
Building low-cost wireless image sensor networks: from
single camera to multi-camera system

Congduc Pham
University of Pau, LIUPPA Laboratory

congduc.pham@univ-pau.fr

Vincent Lecuire
University of Lorraine, CRAN UMR 7039, CNRS

vincent.lecuire@univ-lorraine.fr

ABSTRACT
Wireless Image Sensor Networks (WISN) where sensor nodes
are equipped with miniaturized visual CMOS cameras to
provide visual information is a promising technology for sit-
uation awareness, search&rescue or intrusion detection ap-
plications. In this paper, we present an off-the-shelf image
sensor based on Arduino boards with a CMOS uCamII cam-
era. The image sensor works with raw 128x128 image, im-
plements an image change detection mechanism based on
simple-differencing technique and integrates a packet loss-
tolerant image compression technique that can run on very
limited memory platforms. We detail the performance and
energy consumption measures of the various image platforms
and highlight how both medium-end and low-end platforms
can be supported. From the single-camera system, we de-
scribe the extension to a multi-camera system which pro-
vides omnidirectional sensing at a very lost cost for large-
scale deployment.

CCS Concepts
•Hardware →Wireless integrated network sensors;

Keywords
Wireless image sensor networks; multi-camera nodes; image
processing; resource-constrained design

1. INTRODUCTION
Wireless Image Sensor Networks (WISN) where sensor

nodes are equipped with miniaturized visual CMOS cam-
eras to provide visual information is a promising technol-
ogy for situation-awareness, search&rescue or intrusion de-
tection applications. There are a number of image sensor
boards available or proposed by the very active research
community on image and visual sensors: Cyclops [1], MeshEyes
[2], Citric [3], WiCa [4], SeedEyes [5], Eye-RIS [6], Panoptes
[7], CMUcam3&FireFly [8, 9], CMUcam4 and CMUcam5/PI-
XY [9], iMote2/IMB400 [10], ArduCam [11],. . . All these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDSC ’15, September 08 - 11, 2015, Seville, Spain
c© 2015 ACM. ISBN 978-1-4503-3681-9/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2789116.2789118

platforms and/or products are very good but are mostly
based on ad-hoc development of the visual part (i.e. devel-
opment of a camera board with dedicated micro-controller to
perform a number of processing tasks) or are based on very
powerful micro-controller/Linux-based platforms or do not
have an efficient image encoding and compression scheme
adapted to wireless sensor networks. Our motivations in
building our own image sensor platform for research on im-
age sensor surveillance applications are:

1. to have an off-the-shelf solution so that anybody can
reproduce the hardware and software components: we
use an Arduino-based solution for maximum flexibility
in programming and design; we use a simple, affordable
external camera to get raw image data. We can also
easily extend to a multi-camera system,

2. develop and experiment an efficient image compres-
sion scheme running on host micro-controller (no addi-
tional nor dedicated micro-controller) which addresses
the problem of resource limitations of sensor nodes, as
memory size, processor speed, battery capacity and
low-bandwidth radio, and which produces a packet
stream tolerant to packet losses.

The image sensor that we propose works with raw 128x128
8-bbp gray scale image which can be compressed with var-
ious quality factors for reducing the bandwidth usage and
end-to-end delay of image communication over the multi-
hop network path. An image change detection mechanism
based on simple-differencing technique shows very good re-
sults with negligible processing time. The total time to
capture an image, detect changes, encode the image and
transmit it can be less than 2.4s at medium quality level
on our image sensor platform. One original feature of the
present work with respect to previous works about image
sensors is the generalization from a single-camera system to
a multiple-camera system.

The rest of the article is organized as follows. Section 2
describes the generic image sensor components. Section 3
presents the image processing tasks: the image change de-
tection mechanism and the image encoding technique for
transmission on low bandwidth radios. We will describe
how these stages have been adapted to run on limited mem-
ory platforms. Section 4 presents the performance and en-
ergy consumption measures of the image sensor platforms.
In Section 5, we present how a multi-camera system can
be built from the generic design to provide omnidirectional
sensing at a very low cost. We conclude in Section 6.

