.519 0.0030 0.6300 0.934 0.447 0.415
60 0.509 0.0030 0.6050 0.868 0.39 0.359
50 0.500 0.0030 0.5840 0.817 0.349 0.317
40 0.516 0.0030 0.5910 0.798 0.317 0.282
30 0.516 0.0030 0.5790 0.756 0.278 0.24
20 0.518 0.0030 0.5690 0.709 0.231 0.191
10 0.516 0.0030 0.5490 0.642 0.177 0.126
5 0.518 0.0030 0.5390 0.597 0.131 0.079

Fig. 6. Detailed timing

Column H shows the computed encoding and packetization
time using only values of column F and G. Compared to
column A, we can see the part of the glue code. Adding
column H to the previously measured transmission time per
packet (column C), we have in column I a computed value
of the global encode+pkt+transmit time. Column I can be
compared to column D.

C. Received latency

In column J, we show the receive time measured for a 1-hop
scenario at a sink which will decode and display the image.
The receive time represents the amount of time between the
first packet received and the last packet received. In column K,
we computed the receive time by using formula K=(C+G)*N
which basically sums up the mean time for sending a packet
(column C) and the packetization time required between each
packet (column G) times the number of packets (column N).
Fig. 7 plots the values of columns J (blue curve) and K (red
curve); we can see that the 2 curves are very close.

Fig. 7 also shows the 1-hop image display latency that
represents the amount of time between the snapshot at the
source image sensor and the display of the image at the sink
1-hop away (column R+D+J). The smaller the latency, the
more responsive is the system. We will discuss the multi-hop
issues later on in Section V. Since the time to transmit a packet
is not very large, we can actually see that having high value
for Q is not very penalizing in term of receive latency.

5.31	

3.63	
3.20	

2.95	 2.83	 2.74	 2.69	 2.62	 2.52	 2.41	 2.33	

0	

1	

2	

3	

4	

5	

6	

100	 90	 80	 70	 60	 50	 40	 30	 20	 10	 5	

Ti
m
e	
in
	 se

co
nd

	

Quality	 factor	

Comparison	 of	 RCV	 7me	 &	 1-‐hop	 latency	

RCV	 0me	 (computed)	 RCV	 0me	 (measured)	 1-‐hop	 latency	 (snapshot-‐display)	

Fig. 7. Image received time and 1-hop image display latency

D. Impact of a slower micro-controller

The encoding time and the transmission time may de-
pend on the micro-controller type and speed. Regarding the
transmission time, we use a traffic generator to measure the
minimum time spent in the send function and the minimum
time between 2 sends as the payload size is varied. 100
packets are sent and the mean is computed. We compared
the Arduino Due which features an Atmel SAM3X8E ARM
Cortex-M3 running at 84MHz to an Arduino MEGA built
around an ATmega2560 running at 16MHz. The code of the
traffic generator, as well as the communication library for the
XBee radio module, is exactly the same on both platforms.
Fig. 8 shows the comparison. We can notice that the Arduino
MEGA has smaller send time while the time between 2 sends
is higher. The smaller send time may be explained by the
simpler architecture of the Arduino MEGA. The higher time
between 2 sends is due to the higher processing time of the
program control and communication code. However, we can
see that actually the impact of a slower micro-controller on
the sending overheads is very small.

Payload'size'
in'bytes

mean'
between'
send'
(Arduino'
Due),'ms

mean'send'
(Arduino'
Due),'ms

mean'
between'
send'
(Arduino'
MEGA),'ms

mean'send'
(Arduino'
MEGA),'ms

10 1.99 1.97 2.09 1.92
20 2.79 2.76 2.95 2.59
30 3.68 3.46 3.92 3.41
40 4.4 4.36 4.63 4.29
50 5.2 5.16 5.51 5.11
60 6.02 5.97 6.26 5.97
70 6.95 6.74 7.17 6.61
80 7.61 7.57 7.93 7.51
90 8.37 8.36 8.72 8.26

100 9.2 9.18 9.61 9.07

Fig. 8. Comparison of sending performance on Due and MEGA boards

For the encoding time, we run the image encoding code
on the Arduino MEGA but since the MEGA board does
not have enough memory to realize the image encoding and
packetization on an entire real image from the uCAM, we
only use a small part of the real image data and modified
the encoding code to only use a fraction of the real data.
However, the entire encoding and packetization computations
are performed. Fig. 9 plots the encoding time for both the

Due and the MEGA. For the Due board, the encoding time
was previously shown in column F of Fig. 6. We can see that
the encoding process takes almost 4 times more on the MEGA
than on the Due, i.e. about 2s instead of a bit more than 500ms.
The time to read data from the uCAM is still 1.512s. If we
assume that the MEGA could have enough memory to handle
the image data, we could extrapolate the 1-hop image display
latency with the MEGA by adding about 1.5s to the Due’s
1-hop image display latency shown in Fig. 7.

