
XCP-i : eXplicit Control Protocol for heterogeneous
inter-networking of high-speed networks

D. M. Lopez-Pacheco
INRIA RESO/LIP, France

Email: dmlopezp@ens-lyon.fr

C. Pham, Member, IEEE
LIUPPA, University of Pau, France
Email: Congduc.Pham@univ-pau.fr

L. Lefèvre
INRIA RESO/LIP, France

Email: laurent.lefevre@inria.fr

Abstract— XCP is a transport protocol that uses the assistance
of specialized routers to very accurately determine the available
bandwidth along the path from the source to the destination. In
this way, XCP efficiently controls the sender’s congestion window
size thus avoiding the traditional slow-start and congestion
avoidance phase. However, XCP requires the collaboration of
all the routers on the data path which is almost impossible
to achieve in an incremental deployment scenario of XCP. It
has been shown that XCP behaves badly, worse than TCP, in
the presence of non-XCP routers thus limiting dramatically the
benefit of having XCP running in some parts of the network. In
this paper, we address this problem and propose XCP-i which
is operable on an internetwork consisting of XCP routers and
traditional IP routers without loosing the benefit of the XCP
control laws. The simulation results on a number of topologies
that reflect the various scenario of incremental deployment on
the Internet show that although XCP-i performances depend on
available bandwidth estimation accuracy, XCP-i still outperforms
TCP on high-speed links.

I. INTRODUCTION

In the Internet world, the TCP protocol originally defined
in RFC 793 is the main protocol in charge of the difficult task
of providing reliability and fair sharing of the bandwidth to
end-users. Since the congestion collapse observed by V. Ja-
cobson in 1986 and the well-known slow-start and congestion
avoidance algorithms proposed in 1988 [6], the networking
community has proposed many enhancements to the original
proposition in order to make TCP more efficient in a large
variety of network conditions ([1], [5]) and technologies such
as wireless links ([14], [3]), satellite, etc. On high-speed
networks where the link capabilities can be in the order of
several gigabits/s (usually referred to as high bandwidth-delay
product networks) TCP need to be tuned to the new networking
conditions (socket buffer size, maximum congestion window
size,. . .) but remains limited by the slow increase of the con-
gestion window during the congestion avoidance phase. That’s
why a number of new propositions have been made [2], [8], [9]
which mainly consist in adding more efficient mechanisms for
acquiring bandwidth faster. For example, HSTCP [2] modifies
the standard TCP response function to both faster acquire the
available bandwidth and to faster recover from packet losses
in the network. The main drawback of such a behavior is that
fairness between TCP and HSTCP flows, and even between
HSTCP flows, is affected since HSTCP is much slower to give
back bandwidth. FAST TCP [8] is basically a modification
of TCP Vegas which uses the round-trip time variation to

predict congestion in the network. FAST TCP shows very good
performances but suffers from non-congestion based delay
variations such as rerouting. While TCP, HSTCP and FAST
TCP can be classified as end-to-end solutions, XCP [9] is
a router-assisted approach that use the assistance of routers
to more accurately signal congestion in the network and to
compute the optimal congestion window size to be applied
at the source. Therefore, XCP shows very stable behavior
but is also able to get bandwidth very fast thus maximizing
the utilization of high-speed links, while preserving fairness
among XCP flows.

XCP is therefore a promising approach on very high-speed
networks and several studies have analytically shown the
performances of XCP [10], proposed enhancements to XCP
for making it more robust to packet losses on the reverse
path [11] and performed extensive experimental measures
on a UNIX-based implementation [15]. In most of these
studies, the problem of incremental deployment of XCP has
been discussed as XCP requires the collaboration of all the
routers on the data path. It has been shown that XCP behaves
badly, worse than TCP, in the presence of non-XCP routers
thus limiting dramatically the benefit of having XCP running
in some parts of the network. In this paper, we address
this problem and propose enhancements to XCP to make it
operable on an internetwork consisting of XCP routers and
traditional IP routers without loosing the benefit of the XCP
control laws. The simulation results on a number of topologies
that reflect the various scenario of incremental deployment on
the Internet show that our modifications are efficient while
keeping the core of the XCP control laws unchanged.

