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Abstract. With the increasing availability of streaming applications
from mobile devices to dedicated sensors, understanding how such stream-
ing content can be processed within some time threshold remains an im-
portant requirement. We investigate how a computational infrastructure
responds to such streaming content based on the revenue per stream
— taking account of the price paid to process each stream, the penalty
per stream if the pre-agreed throughput rate is not met, and the cost of
resource provisioning within the infrastructure. We use a token-bucket
based rate adaptation strategy to limit the data injection rate of each
data stream, along with the use of a shared token-bucket to enable bet-
ter allocation of computational resource to each stream. We demonstrate
how the shared token-bucket based approach can enhance the perfor-
mance of a particular class of applications, whilst still maintaining a
minimal quality of service for all streams entering the system.

1 Introduction

The increasing deployment of sensor network infrastructures has led to large
volumes of data becoming available, which are often required to be processed in
real-time. In addition, data from these sensors may be streamed in an unpre-
dictable manner (i.e. the availability of data may not be known apriori) with
potential bursty behaviour in data generation. Data source (sensor) can vary
in complexity from smart phones to specialist instruments, and can consist of
sensing, data processing and communication components. Data streams in such
applications are generally large-scale and distributed, and generated continu-
ously at a rate that cannot be estimated in advance. Scalability remains a major
requirement for such applications, to handle variable event loads efficiently [1].
Multi-tenancy Cloud environments enable such concurrent data streams (with
data becoming available at unpredictable times) to be processed using a shared,
distributed computing infastructure. This leads to challenges in offering Qual-
ity of Service (QoS) guarantees for each data stream, specified in Service Level



Agreements (SLAs). SLAs identify the cost that a user must pay to achieve the
required QoS, and the penalty in case the QoS cannot be met. Stream descrip-
tions may, in some cases, provide placeholders in the SLA for data that will be
generated at some time in the future. Assuming the maximisation of the rev-
enue as the provider’s objective, then it must decide which streams to accept
for storage and analysis; and how many (computational / storage) resources to
allocate to each stream in order to improve overall revenue. When the real-time
requirements demand a rapid reaction, the dynamic provisioning of resource (i.e.
from an elastic resource provider) may not be useful, since the delay incurred
might be too high. Alternatively, idle resources that were initially allocated for
other streams could be re-allocated, avoiding the penalisation.

This paper extends our previous contributions in this area; papers [2-4] de-
scribe a revenue-based resource management strategy for bursty data streams
on shared Clouds. This contribution extends the token bucket model used previ-
ously to enable: (i) the re-distribution of unused resources amongst data streams;
and (ii) a dynamic re-allocation of resources to streams likely to generate greater
revenue for the provider. These extensions are provided by a direct addition of
business rules in the token bucket behavior — as an alternative to using a rule
engine alongside a token bucket model, which has a significant performance over-
head. The remainder of this paper is structured as follows. Section 2 describes
the revenue model and the resource requirements for QoS in data stream pro-
cessing applications. Section 3 shows the system architecture based on the token
bucket model and actions the provider can take to maximize revenue: using a
rule-based approach with token bucket model extensions. Section 4 shows our
evaluation and simulation results. In Section 5, related work is briefly discussed.
Finally, conclusions and future work are outlined in Section 6.

2 Revenue based resource management

We consider a provider centric view of costs incurred to provide data stream
processing services over a number of available computational resources (e.g. a
pool of virtual machines in an elastic infrastructure). A provider may use a (pre-
agreed and reserved) posted price, a spot price (to gain revenue from currently
unused capacity), or on an on-demand use (the most costly for the user) for
resources, on a per-unit-time basis — as currently undertaken by Amazon.com
in their EC2 and S3 services. In the case of data stream processing services,
this cost may also be negotiated between the user and the provider using QoS
criteria. How such a price is set is not the focus of this work, our primary interest
is in identifying what are the performance objectives that can be established in
a SLA, and what actions the provider can perform to guarantee the agreed QoS
and maximize the revenue. A key distinction between batch-based execution on
a Cloud infrastructure is that the query/computation and data are generally
available before the execution commences. In a streamed application, a query is
often executed continuously on dynamically available data. An SLA is therefore
essential to identify what a user must pay the provider, often based on a previous