2. A LOW COST IMAGE SENSOR
We use Arduino boards with the CMOS uCamII cam-

era from 4D systems [12]. The uCamII is shipped with a
56o angle of view lens but we also use 76o and 116o lenses.
The uCam is connected to the Arduino board through an
UART interface at 115200 bauds. The uCamII is capable of
providing both raw and JPEG bit streams but we are not
using this last feature as it is impossible from the delivered
JPEG bit stream to build a packet stream tolerant to packet
losses. As a result, we retrieve raw 128x128 8-bpp grey
scale images from the uCamII then we operate image com-
pression on the Arduino board. For comparison purposes,
we made two versions of our image sensor: one is based
on the Arduino Due board and the other on the Arduino
MEGA2560. The Arduino Due is a micro-controller board
based on the Atmel SAM3X8E ARM Cortex-M3 running
at 84MHz with 96KB of SRAM memory. The MEGA2560
features an ATmega2560 at 16Mhz and has 8KB of SRAM
memory. The Arduino Due would represent the medium-
end platform while the MEGA2560 is the low-end platform.
A short-range IEEE 802.15.4 radio is provided by a Digi
XBee S1 module. The XBee module is also connected to
the Arduino through an UART line but at 125000 bauds. It
is also possible to use a long-range radio technology such as
LoRaTM from Semtech but this issue is out of the scope of
this paper. Fig. 1 shows the image sensor.

XBee 802.15.4 module
connected at 125000 bauds

Green led,
indicates that
uCam is ready

Red led,
indicates that
uCam is
taking picture
and encoding
is undergoing

uCamII camera,
connected 115200 bauds

Arduino Due board, AT91SAM3X8E
at 84MHz, 96KB SRAM, 512KB flash

uCamII configured for
RAW 128x128 8-bit/
pixel gray scale

Arduino MEGA2560 board,
ATmega2560 at 16MHz, 8KB
SRAM, 256KB flash

Figure 1: Image sensor built with Arduino (Due or
MEGA) and uCam camera

The Due has enough memory to perform image change
detection and image compression tasks. This is not the case
on the MEGA2560 where very few memory remains after
loading all the libraries required for managing the uCam and
the radio communications: only 2000 bytes remain while the
raw image already requires 16384 bytes. Therefore, we use
an SD card attached to the MEGA SPI bus: when we read
the raw data from the serial port, we also write to the SD
card in blocks of 1024 bytes. We will show later on the
performance measures of the various platforms.

3. IMAGE PROCESSING TASKS
We describe the two image processing tasks implemented

on the image sensor. First, the image change detection task,
and second, the image compression task for size reduction
and significant tolerance to packet losses and drops.

3.1 Image change detection
We implemented an image change detection mechanism

based on ”simple-differencing” of pixel: each pixel of the im-
age from the uCam is compared to the corresponding pixel of
a reference image, taken previously at startup of the image
sensor and stored in memory (for the Due) or in a file on the
SD card (for the MEGA2560). When the difference between
two pixels, in absolute value, is greater than pixThres we in-
crease the number of different pixels, nDiff. When all the
pixels have been compared, if nDiff is greater than nbPix-
Thres we can assume an image change. However, in order to
take into account slight modifications in luminosity due to
the camera, when nDiff is greater than nbPixThres we ad-
ditionally compute the mean luminosity difference between
the captured image and the reference image, noted lumDiff.
Then we re-compute nDiff but using pixThres+lumDiff as
the new threshold. If nDiff is still greater than nbPixThres
we finally conclude for a major image change and trigger the
transmission of the image. If no change occurs during 5 min-
utes, the image sensor takes a new reference image to take
into account light condition changes. The image change de-
tection can be used for intrusion detection as tested in figure
2: we set pixThres to 35 and nbPixThres to 300. In doing so,
we were able to systematically detect a single person intru-
sion at 25m without any false alert. Note that traditional
infrared presence sensors (PIR) can not provide detection at
that distance. In addition, the image change detection mech-
anism can be used and tuned to detect changes in close-up
views for various surveillance purposes.