The paper is organized as follows. Section 2 reviews the
XCP protocol and presents the problem of XCP’s sensitivity to
non-XCP routers. Section 3 presents the design objectives and
the mechanisms we propose for detecting non-XCP clouds and
take into account the non-XCP resources. Section 4 shows the
simulation results. Section 5 discusses some limitations and
the open issues while section 6 concludes our article.

II. THE XCP PROTOCOL

A. General description

XCP [9] (eXplicit Control Protocol) uses router-assistance
to accurately inform the sender of the congestion conditions
found in the network. In XCP, data packets carry a congestion
header, filled in by the source, that contains the sender’s

current congestion window size (H cwnd), the estimated RTT
and a feedback field H feedback. The H feedback field
is the only one which could be modified at every hop (XCP
router) based on the value of the two previous fields. Basically,
the H feedback field which can take positive or negative
values represents the amount by which the sender’s congestion
window size is increased or decreased. On reception of data
packets, the receiver copies the congestion header (which
has been modified accordingly by the routers) into ACK
packets sent back to the source. It is not important that
these ACK packets follow the same path than data packets
since all the computations are done on the forward data path.
On reception of ACK packets, the sender would update its
congestion window size as follows: cwnd = max(cwnd +
H feedback, packetsize), with cwnd expressed in bytes. The
core mechanism resides in XCP routers that use an efficiency
controller (EC) and a fairness controller (FC) to update the
value of the feedback field over the average RTT which
is the control interval. The EC has the responsibility of
maximizing link utilization while minimizing packet drop rate.
The EC basically assigns a feedback value proportional to the
spare bandwidth S, deducted from monitoring the difference
between the input traffic rate and the output link capacity, and
to the persistent queue size Q.

The authors in [9] proposes the following EC equation:
feedback = α.rtt.S − β.Q, with α = 0.4 and β = 0.226.
Then the FC translates this feedback value, which could
be assimilated to an aggregated increase/decrease value, into
feedback for individual flows (to be put in the data packet’s
congestion header) following fairness rules similar to the TCP
AIMD principles, but decoupled from drops because only the
difference between input traffic rate and output link capacity
(S) is used instead in the EC. Note that no per-flow states are
used by XCP routers to perform all these operations: as a data
packet carries in its header the current sender cwnd and the
RTT, it is easy to compute how many data packets are sent per
congestion window in order to assign the available bandwidth
in a proportional manner.

The original XCP proposition did not mention any mech-
anism for handling severe congestion situations as it was
believed that such situations should not occur with the XCP
kind of control laws. However, some works have shown that
severe congestions do happen and that it is desirable to keep
the TCP mechanism which consists in resetting cwnd to 1
in case of severe congestion [15], [10]. However, as the
original ns model of XCP was implemented on top of the
TCP model, the XCP simulation model did benefit from this
TCP mechanism. Our simulations did confirm this assumption
and therefore we assume that XCP does react as TCP does in
case of severe congestion.

B. Sensitivity to non-XCP routers

Since XCP relies on specialized routers to estimate the
available bandwidth all along the path from the source to the
destination, it can easily be foreseen that XCP will behave
badly if there are non-XCP routers on the path with bottleneck

link capacities (the term non-XCP router will refer to a
traditional IP router, e.g. DropTail, RED, etc, with no XCP
functionalities. An non-XCP cloud is a continuous set of n
non-XCP routers, n ≥ 1.). Moreover, we can also predict
that XCP will perform worse than TCP in this case because
the feedback computation will only take into account the
XCP elements on the path, ignoring the existence of the
bottleneck link. This assumption has been first illustrated
in [15] and we review below some simulation results exhibiting
this problem for the purpose of making our paper clearer to
the reader. Figure 1 presents 3 scenario: (a) shows a typical
Internet network with non-XCP routers, (b) shows an all-XCP
network with 100% XCP-routers and (c) shows a more realistic
scenario of an incremental deployment of XCP around a non-
XCP router. In all these scenario, the bottleneck capacity is
30 Mbps while the other links have a capacity of 80 Mbps.