estimation of resources required/used. Conversely, the provider can also utilize
previously similar stream processing capability to identify resources required and
any penalties paid in the past (for service degradation that violated the SLA).
Due to the greater potential variation likely to be seen in stream processing
applications, an SLA therefore protects both the user and the provider.

Defining QoS properties in an SLA is very application dependent. In ap-
plications such a commercial Web hosting, QoS levels specify parameters such
as request rate, for example expressed as served URLs per period; and data
bandwidth, that specifies the aggregate bandwidth in bytes per second to be al-
located in the contract [5]. In other applications such as video-on-demand, QoS
levels may represent frame rates and average frame sizes. In the context of data
stream, the analysis can include min/max/avg calculations on a data or sample
time window, an event analysis, a summarisation of data over a time window, etc.
[6] provides a useful summary of the performance objectives of event processing
and their associated metrics (see table 2).

Performance Objectives and their metrics
Objective Name Objective metrics
Max input throughput Max. number of input events processed within an interval
Max output throughput Max. number of derived events produced within an interval

Min average latency Min. average time to process an event

Min Maximal latency  Min. the maximal time to process an event

Jitter Min. value of the variance in processing times
Real-time Min. of the deviation in latency from a given value

Table 1. Performance objectives and their associated metrics for Event Processing [6]

When a shared Cloud infrastructure is being used, a provider may serve
multiple users using a common resource pool through a “multi-tenancy” ar-
chitecture. This architecture is used to offer multiple functions over a shared
infrastructure to one or more users. The revenue for the provider in this case is
the total of all prices charged to users minus the cost of all required resources
and the penalties incurred for degraded services.

We assume that the provider (client) monitor their offered (provided) QoS
properties over fixed time intervals. The revenue obtained by the provider over a
particular time interval is assumed to be constant, and determined by the price
clients pay for allocated resources to process their data streams, minus the cost
incurred by the provision of these resources (generally identified as operational
expenditure (OPEX)). A sudden peak in data, due to sudden data injection or
traffic burstiness can produce shortage of resources to process such bursts, over
some time slots/intervals. The provider can either accept the penalty due to the
unavailability of resources, or can provide additional resources in an elastic way.
We define the benefit function for a provider over a particular a time interval
for n clients (represented as Instant Revenue) as:



(Eq. 1) Instant Revenue =Y. (CostPUient — CostPUprovider) * #PU
— Z?:l #penalties; * CostPenalties;
—A#PU * CostPUprovider

where CostPU jjent and CostPUpoypider are respectively the price of each
processing unit (PU) for the client and the provider, #PU represents the num-
ber of resources (in PUs) provisioned by the provider for supporting the ag-
gregated requests of n clients, and A#PU the number of resources allocated
to avoid penalties over bursty periods. The global revenue is the accumulated
Instant Revenue over time.

Eq. 1 can be extended to account for additional capabilities, for instance the
cost of provisioning additional PUs (A#PU) — which can include the number of
virtual machines executed on a single physical machine. Alternatively, the num-
ber of processing units can be a function of an estimated workload as a function
of data size defined by a data window (Cost PUgjienti = f(operation, datasize)),
etc. We will consider Eq. 1 in this paper for sake of simplicity and we will assume
for the same reason that data streams can be classified according to the benefit
and penalty values of their respective QoS levels as: “Gold” — for high penalty
and revenue; “Silver” — for medium penalty and revenue, and “Bronze” — for
low revenue and no penalty [7]. This class approach for provisioning resource is
commonly found in many commercial data centres and network providers today.