Figure 2: Left: reference image; Right: intruder
detected

The ”simple-differencing” method is very light-weight be-
cause it requires for each pixel of the image only 1 addition
(to compute the pixel difference) and 1 comparison (to com-
pare with pixThres) and 1 variable incrementation in case
the difference is greater than pixThres. This process is done
on-the-fly while reading data from the uCam. Note that the
”simple-differencing” process is performed on the raw image.
Once the intrusion is detected, a lower quality version of the
image can be transmitted using a lossy compression scheme.
Such scheme is useful for achieving high compression ratio
of image data at the expense of an eventually significant but
generally acceptable degradation of the visual image quality.

3.2 Image compression method
Image compression aims to remove the spatial and spec-

tral redundancies in image data for enabling faster transmis-
sion on limited bandwidth radio technologies such as IEEE
802.15.4. Additionally, even if MAC layer retransmission
provides quite efficient and low-overhead reliability, packet
loss recovery is at the expense of more end-to-end delay and
energy consumption. For this reason, the encoded bit stream
needs to be tolerant to packet losses.

Our method is based on the JPEG baseline algorithm [13]
which is a very popular standard in image compression for
either full-color or gray-scale images of natural, real-world
scenes. It lies on the transformation–quantization–codeword
assignment conventional structure where the transformation
stage is based on the 2-D 8-point DCT, i.e., the image is di-
vided into blocks of 8x8 pixels and each block is processed
independently. We applied the Cordic Loeffler DCT [14],
which is certainly the most efficient fast multiplierless algo-
rithm operating in the 1-D DCT domain. It requires only 38
additions and 16 shifts for an 8-point DCT. All operations
are on 16-bit integer. The 8x8-point DCT is obtained by
applying first the algorithm over the 8 rows then over the
resulting 8 columns, with a cost of 608 additions and 256
shifts. Furthermore, we consider the quantization table and
the Golomb and MQ encoding procedure given in the An-
nexes of the JPEG standard [13]. The quantization stage
requires 64 floating or fixed-point multiplications and 64
round-offs operations. The MQ coder is an approximate im-
plementation of arithmetic coding tailored for binary data.
The Golomb coding is a lossless compression scheme which
encodes the quantized coefficients into a form meaningful
for the MQ coder. Using the Golomb and MQ encoding
instead of Huffman encoding is significantly profitable from
the standpoints of computational complexity and memory
requirement. Fig. 3 shows the original raw 128x128 image
taken with the image sensor and encoded with various qual-
ity factors: Q=90 (high quality), Q=50 (medium quality)
and Q=10 (low quality).

raw 16384b Q=90; 5125b, 70 pkts

PSNR=29.41

Q=50; 2265b, 28 pkts Q=10; 911b, 11 pkts

PSNR=27.91 PSNR=25.28

Figure 3: 128x128 image taken by the image sensor,
encoded with various quality factor.

The total size of the compressed image, the number of
generated packets and the PSNR compared to the original
image are shown. We set the maximum image payload per
packet to 90 bytes (this is the maximum image payload, in
practice, the produced packet size will vary according to the
packetization process) because 6 bytes need to be reserved in
the 802.15.4 payload for framing bytes (2B), quality factor
(1B), real packet size (1B) and offset of the first block of
image data in the packet (2B).