Sender Receiver

80 Mbps

1 ms

80 Mbps 30 Mbps 80 Mbps

16 ms 1 ms16 ms

R2R1

Non XCP router

R0

Non XCP router Non XCP router

Non XCP cloud

Sender Receiver

80 Mbps

1 ms

80 Mbps 30 Mbps 80 Mbps

16 ms 1 ms16 ms

R2R1

XCP

R0

XCP XCP

Sender Receiver

80 Mbps

1 ms

80 Mbps 30 Mbps 80 Mbps

16 ms 1 ms16 ms
R2

XCP

R0

Non XCP router XCP

c)

b)

a)

R1

Fig. 1. (a) scenario for TCP, (b) and (c) scenario for XCP.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60

cw
nd

 s
iz

e
(#

 o
f

pa
ck

et
s

se
nt

/R
T

T
)

Time (s)

TCP New Reno − Scenario a
XCP − Scenario b
XCP − Scenario c

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

TCP New Reno − Scenario a
XCP − Scenario b
XCP − Scenario c

Fig. 2. Congestion window evolution and Throughput for scenario a,b,c.

Figure 2 shows the behavior of one TCP flow on scenario (a)
and one XCP flow on scenario (b) and (c). The congestion win-
dow evolution (left figure) shows the typical saw-tooth curve
of TCP and the typical XCP curve that directly jumps to the
optimal congestion window size (no packet losses). For XCP
on scenario (c), the congestion window size is very unstable
and frequently goes well beyond the maximum value found
by the linear search of TCP congestion avoidance mechanism,
causing a high amount of packet losses. The explanation is
as follows: since the non-XCP router is unable to update
the feedback value carried in XCP packets to indicate the
bottleneck, the XCP router that immediately follows the non-
XCP router uses a feedback value that reflects the available
bandwidth outside the non-XCP cloud, which is much greater
than the 30 Mbps of the bottleneck in our scenario. In these
ns-based simulations, TCP on scenario (a) successfully sent
215.004 MBytes, XCP on scenario (b) sent 223.808 MBytes
and XCP on scenario (c) sent only 52.426 MBytes during one
minute !

III. ENHANCING XCP FOR HETEROGENEOUS

INTERNETWORKING

We have seen in the previous section that XCP performs
badly with non-XCP routers in the data path. This section de-
scribes the mechanisms we propose to make XCP operational
in an incremental deployment scenario. We will call XCP-
i this XCP version, the i letter standing for interoperable.
We will then use the XCP-i router term to refer to an
XCP-capable router with interoperable functionalities. While
extending XCP for internetworks it is desirable to keep the
changes to a minimum and especially keep the core of the
XCP’s control laws unchanged. One main reason for doing
this is because there are already some XCP implementations
available (which have shown that the XCP computations are
not trivial to implement [15]) and therefore major changes in
the protocol require a lot of time in new software development.
Also, XCP-i tries to maintain the XCP philosophy which is to
avoid keeping state variables per flow.

The XCP-i algorithm introduces 2 main new functionalities:
(i) detects when an XCP packet has gone through a non-XCP
cloud and (ii) takes into account the available bandwidth in the
non-XCP cloud in the feedback computation. We will in the
following subsections present how these new functionalities
have been incorporated into the XCP protocol while keeping
the core of the XCP control laws unchanged.

A. XCP-i : architecture and algorithm in routers

1) Detecting non-XCP clouds: XCP-i detects non-XCP
clouds by using the TTL counter (defined in the RFC 791). We
suppose that all routers in the network support the regular TTL
operations, especially the one that decreases the TTL’s value
in the IP packet header before forwarding the packet. With
this assumption, we add a new field in the XCP packet header
(which is different to the IP header) named xcp ttl which is
decremented only by XCP-i routers. TTL and xcp ttl have
to be initialized by the sender with the same value. In this way,
on an all-XCP network, the TTL and xcp ttl fields will
always have the same value. When an XCP-i router receives
a packet with the TTL field smaller than the xcp ttl field,
it can conclude that the packet has gone through a non-XCP
cloud. After processing packet, the XCP-i router will update
xcp ttl = TTL in order to hide this non-XCP cloud to the
others XCP-i routers and to detect new non-XCP clouds if
they are present in the data path. This solution is simple, does
not require any special message between the routers and the
overhead for processing this additional field is small.