0.000	

0.500	

1.000	

1.500	

2.000	

2.500	

100	 90	 80	 70	 60	 50	 40	 30	 20	 10	 5	

Ti
m
e	
in
	 se

co
nd

	

Quality	 factor	

Comparison	 of	 encode,	 Due	 and	 MEGA	

encode	 2me	 (measured,	 MEGA)	 encode	 2me	 (measured)	

Fig. 9. Comparison of encoding time on Due and MEGA boards

IV. VISUAL INTRUSION DETECTION

We implemented a simple intrusion detection mechanism
based on ”simple-differencing” of pixel: each pixel of the
image from the uCAM is compared to the corresponding
pixel of a reference image, taken previously at startup of the
image sensor and stored in memory. When the difference, in
absolute value, is greater than PIX THRES we increase the
number of different pixels, N DIFF. When N DIFF is greater
than NB PIX THRES we assume an intrusion and trigger the
transmission of the image. For the intrusion test shown in
figure 10, we set PIX THRES to 35 and NB PIX THRES
to 300. In doing so, we were able to systematically detect a
single person intrusion at 25m without any false alert. Every 5
minutes, the image sensor takes a new reference image to take
into account light change conditions. You can visit [16] that
describes the tools we use for displaying the received images
and how we can share them in real time with a smartphone.

Fig. 10. Left: reference image; Right: intruder detected

The ”simple-differencing” method is very light-weight and
only adds 1 addition (to compute the pixel difference), 1 com-
parison (to compare with PIX THRES) and 1 variable incre-
mentation in case the difference is greater than PIX THRES.

We measure the time to get data from the uCAM when the
”simple-differencing” method is included and compare it to
the previous value. We did not observe any difference: the
time to read data from the uCAM is still 1.512s. Note that the
”simple-differencing” process is performed on the raw image.
Once the intrusion is detected, a low quality factor can be
chosen to reduce the image latency if necessary.

V. BUILDING MORE ACCURATE SIMULATION MODELS

The simulation model we built for our previous contri-
butions on criticality-based scheduling is developed under
the OMNET++/Castalia framework. The model integrates the
image encoding scheme and allows for ”real” image packet
transmissions under the communication stack and physical
radio models (IEEE 802.15.4 in non-beacon CSMA mode).
The simulation configuration file indicates the image file that
will be transmitted upon intrusion detection. An implemen-
tation of a geographical routing protocol enables multi-hop
transmission of image packets from an image sensor source to
a predefined sink node which will then decode and display the
received image. We randomly deployed 150 sensor nodes with
random direction of sight in a 400mx400m area and reproduce
our image sensor features and constraints:

• camera angle of view of 56o,
• maximum capture rate of 0.58fps,
• depth of view of 25m,
• 128x128 image (the one of figure 2)
• Quality Factor Q is set to 50, 2265B, 28 packets
• time before image data can be processed is 1.512s,
• encoding time is 500ms.
Random intrusions are introduced in the simulation model

and nodes can detect an intrusion if the intruder is covered
by their field of view at the time of the image capture.
Upon intrusion detection, a node will first broadcast an alert
message and will send the image to the sink. Fig. 11 shows
the screenshot of the simulation with one image sent by node
60 to node 3 (sink). Node 93 serves as relay node.