The packetization stage consists in filling each packet with
an integer number of encoded blocks. This ensures that, at
the receiver side, a block is either entirely received or entirely

lost. Last but not least, encoded blocks are packetized in a
pseudo-random order by applying a spatial interleaver based
on the famous Arnold’s cat map [15]. In this way, neighbor
blocks are put into distinct packets to make easier loss con-
cealment at the receiver side. Fig. 4 shows the impact of
packet losses (20%, 40% and 60%) on the image quality.

Q=50; 20% pkt losses Q=50; 40% pkt losses Q=50; 60% pkt losses

Figure 4: Impact of packet losses on image quality

3.3 Image compression on low-end platforms
The implementation of image compression on limited mem-

ory platforms can be challenging. A typical example is il-
lustrated by our MEGA2560 platform which has only about
2KB of SRAM available at run-time to perform image pro-
cessing tasks and to build data packets for transmission. As
a result, a full-frame processing is to be avoided. We use
an external Flash (SD card) for storing the raw image data.
As standard JPEG encoding involves partitioning of the im-
age into independent blocks, it is possible to encode and
packetize on-the-fly the data with low memory usage. Only
4 buffers have to be allocated in SRAM. The first is used
to operate the DCT and quantization stages on the current
block, 64 integer values stored in Flash in 8-bit format, to
produce 16-bit integers. The second is used to store the
standard quantization matrix (64 integer values in 8-bit for-
mat). The third is used to store the array defining all the
possible states for the context of the MQ coder (94x4 values
in 16-bit format). The last buffer is used to fill the cur-
rent packet with data produced by the MQ coder (96 bytes
including header and payload fields). Finally, the memory
usage required at run-time by this implementation is lower
than 1 KB. Compared to the case where the raw image can
be entirely stored in SRAM, the processing time is however
increased due to the read access time of flash memory.

4. PERFORMANCE OF THE IMAGE SEN-
SOR PLATFORM

4.1 Image processing on Arduino Due
Fig. 5 shows the encoded image size with the compres-

sion ratio and the number of produced packets for various
quality factors. Column A shows the image encode time
which is quite constant. Column B shows the ”encode+pkt
time” which is the overhead of the image encoding process
including the encoding itself and the packetization stage,
but without transmission. The time to read the raw image
data from the uCam is also shown in column R (1512ms)
and it actually does not depend much on the uCam-Arduino
connection baud rate (here 115200 bauds) because the lim-
itation is mainly due to memory read operations from the
Arduino UART ring buffer. R+B represents the latency be-
tween the snapshot taken by the camera and the time all
the packets of the encoded image are produced (once again
without transmission).

N R A B C&=&D&)&B D E=R+D F

Quality&
Factor&
Q

size&in&bytes&
(compression&
ratio)

number&
of&

packets&
(with&

MSS=90)

reading&
time&
from&
ucam

encode&
time

encode&+&
pkt&time

transmis)
sion&time&
(deduced)

encode&+&
pkt&+&

transmis)
sion&time

cycle&
time,&with&
transmis)

sion

rcv&
time&at&

the&
sink

90 5125&&&(3.2) 70 1512 512 782 539 1321 2833 799
80 3729&&&(4.4) 48 1512 511 704 384 1088 2600 599
70 2957&&&(5.5) 37 1512 519 686 304 990 2502 447
60 2552&&&(6.4) 32 1512 509 662 263 925 2437 390
50 2265&&&(7.2) 28 1512 500 646 233 879 2391 349
40 2024&&&(8.1) 25 1512 516 657 207 864 2376 317
30 1735&&&(9.5) 21 1512 516 649 177 826 2338 278
20 1366&&&(12) 17 1512 518 638 140 778 2290 231
10 911&&&&(18) 11 1512 516 628 93 721 2233 177

Figure 5: Cycle time measured on the Due-based
platform as a function of the image compression ra-
tio. All times are in ms.