2) Detecting the XCP-i edge routers: When an non-XCP
cloud has been detected by an XCP-i router, XCP-i requires
the identity of the first XCP-i router before the non-XCP
cloud to be known. The reason is because XCP-i will then
try to determine the available bandwidth between the 2 XCP-i
routers located at the edge of the non-XCP cloud. In order
to discover the upstream XCP-i edge router, we add a new
field in the XCP packet header named last xcp router
which contains the IP address of the last XCP-i router that has
processed the XCP packet. An XCP-i router would simply put

its own IP address in this field prior to send the packet on the
wire. In this way, when a non-XCP cloud is detected by an
XCP-i router, this router will automatically know which XCP-i
router is located at the other side of the non-XCP cloud. Once
again, this solution is simple, does not require any special
message between the XCP-i routers and the CPU usage to
process this additional field is kept to a minimum.

3) Determining the bottleneck bandwidth: Let’s note by
XCP-ik−1 and XCP-ik the 2 XCP-i edge routers of the non-
XCP cloud. The idea in the XCP-i algorithm is to initiate a
bandwidth estimation procedure at the XCP-ik−1 router. To
do so, XCP-ik sends a request to XCP-ik−1 and waits for
an acknowledgment of its request during a xcp req timeout
time period. If this acknowledgment does not arrive the
process is restarted. After 3 unsuccessful requests, XCP-ik
concludes that the path between XCP-ik−1 and XCP-ik is
broken. The bandwidth estimation procedure will only be
restarted on reception of a new packet from XCP-ik−1. Now,
upon reception of a request, XCP-ik−1 will acknowledge the
request and will try to find the available bandwidth, BWk−1,k,
between XCP-ik−1 and XCP-ik. Many algorithms has been
proposed in the literature to do this (e.g. packet pair, packet
train, etc...), and we will only suppose that the router will
implement one of these to find the most accurate value (for
instance in [13] the authors reported that pathchirp [12] or
pathload [7] present very accurate bandwidth estimations,
without producing a big load in the network). After having
obtained BWk−1,k, XCP-ik−1 will send it to XCP-ik which
will add an entry in a hash table based on XCP-ik−1’s IP
address to record the available bandwidth between XCP-ik−1

and XCP-ik. Then the bandwidth estimation procedure should
be performed periodically at a given frequency. This procedure
should be stopped after an inactivity period of XCP-ik−1 and
the corresponding entry in the hash table should be removed
in order to keep the hash table as small as possible.

Note that it is important that XCP-ik stores the available
bandwidth (and therefore performs the feedback computation
as this will be explained in the next section) and not XCP-ik−1,
because XCP-ik−1 is unable to distinguish between flows that
go through the non-XCP cloud to XCP-ik from those that go
to another XCP-i router through the same non-XCP cloud (see
figure 3 for an example). This is why XCP-ik−1 communicates
the available bandwidth to XCP-ik even though this is XCP-
ik−1 which computes it.

This solution does not keep any state per flow: only 1 entry
in the hash table needs to be kept per upstream XCP-i router.

4) The XCP-i virtual router: When XCP-ik receives a
packet that has gone through a non-XCP cloud, and if
an available entry BWk−1,k exists in the hash table for
last xcp router , XCP-ik will use a virtual router, XCP-
ivk, to compute a feedback that will reflect the network
condition in the non-XCP cloud. The purpose of the virtual
router is to emulate an XCP-i router located upstream from
XCP-ik with a virtual output link connected to XCP-ik which
capacity is the available bandwidth found in the non-XCP
cloud. Figure 3 shows the logical architecture of the XCP-

ik router with one virtual router per non-XCP cloud. We can
view the virtual router as a logical entity that replaces the non-
XCP cloud. The equation to compute the feedback in XCP-iv
is similar to the one of XCP (and therefore the same code
could be reused):

feedbackXCP−ivk
= α.rtt.BWk−1,k − β.Q (1)

Rules for setting α and β are the same than for XCP. rtt
and Q are respectively the average RTT on all the incoming
packets and the persistent queue size in the XCP-i router which
contains the XCP-iv virtual routers. In equation (1) BWk−1,k

replaces S in the XCP’s original equation therefore the virtual
router does not need to know the amount of input traffic (see
section II-A). Once the feedback is updated by the virtual
router, XCP-ik will start its normal feedback computation as
usual.

Fig. 3. An XCP-i router with 1 virtual router per non-XCP cloud.