In order to have realistic communication overheads, we
set the packet overhead at the source to 11ms, i.e. 8ms for
the transmission overhead due to OS and communication
library (column C) and 3ms for the image packetization time
(column G). When the packet size is smaller than 90 bytes,
we set the packet overhead to half of its value, i.e. 5.5ms.
We showed in [17], [18] that the transmission overhead can
not be neglected because it can greatly reduce the sender
throughput. Therefore, theoretically, for an image composed of
28 packets, the sending time at the source is 28x11ms=308ms.
At 1-hop, the receive latency would be 27*11ms=297ms or
26*11ms+5.5ms=291.5ms when the last packet is smaller than
90 bytes. In the simulation scenario depicted in Fig. 11, the
first packet sent by the image source (node 60) at time 86.3608
has been received by node 93 at 86.3653 (the difference is the
MAC/PHY overhead). The last packet received by node 93
was at 86.6555. Therefore the receive latency at the first relay
node (node 93) is 86.6555-86.3653=290.2ms because the last
packet was indeed smaller than 90 bytes.

First intrusion seen by node 60,
image packets are sent and relayed
by node 93, then received and
displayed by node 3 (sink) at time
86.8. 28/28 pkts, received latency is
0.42s and image was sent 0.46s
earlier.

Intruder Node 60

Node 3 (sink)
2-hop away
from node 60

Node 93
relays to
node 3

Fig. 11. Screenshot of the simulation environment with image transmission

If we compared the 1-hop receive latency found by simu-
lation model, i.e. 290.2ms, to the 1-hop receive latency found
by real experimentation with our image sensor (column J, line
Q=50 of Fig. 6), i.e. 349ms, we can see that the simulation
model still under-estimate the 1-hop receive latency because
not all processing costs are taken into account, especially those
for receiving data packets from radio/UART and decoding the
image packets at the sink. However, if we do not take at the
sender side the packet transmission cost, as many simulation
studies did previously, we will erroneously conclude with
very unrealistic image transmission capabilities for these low-
resource platforms.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	

!m
e	
in
	 se

co
nd

s	

packet	 index	

diff	 60-‐93	 (ms)	 inter-‐arrival	 93	 (ms)	

Fig. 12. 1-hop inter-arrival time in simulation model

Fig. 12 shows the difference between the send time at node
60 and the receive time at node 93 (diff 60-93 graph) as well
as the inter-arrival time of packets at node 93. Normally, ”diff
60-93” is about 4.4ms representing the MAC/PHY overhead,
and the inter-arrival time at node 93 is about 11ms. We can see
that in many cases, we have much higher values for ”diff 60-
93” due to radio contention and CSMA back-off mechanism

at the source. When this is the case (packet 6 for instance),
the inter-arrival time at node 93 increases. However, this inter-
arrival time would then decrease for next packets because they
are already in radio buffer at the sender side so they will only
have the MAC/PHY overhead, making the inter-arrival time
of next packets at node 93 to be close to 4.4ms (packets 7-10
for instance).

Regarding the packet relaying time at intermediate nodes,
[18] showed that among the well-known sensor platforms used
by the research community, the MicaZ sensor has the smallest
relaying time which was experimentally measured at about
16ms for an 100-byte packet. This is the value that we set in
the simulation model for the relaying time at the routing layer.
The first relay node would normally receive 1 packet every
11ms and will be able to relay it in 16ms. Therefore, the 2-
hop receive latency for a 28-packet file would theoretically
be (28-1)*16ms=432ms. Each additional relay node would
add a 16ms delay to the receive latency at the sink. All
these predictions are done assuming no errors nor channel
contention in transmitting packets. In the simulation, we found
a 2-hop receive latency of 420ms: the first packet was received
by node 3 at 86.38 while the last packet was received and
displayed at 86.8.

Fig. 13 shows the difference between the receive time at
node 93 and the receive time at sink node 3 (diff 93-3 graph)
as well as the inter-arrival time of packets at sink node 3.
Normally, the inter-arrival time at sink node 3 is about 16ms
representing the packet relaying overhead. Here we can see
the same behavior than previously shown in Fig. 12: due to
channel contention, packets tend to queue up at the sender
side (here it is the sending part of the relaying node 93)
creating periodic bursts of packets arriving back-to-back at
the receiving side, only paced by the MAC/PHY overheads.