If we take into account the transmission overhead shown in
column C, column D shows the ”encode+pkt+transmission
time”. The packetization and the transmission tasks are per-
formed in a row for each packet. Values in column B and
column D have been globally measured and can be used to
get column C which is the time taken globally for trans-
mitting the produced packets: more packets means higher
transmission time. If we use a quality factor of 50, the total
time between the snapshot taken by the uCam and the end
of the transmission of the image is 1512+879=2391ms. Col-
umn E shows the image sensor cycle time with transmission
of image packets.

To quantify the cost of the image change detection mech-
anism, we measured the time to get data from the uCam
when the ”simple-differencing” method is included and when
it is not. We did not observe any difference on the Arduino
Due: the time to read data from the uCam and perform the
pixel comparison is still 1512ms. Additionally, the image
luminosity computations takes 1ms and recomputing nDiff
taking into account lumDiff, in case nDiff is greater than
nbPixThres, takes 17ms. It means that an intrusion detec-
tion mechanism can be realized at the maximum rate of one
every 1512+18=1530ms.

3.09	
2.82	

2.65	 2.56	 2.51	 2.49	 2.44	 2.38	 2.32	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

90	 80	 70	 60	 50	 40	 30	 20	 10	

Ti
m
e	
in
	 se

co
nd

	

Quality	 factor	

Comparison	 of	 RCV	 7me	 &	 1-‐hop	 latency	

RCV	 0me	 (measured)	 1-‐hop	 latency	 (image	 display)	

Figure 6: 1-hop image display latency

Column F shows the receive time measured at a sink which
will decode and display the image. The receive time repre-
sents the elapsed time between the first packet received and
the last packet received. Fig. 6 then shows the 1-hop image
display latency which is the elapsed time between the snap-
shot at the source image sensor and the display of the image
at the sink 1-hop away (column R+B+F). The smaller the
latency, the more responsive is the system. Since the time to
transmit a packet is not very large, we can actually see that

having Q up to 70 is not very penalizing in term of receive
latency.

4.2 Image processing on Arduino MEGA2560
The encoding time and the transmission time may depend

on the micro-controller type and speed. Regarding the trans-
mission time, we use a traffic generator to measure the mini-
mum time spent in the send function and the minimum time
between 2 sends as the payload size is varied. 100 packets
are sent and the mean is computed. We compared the Ar-
duino Due to the Arduino MEGA and the code of the traffic
generator, as well as the communication library for the XBee
radio module, is exactly the same on both platforms. We
found the Arduino MEGA and the Arduino Due have quite
close transmission overheads: mean minimum time between
2 sends (for a 100-byte payload) are 9.2ms (Due) and 9.6ms
(MEGA); time in send are 9.18ms (Due) and 9.07 (MEGA).
Therefore the impact of the slower micro-controller is not
high on the performances of the communication stack.

For the encoding time, we run the modified image en-
coding code on the Arduino MEGA without transmitting
packets. Fig. 7 shows the encoding timing when the qual-
ity factor is varied. Column A, A1 and A2 are respectively
the cumulated encoding time, the cumulated SD card read-
ing time and the cumulated packetization time. Column
B shows the global processing time measured globally, in-
cluded cost of control loops, function calls and other pieces
of glue code. This is why B is a bit greater than A+A1+A2
(between 12ms and 28ms).

N R A A1 A2 B C(=(D(+(B D E=R+D

size(in(
bytes

number(
of(

packets(
(with(

MSS=90)

reading(
time(
from(
ucam

cumulated(
encode(

time
cumulated(

SD(time
cumulated(
pkt(time

encode(+(
SD(+(pkt(

time

transmis+
sion(time(
(deduced)

encode(+(
SD(+(pkt(+(
transmis+
sion(time

cycle(
time,(with(
transmis+

sion
5125 70 1515 879 884 1572 3363 542 3905 5420
3729 48 1515 869 871 941 2704 386 3090 4605
2957 37 1515 878 877 713 2493 308 2801 4316
2552 32 1515 868 892 589 2371 266 2637 4152
2265 28 1515 865 883 537 2305 235 2540 4055
2024 25 1515 871 871 467 2226 210 2436 3951
1735 21 1515 871 878 405 2171 179 2350 3865
1366 17 1515 871 881 325 2093 142 2235 3750
911 11 1515 854 886 251 2003 96 2099 3614

Figure 7: Cycle time measured on the MEGA-based
platform as a function of the image compression ra-
tio. All times are in ms.