B. XCP-i : architecture in end-hosts

It is possible that during an incremental deployment of XCP,
either the source or the receiver, or both, are not directly
connected to an XCP router. For example, figure 4 shows
an asymmetric deployment scenario where XCP-i routers are
deployed near the receiver side with a non-XCP cloud at the
sender side.

Non XCPSender Receiver

50 Mbps

1 ms

50 Mbps 50 Mbps 50 Mbps

16 ms 1 ms16 ms

XCP-i XCP-i

R2R1

30 Mbps

Fig. 4. Asymmetric deployment: optimized receiver side

In these cases, some parts of the XCP-i algorithm must also
be supported by the end-hosts. If the XCP-i router is located at
the receiver side (figure 4), the sender must be able to initiate
a bandwidth estimation procedure upon reception of a request
from the first XCP-i on the path. When the XCP-i router is
located at the sender side, the receiver can either act as an
XCP-i router by implementing both non-XCP cloud detection
and feedback computation, or, if this solution is not desirable,
it could ask the last XCP-i router to compute a feedback value
corresponding to the non-XCP cloud’s bottleneck value. We
believe that this last solution is more complex than the first
one, which has the benefit of simply duplicating the XCP-
i code in the receiver’s XCP protocol stack since the input
traffic rate does not need to be known when an estimation of
the available bandwidth is provided (see section III-A.4).

IV. SIMULATION RESULTS

XCP-i has been simulated with ns by extending Katabi’s
XCP simulation model in order to incorporate the enhance-
ments of XCP-i. Unless specified, the bandwidth estimation
procedure always gives the correct value at the end of each
XCP control interval (in ns, the available bandwidth is found
by subtracting the incoming traffic load to the bottleneck link
capacity, which is known in the simulation).

A. Incremental deployment around non-XCP clouds

The first scenario on which XCP-i is tested consists in a
symmetric incremental deployment depicted in figure 5 which
could be viewed as an optimized peering point scenario where
2 non-XCP clouds are connected by XCP routers. Figure 6
shows the sender’s cwnd and the receiver’s throughput. As we
can see, both cwnd and throughput are stable with identical
results when compared to the all-XCP scenario. Although not
shown there were no timeouts nor packet losses. The XCP-i
virtual router in R1 and R2 knows the available bandwidth
in the non-XCP cloud and therefore computes an optimal
feedback value accordingly. These results show that XCP-i
is able to efficiently run in an heterogeneous network even
though it is deployed only at some strategic locations.

Non XCP Receiver

50 Mbps

10 ms

100 Mbps100 Mbps 50 Mbps

10 ms 1 ms10 ms

XCP-i

R2

Sender
50 Mbps

1 ms

50 Mbps

10 ms

XCP-i

R0

Non XCP XCP-i

R1

30 Mbps 20 Mbps

Fig. 5. Incremental deployment at peering point

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10cw
nd

 s
iz

e
(#

 o
f

pa
ck

et
s

se
nt

/R
T

T
)

Time (s)

XCP−i

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

XCP−i

Fig. 6. cwnd and throughput in incremental deployment

B. Merge scenario: n non-XCP clouds share 1 XCP path

The third scenario is a merge scenario where 2 non-XCP
clouds share 1 XCP path as depicted in figure 7.

Non XCP
XCP-i

Sender i

Receiver i

Receiver j

50 Mbps

50 Mbps
50 Mbps

50 Mbps
1 ms

16 ms

16 ms

50 Mbps

16 ms

40 Mbps 1 ms

16 ms

XCP-i

R2

50 Mbps
1 ms

50 Mbps

16 ms

R0

Non XCP XCP-i

R1

R3

Sender j

50 Mbps

1 ms

XCP-i

10 Mbps

30 Mbps

Fig. 7. 2 upstream non-XCP queues, Σinput capacity = output capacity

In this case, the XCP-i router at the merging point (R1
in the figure) has to create one virtual XCP-i router for
each incoming non-XCP cloud. In addition, the sum of the
bottleneck bandwidth of each non-XCP clouds is equal to
the output link capacity of the XCP-i merging point. In this
way, we also test the ability of XCP-i to correctly use the
legacy XCP feedback computation procedure to insure fairness
between the 2 merging flows. Figure 8 shows that XCP-i

succeeds in maintaining an XCP-like fairness since sender j
can get an optimal throughput of 10Mbps and sender i can
get approximately 28Mbps. The reason why sender i only gets
28Mbps instead of 30Mbps is due to XCP control laws and is
explained in more details in [10].