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	

!m
e	
in
	 se

co
nd

s	

packet	 index	

diff	 93-‐3	 (ms)	 inter-‐arrival	 3	 (ms)	

Fig. 13. 2-hop inter-arrival time in simulation model

VI. CONCLUSIONS

We presented a low-cost image sensor built from off-
the-shelves electronic components for maximum flexibility
and availability to the research community. We integrate
an efficient image encoding method to produce robust and
small-size encoded image suitable for transmission on low-
bandwidth radio such as IEEE 802.15.4. The performance
measures of the image sensor to operate the image encoding

and transmission process show that the total image latency
can be less than 2.3s with a reasonable image quality. We
targeted visual surveillance applications where the camera can
be deployed for situation-awareness or intrusion detections. A
simple-differencing approach for intrusion detections shows
very good results while adding no additional processing cost.
In order to build large-scale visual surveillance systems, we
use the experimental measures to adapt the simulation models
for more accurate and realistic results regarding multi-hop
image transmissions. All the source codes are available on
[16]. In future works, we will address the energy consumption
issues and integrate low-power consumption techniques for the
Arduino board and the radio module in order to also investigate
the usage of the image sensor in the context of the Internet of
Things for domestic or industrial usage.

ACKNOWLEDGMENT

The author would like to thank V. Lecuire from CRAN
laboratory for the image encoding code that has been included
in both the simulation model and the image sensor.

REFERENCES

[1] M. Rahimi et al., “Cyclops: In situ image sensing and interpretation in
wireless sensor networks,” in ACM SenSys, 2005.

[2] P. Chen et al., “Citric: A low-bandwidth wireless camera network
platform,” in IEEE ICDSC 2008.

[3] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin, “Camera mote with
a high-performance parallel processor for real-time frame-based video
processing,” in AVSS 2007.

[4] Evidence Embedding Technology, “Seed-eye board, a multimedia
wsn device. http://rtn.sssup.it/index.php/hardware/seed-eye,” accessed
20/12/2013.

[5] A. Rodriguez-Vazquez et al., ”The eye-ris cmos vision system” in
Analog Circuit Design, 2008.

[6] W.-C. Feng, E. Kaiser, W. C. Feng, and M. L. Baillif, “Panoptes:
Scalable low-power video sensor networking technologies,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 1(2), May 2005.

[7] A. Rowe, D. Goel, and R. Rajkumar, “Firefly mosaic: A vision-enabled
wireless sensor networking system,” in RTSS 2007.

[8] CMUCam, “Cmucam: open source programmable embedded color vi-
sion sensors. http://www.cmucam.org/,” accessed 19/12/2014.

[9] S. Paniga, L. Borsani, A. Redondi, M. Tagliasacchi, and M. Cesana,
“Experimental evaluation of a video streaming system for wireless
multimedia sensor networks,” in 10th IEEE/IFIP Med-Hoc-Net, 2011.

[10] ArduCam, “Arducam. http://www.arducam.com,” accessed 19/12/2014.
[11] Arduino Due, “http://arduino.cc/en/pmwiki.php?n=main/arduinoboarddue,”

accessed 19/12/2014.
[12] D. Systems, “ucamii. http://www.4dsystems.com.au/product/ucam ii/,”

accessed 19/12/2014.
[13] J. Foster, “Xbee cookbook issue 1.4 for series 1 with 802.15.4 firmware,

www.jsjf.demon.co.uk/xbee/xbee.pdf”. Accessed 4/12/2013.
[14] V. Lecuire, L. Makkaoui, and J.-M. Moureaux, “Fast zonal dct for energy

conservation in wireless image sensor networks,” Electronics Letters,
vol. 48, no. 2, 2012.

[15] C. Duran-Faundez and V. Lecuire, “Error resilient image communication
with chaotic pixel interleaving for wireless camera sensors,” in ACM
Workshop on Real-World Wireless Sensor Networks, 2008.

[16] C. Pham, “An image sensor board based on arduino due and
ucamii camera. http://www.univ-pau.fr/˜cpham/wsn-model/tool-
html/imagesensor.html,” accessed 19/12/2014.

[17] C. Pham, V. Lecuire, and J.-M. Moureaux, “Performances of multi-
hops image transmissions on ieee 802.15.4 wireless sensor networks for
surveillance applications,” in IEEE WiMob, 2013.

[18] C. Pham, “Communication performances of ieee 802.15.4 wireless
sensor motes for data-intensive applications: A comparison of waspmote,
arduino mega, telosb, micaz and imote2 for image surveillance,” Journal
of Network and Computer Applications, vol. 46, 2014.