We can see that the encoding process (column B) takes a
bit more than 3.5 times more on the MEGA than on the Due,
e.g. about 2305ms instead of 646ms for Q=50. The time to
read data from the uCam is still close to the 1.512s found on
the Due. Similarly to the Due case, column D shows the ”en-
code+SD+pkt+transmission time” and column E shows the
cycle duration with transmission of image packets. The 1-
hop image display latency with the MEGA can be obtained
by adding about 1.6s to the Due’s 1-hop image display la-
tency shown previously in Fig. 6.

For the image detection mechanism on the Arduino MEGA,
the data from the uCamII are compared to the reference
image data stored in a file on the SD card: blocks of 512
bytes are read from the file and compared to the correspond-
ing image pixels from the uCam. As for the Due, we did
not observe any significant difference when introducing the
”simple-differencing” comparison and reading the SD card
for the reference image.

4.3 Energy consumption measures
To make the energy consumption measures we inserted

additional power consumption by toggling a led to better
identify the various phases of the image sensor operations.
For all the energy tests, the image transmitted was encoded
using a quality factor of 50 and between 45 and 49 pack-
ets were produced at the packetization stage. The objective
here is not to have a complete energy map with varying qual-
ity factors and packet number, but to have an approximate
idea of the energy consumption on both platforms. Fig. 8
shows an entire cycle of camera sync, camera config, data
read, data encode and packetization with transmission on
the Due. We can compute the baseline energy consumption
of the Due once the camera has turned to sleep mode (this
happen after 15s of being idle. We waited long enough be-
fore starting the energy measure process). We measured this
consumption at 1.39J/s. Note that we did not implement
any advanced power saving mechanisms such as putting the
micro-controller in deep sleep mode or lower frequency, or
performing ADC reduction, nor powering off the radio mod-
ule. It is expected that the baseline consumption can be
further decreased with more advanced power management
policy.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.5 1.5 2.5 3.5 4.5 5.5 6.5

E
Read%data% Transmit%

Ba
se
lin
e%

co
ns
um

p3
on

%

Encode%

2.773%J% 1.420%J%1.004%J%

Global%sync,%config,%read,%encode,%transmit%
consump3on%is%6.009%J%

1.39%J%/%second%

Arduino%Due%
sync%cam,%config%cam,%
read,%encode,%transmit%

Sy
nc
%c
am

%
0.
39
8%
J%

Le
d%
50
0m

s%

Co
nfi

g%
ca
m
%

0.
40
5%
J%

Le
d%
20
0m

s%

Le
d%
10
0m

s%

Le
d%
10
0m

s%

Le
d%
50
0m

s%

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.5 1.5 2.5 3.5 4.5 5.5 6.5

E
Read%data% Transmit%

Ba
se
lin
e%

co
ns
um

p3
on

%

Encode%

2.773%J% 1.420%J%1.004%J%

Global%sync,%config,%read,%encode,%transmit%
consump3on%is%6.009%J%

1.39%J%/%second%

Arduino%Due%
sync%cam,%config%cam,%
read,%encode,%transmit%

Sy
nc
%c
am

%
0.
39
8%
J%

Le
d%
50
0m

s%

Co
nfi

g%
ca
m
%

0.
40
5%
J%

Le
d%
20
0m

s%

Le
d%
10
0m

s%

Le
d%
10
0m

s%

Le
d%
50
0m

s%

Figure 8: Energy consumption for the Arduino Due

After removing the energy consumed by the led, we found
that an entire cycle for image acquisition, encoding and
transmission consumes about 6J. The largest consumed en-
ergy part on the Due comes from polling the serial line to
get the image data from the uCam (through the system se-
rial buffer). The encoding process actually consumes less
than half that amount of energy. The cost of periodic image
change detection, without encoding and transmission is sim-
ilar to the ”Read data” cost. Therefore, we found that the
”Global sync, config, read&compare” consumption is 3.571J.