0
50

100
150
200
250
300
350
400
450

 0 1 2 3 4 5 6 7 8 9 10cw
nd

 s
iz

e
(#

 o
f

pa
ck

et
s

se
nt

/R
T

T
)

Time (s)

XCP−i − Sender i
XCP−i − Sender j

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

XCP−i − Sender i
XCP−i − Sender j

Fig. 8. cwnd and throughput in the merge scenario

Non XCP

Sender i

Receiver i

Receiver k

50 Mbps
50 Mbps

50 Mbps

16 ms

16 ms

50 Mbps

16 ms

50 Mbps 1 ms

16 ms

XCP-i

R3

50 Mbps
1 ms

50 Mbps

16 ms

R0

Non XCP XCP-i

R2
50 Mbps

1 ms

Sender j

Sender j

50 Mbps

50 Mbps

XCP-i

R4
10 Mbps

30 Mbps

XCP-i

50 Mbps
1 ms

50 Mbps

16 ms

R6

XCP-i

R7

XCP-i
Sender k

Receiver j0

Receiver j1

1 ms

50 Mbps

50 Mbps

1 ms

Fig. 9. 2 upstream non-XCP queues competing with an XCP path,
Σinput capacity > output capacity

Figure 9 shows a more complex scenario where we have
2 non-XCP clouds and 1 XCP-i router connected to a single
XCP-i router. In addition, the non-XCP cloud on the top carries
2 flows, j0 and j1, which should share the 10Mbps link. Also,
if we consider the sum of all incoming link at the XCP-i
merging point, it is much higher than the output link capacity.

0
50

100
150
200
250
300
350
400
450

0 1 2 3 4 5 6 7 8 9 10cw
nd

 s
iz

e
(#

 o
f

pa
ck

et
s

se
nt

/R
T

T
)

Time (s)

XCP−i − Sender i
XCP−i − Sender j0
XCP−i − Sender j1
XCP−i − Sender k

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

XCP−i − Sender i
XCP−i − Sender j0
XCP−i − Sender j1
XCP−i − Sender k

Fig. 10. cwnd & throughput: non-XCP clouds compete with an XCP path

As we can see in figure 10, the sum of all the throughputs
does not exceed the output link capacity at the merging point
which is set to 50Mbps. In this complex scenario, the real
XCP-i router executes the XCP Fairness Controller to insure
that its output link is fairly used by all the flows. It is also
important to see in this scenario that the XCP-i virtual router
does execute the Fairness Controller to insure that the available
bandwidth in the non-XCP cloud is shared in a fair manner.
In our example, j0 and j1 get 5Mbps each.

C. Fork scenario: 1 non-XCP cloud serves n XCP paths

In this scenario, figure 11 shows a topology with a non-XCP
cloud connected to 2 XCP paths. Figure 12 shows that XCP-i
once again is able to fairly share the 50Mbps link in order to
get 25Mbps for each flow.

Non XCP

50 Mbps

50 Mbps

16 ms 50 Mbps

16 ms

50 Mbps

1 ms16 ms

XCP-i

R3

XCP-i

R2

Sender i

Sender j

50 Mbps

50 Mbps

XCP-i

R0

30 Mbps

Receiver i

30 Mbps

50 Mbps

50 Mbps50 Mbps

16 ms

50 Mbps

1 ms16 ms

XCP-i

R5

XCP-i

R4

Receiver j

Fig. 11. 1 non-XCP queue shared by XCP-capable downstream nodes

0
50

100
150
200
250
300
350
400
450

0 1 2 3 4 5 6 7 8 9 10

cw
nd

 s
iz

e
(#

 o
f

pa
ck

et
s

se
nt

/R
T

T
)

Time (s)