On the MEGA board, the baseline consumption was found
at 1.25J, a bit smaller than on the Due. However, the MEGA
board consumes much more than the Due for all operations.
This is mainly due to its much slower clock frequency making
all the processes to take longer time. The need of an exter-
nal storage such as an SD card also contributes to higher
energy consumption. This energy consumption statement
is actually quite surprising for us because we thought that
the Due board would consume much more energy than the
MEGA. Given the price of the Due compared to the MEGA,
building the image sensor with the Due seems to be the best
choice both in terms of performances and energy efficiency.

Fig. 9 summarizes and compares the Due and MEGA
platforms. In the autonomy category, the uptime is com-
puted with the baseline consumption. Once again, no power
saving mechanisms have been implemented yet.

Platform Baseline J/s cycle J intrusion J Uptime (hour) # cycle #intrusion
Due 1.394 6.009 3.571 7.75 6470 10887
MEGA2560 1.251 10.472 4.418 8.63 3713 8799

Consumption Autonomy

Figure 9: Energy consumption summary

]cycle represents the number of image capture, encoding
and transmission cycles that can be performed. Similarly,
]intrusion represents the number of image change detection
(but no encoding nor transmission) that can be performed.
These values are obtained by taking the energy amount of a
1200mAh 9V battery, i.e. 38880J.

5. BUILDING MULTI-CAMERA SYSTEMS
From the 1-camera system it is not difficult to have a mul-

tiple camera system. Both Arduino Due and MEGA2560
have 4 UART ports. One port is used for connection to the
XBee module, so the 3 others are available for 3 uCamII
cameras. On initialization, the image sensor board will take
and store a reference image for each camera (raw format).
On the Arduino Due, there is enough memory to store a
reference image for each camera. On the MEGA2650, these
reference images are stored in the SD card. Figure 10(left)
shows our Arduino Due connected to 3 uCamII cameras.
The cameras are set at 120o from each other and are acti-
vated in a round robin manner. The image change detection
process is then done on each camera with the correspond-
ing reference image. Note that when images need to be
transmitted (upon intrusion for instance), each camera can
be configured with a different image quality factor if neces-
sary. 76o and 116o lenses can be mounted on the uCamII,
in addition to the 56o lens shipped with the uCamII. Figure
10(right) compares the FoV of the 3 lenses.

Cam 1

Cam 2

Cam 3

56° lens 76° lens

116° lens

Figure 10: A 3-camera system on the Arduino Due

For large-scale deployment, such as in intrusion detection
applications, Figure 11 compares the coverage of a 80 x 1-
uCamII system (top-left, 36.3%) to a 80 x 3-uCamII system
(top-right, 71.5%) and to a 240 x 1-uCamII system (bottom-
left, 71.2%). The image sensors are randomly deployed in
an 400mx400m area. The depth of view of the cameras has
been set to 35m and lenses are 76o. The FoV in red is the
one of camera 0, for both 1-camera and 3-camera systems.

The blue is for camera 1 and the green for camera 2, in the
3-camera system. We can see that the coverage is greatly
improved, at a much lower cost than having 3 times more full
sensor boards. With 116o lenses, using 3 cameras can almost
provide omnidirectional vision as shown in Fig. 11(bottom-
right) (91.6% of coverage).

80 image sensors, 1 camera/
sensor aov=76°, dov=35m

80 image sensors, 3 camera/
sensor aov=76°, dov=35m

240 image sensors, 1 camera/
sensor aov=76°, dov=35m

80 image sensors, 3 camera/
sensor aov=116°, dov=35m

Figure 11: Comparison of coverage by various image
sensor systems

Once programmed, the image sensor can be completely
autonomous: on startup a first image for each camera will
be taken to serve as the reference image, then periodic im-
age change detection will send images to the sink. At the
sink (a Linux computer), a display program will continu-
ously waits for image packets from the radio interface and
will display the received image from different sensors. We
deployed one 3-camera system and three 1-camera system
in a hall and tested it during several hours without any false
alarms. The sink has an internet access and use Dropbox to
sync the received image folder with remote devices such as
smartphones.

6. CONCLUSIONS
We integrated an image change detection method and a

packet loss-tolerant image compression method technique
that can run on very limited memory platforms. Encoded
images can be transmitted with low-bandwidth radio such
as IEEE 802.15.4. The latency between the image snapshot
and the end of image transmission can be less than 2.4s at
medium image quality factor. For intrusion detection appli-
cations, we showed that multi-camera systems are attractive
because the number of nodes required for achieving the full
coverage of the area under surveillance is largely lower than
in the case of single-camera systems. In future works, we will
add energy saving techniques for the Arduino board and the
radio module for usage in domestic or industrial Internet of
Things applications. A promising direction is also the usage
of long-range 1-hop radio technology to reduce the complex-
ity of visual surveillance application deployment.

7. REFERENCES
[1] M. Rahimi et al. “Cyclops: In situ image sensing and

interpretation in wireless sensor networks,” in ACM
SenSys, 2005.

[2] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan,
“Mesheye: A hybrid-resolution smart camera mote for
applications in distributed intelligent surveillance,” in
IPSN, April 2007.

[3] P. Chen et al., “Citric: A low-bandwidth wireless
camera network platform,” in ACM/IEEE ICDSC,
Sept 2008.

[4] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin,
“Camera mote with a high-performance parallel
processor for real-time frame-based video processing,”
in IEEE AVSS, Sept 2007.

[5] Evidence Embedding Technology, “Seed-eye board, a
multimedia wsn device.
http://rtn.sssup.it/index.php/hardware/seed-eye,”
accessed 20/12/2013.

[6] Á. Rodŕıguez-Vázquez et al., “The Eye-RIS cmos
vision system,” in Analog Circuit Design, Springer
Netherlands, 2008.

[7] W.-C. Feng et al., “Panoptes: Scalable low-power
video sensor networking technologies,” ACM
TOMCCAP, vol. 1(2), May 2005.

[8] A. Rowe, D. Goel, and R. Rajkumar, “Firefly mosaic:
A vision-enabled wireless sensor networking system,”
in IEEE RTSS, Dec 2007.

[9] Evidence Embedding Technology, “cmuCam: open
source programmable embedded color vision sensors.
http://www.cmucam.org/,” accessed 19/12/2014.

[10] S. Paniga, L. Borsani, A. Redondi, M. Tagliasacchi,
and M. Cesana, “Experimental evaluation of a video
streaming system for wireless multimedia sensor
networks,” in IEEE/IFIP Med-Hoc-Net, 2011.

[11] ArduCam, “Arducam. http://www.arducam.com,”
accessed 19/12/2014.

[12] 4D Systems, “uCamII.
http://www.4dsystems.com.au/product/ucam ii/,”
accessed 19/12/2014.

[13] International Standard Organization, “ITU-T
recommendation T.81. http://www.jpeg.org/jpeg/,”
accessed 6/2/2015.

[14] B. Heyne, C. C. Sun, J. Goetze and S. J. Ruan, “A
computationally efficient high-quality Cordic based
DCT,” in EUSIPCO, Sep 2006.

[15] C. Duran-Faundez and V. Lecuire, “Error resilient
image communication with chaotic pixel interleaving
for wireless camera sensors,” in ACM Workshop on
Real-World Wireless Sensor Networks, 2008.