XCP−i − Sender i
XCP−i − Sender j

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

XCP−i − Sender i
XCP−i − Sender j

Fig. 12. cwnd and throughput in the fork scenario

D. Varying the bandwidth estimation accuracy

We supposed so far that the bandwidth estimation found by
the routers are always accurate. This is not always true [13]
and under certain conditions, the tools that are used to estimate
the available bandwidth could overestimate or underestimate it.
In this subsection, we took the topology of figure 7, multiplied
all link capacities by 10 in order to compare XCP-i with
TCP on high-speed links and supposed that the available
bandwidth estimation is inaccurate: we randomly overestimate
or underestimate the available bandwidth by a maximum of
10% and 20%.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

TCP New Reno − Sender i
TCP New Reno − Sender j

0
50

100
150
200
250
300
350
400

0 2 4 6 8 10 12 14 16 18 20
T

hr
ou

gh
pu

t (
M

bp
s)

Time (s)

XCP−i − Sender i − +/−10%
Av. Bandwidth Estimation

Accurate Av. Bandwidth

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

XCP−i − Sender j − +/−10%
Av. Bandwidth Estimation

Accurate Av. Bandwidth

0
50

100
150
200
250
300
350
400

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

XCP−i − Sender i − +/−20%
Av. Bandwidth Estimation

Accurate Av. Bandwidth

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

XCP−i − Sender j − +/−20%
Av. Bandwidth Estimation

Accurate Av. Bandwidth

0
50

100
150
200
250
300
350
400

0 5 10 15 20

of

 d
ro

ps
 p

ac
ke

ts

Time (s)

XCP−i − Sender i − +/−20% − R0−R1
XCP−i − Sender j − +/−20% − R3−R1

Fig. 13. Top: throughput for TCP (left), XCP-i - Sender i - 10% (right).
Middle: throughput for XCP-i - Sender j - 10% (left), XCP-i - Sender i
- 20% (right). Bottom: throughput for XCP-i-Sender j-20%, packet losses
XCP-i-20% (right).

Figure 13 shows the throughput for sender i and j, the
accurate (real) and the estimated available bandwidth. As we
can see in figure 13(top-left) TCP is not able to get all the
available bandwidth (bottleneck link capacities are 300Mbps
and 100Mbps) and sender i and j sent respectively 329Mbytes
and 172MBytes in 20s. XCP-i with 10% and 20% estimation

error still performs well: sender i and j sent respectively
690MBytes and 182MBytes with 10% error and 590MBytes
and 187MBytes with 20% error. As a comparison, with XCP-i
with 0% error (accurate estimation) sender i and j sent respec-
tively 670MBytes and 244MBytes. As can be expected, the
main consequences of overestimating the available bandwdith
are packet drops and timeouts. This can be seen more easily
for sender j: figure 13(bottom-left) shows that, in this case,
the estimated bandwidth is always above the real available
bandwidth resulting in packet drops at 3 moments (see figure
13(bottom-right)) which correspond to when the estimated
bandwidth goes well beyonds the link capacity. For sender i
10% of error does not produce timeouts as the router’s buffers
can compensate (1700-packet buffer) which is not the case
for sender j (700-packet buffer). However, although XCP-
i performances depend on the estimation accuracy, XCP-i
still outperforms TCP on high-speed links because it recovers
quickly from packet losses.

V. OPEN ISSUES

A. Fairness and over-estimatation in a non-XCP cloud

The topology depicted by figure 14 is currently not fully
supported. In this case there is a bottleneck link in an non-
XCP cloud that is shared by 2 XCP paths. The problem
is as follows: let assume in a first step that all links are
unload. If router b detects the non-XCP cloud, it will request
a bandwidth estimation procedure from router a. The result
will be BW=30Mbps if the link is not loaded. Now, suppose
that almost at the same time router c also detects the non-
XCP cloud and requests a bandwidth estimation procedure
from router d. Again, BW=30Mbps. Then senders i and j
will both try to transmit at 30Mbps resulting in a 60Mbps
load for the bottleneck link. When another estimation will be
triggered, BW will certainly be less than 30Mbps (typically
near zero). Depending on how large are the router’s buffer,
some packets could be dropped because XCP-i can conclude
that the available bandwidth is n times the real available
bandwidth if there are n XCP independent paths. However, this
problem could be diminished if the frequency of bandwidth
estimation is increased so that senders i and j get a more
accurate view of the available bandwidth, but it will increase
the load in the network with control messages. The impact
of controls messages in the network’s load will be studied in
futures works.

A second problem is when there is already 1 XCP flow that
takes all the bottleneck link capacity. When the second sender
starts, XCP-i is not able to correctly allocate bandwidth in a
fair manner because of the XCP control laws that prevent any
aggressive behavior (see next subsection). The second flow
will only get the bandwidth given by the bandwidth shuffling
procedure.

We plan to investigate these 2 issues in future works.

B. Fairness with TCP

The fairness with TCP is not an XCP-i problem but an XCP
problem in general. XCP is only able to get the remaining

Non XCP
XCP-i

XCP-iXCP-i

XCP-iSender i

Sender j

Receiver i

Receiver j

100 Mbps

100 Mbps
100 Mbps

100 Mbps

100 Mbps

100 Mbps100 Mbps

100 Mbps

16 ms
30 Mbps

1 ms

1 ms

1 ms

1 ms

16 ms

16 ms

16 ms

a

d c

b

Fig. 14. 1 bottleneck link shared by n XCP paths

bandwidth with the objective of not causing packet drops.
XCP-i being based on the XCP control laws has the same
problem. In this paper, we did not consider fairness between
XCP-i and TCP. Non-XCP clouds can carry non-XCP flows
but XCP-i will only consider the available bandwidth left
by these non-XCP flows. The problem of XCP and TCP
cohabitation will be studied in future works.

VI. CONCLUSION

This paper presented XCP-i which is an enhancement to the
XCP protocol that enables XCP to deal with heterogeneous
networking. The main design goal of XCP-i is to keep the
control laws of XCP unchanged while adding new features
for detecting and handling non-XCP clouds. The simulation re-
sults show that XCP-i can succeed in a large variety of scenario
to provide an XCP-like level of performances. Although XCP-
i performances depend on the available bandwidth estimation
accuracy, XCP-i still outperforms TCP on high-speed links
because it recovers quickly from packet losses. Current works
concern the implementation of XCP-i in XCP capable routers,
a large scale validation on the Grid5000[4] platform, XCP-
i performance study in heterogeneous networks and some
extensions on XCP fairness.

REFERENCES

[1] C. Barakat, E. Altman, W. Dabbous. On TCP performance in a
heterogeneous network: a survey. IEEE Comm. Mag., January 2000.

[2] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649.
[3] L. A. Grieco, S. Mascolo. Performance evaluation and comparison

of Westwood+, New Reno and Vegas TCP congestion control. ACM
CCR, 34(2), April 2004.

[4] F. Cappello et al. Grid’5000: A Large Scale, Reconfigurable, Con-
trolable and Monitorable Grid Platform. 6th IEEE/ACM International
Workshop on Grid Computing, Nov. 2005

[5] G. Hasegawa, M. Murata. Survey on fairness issues in TCP congestion
control mechanisms. IEICE Transactions on Comm., January 2001.

[6] V. Jacobson. Congestion avoidance and control. ACM SIGCOMM
1988.

[7] M. Jain, C. Dovrolis. Pathload: an available bandwidth estimation tool.
PAM 2002.

[8] C. Jin, D. X. Wei, S. H. Low. FAST TCP: Motivation, Architecture,
Algorithms, Performance. IEEE Infocom 2004.

[9] D. Katabi, M. Handley, C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. ACM SIGCOMM 2002.

[10] S. H. Low, L. Andrew, B. Wydrowsk. Understanding XCP: Equilibrium
and Fairness. IEEE Infocom 2005.

[11] D. M. Lopez Pacheco, C. Pham. Robust Transport Protocol for
Dynamic High-Speed Networks: enhancing the XCP approach. Pro-
ceeding of the IEEE MICC-ICON 2005.

[12] V. Ribeiro. pathChirp: Efficient Available Bandwidth Estimation for
Network Path. PAM 2003.

[13] Alok Shriram et al. Comparison of Public End-to-End Bandwidth
Estimation Tools on High-Speed Links. PAM 2005.

[14] R. Wang et al. Adaptive Bandwidth Share Estimation in TCP West-
wood. Globecom 2002.

[15] Y. Zhang and T. Henderson An Implementation and Experimental
Study of the eXplicit Control Protocol (XCP). IEEE Infocom 2005.