3 Dynamic control of resources under revenue-based
management

The revenue model can be used internally by a provider to decide what actions
are the most “financially” suitable to dynamically manage resources on a near
real-time basis. For instance, when a failure to meet the minimum QoS level
for a given user is predicted or detected, a provider may perform the following
actions:

— action (1): allocate new local resources or buy remote resources,

— action (2): redistribute unused resources by users,

— action (3): redistribute pre-allocated resources from less prioritized users
to more prioritized users (“Bronze” to “Silver” to “Gold”, or “Bronze” to
“Silver”).

Each of these actions could have a different cost or penalty for the provider.
For instance, allocating new local resources is usually less costly than buying
remote resources (using other providers’ resources for instance), but may be more
costly than redistributing pre-allocated resources from Silver users to Gold users.
This could occur because the penalty for not satisfying these Silver users may be
less than the cost of allocating new local resources, especially for a short period of
time, or because this redistribution of resources may not impact the chosen Silver
users due to statistical multiplexing of user needs. When redistributing unused
resources, a typical SLA would indicate a negotiated mean data injection rate to



be supported by the provider of the computational resource(s). Therefore, when
the amount of injected data over a given time period is smaller than the predicted
value, some pre-allocated resources are unutilized. In this case, the redistribution
of these unused resources can be done at a low cost by the provider. Hence,
we assume that due to the inherent variation in stream processing, it is often
difficult to predict accurately the resource demand across multiple time frames.
Consequently, this introduces a slack in the system, whereby unused resources
may be reallocated to reduce penalties for other data streams in the system. We
proposed in our previous work [3] an architecture that uses the token bucket
model to perform traffic shaping on user data flows. We also defined how token
bucket parameters can be controlled by a rule engine to prioritize data streams.
In this paper, we will explain how self-controlled actions could also be directly
implemented with different extensions of the token bucket model, introducing
for instance an intermediate, shared bucket that will collect unused resources
that can be later on be re-distributed across different user classes.

3.1 Dynamic management of resources

QoS requirements are often defined using the worst case scenario — i.e. the max-
imum number of resources required to achieve a particular QoS objective. How-
ever, some data streams may not use the resources that they have reserved and
these unused resources could be used to process other streams to increase rev-
enue. Hence, spare capacity in the system could be reallocated. This is particu-
larly useful to handle periods of bursty behavior on some streams. The provider’s
objective is to maximize its revenue by the management of available computa-
tional resources (e.g. a pool of virtual machines in an elastic infrastructure) to
process each data stream in accordance with its SLA, taking into account various
costs and penalties. It is therefore necessary to regulate end-user’s data injec-
tion rate according to an agreed SLA, to monitor whether enough resources have
been provisioned, and to perform actions to redistribute resources when needed.
We described in [3] a modular architecture (illustrated in Fig. 1) consisting of a
traffic shapping component and a QoS provisioning component that provides a
dynamic management of resources. We will quickly review the main features of
this architecture.

The traffic shapping component provides a token bucket per data stream.
Within a data stream, it is often useful to identify a “data acceptance rate”,
which is often different from the physical link capacity connecting nodes and
which identifies the rate at which a client can send data to be processed by
the server. The data stream processing service tries to maintain this acceptance
rate as the output rate. We characterise it for each flow by means of three QoS
parameters: (i) average throughput (average number of data elements processed
per second), (ii) maximum allowed burst, and (iii) an optional load shedding
(data dropping) rate. We make the first two parameters match R and b of the
token bucket respectively. For each data stream, its associated token bucket
will allow data elements to enter into the processing stage according to the
R parameter. The token bucket can also accept a burst of b data elements.



Subsequently, a data element is forwarded to a First Come First Serve (FCFS)
queue buffer at a processing unit (PU). In addition to regulating access to the
PU and enforcing QoS per data stream, the token bucket also achieves stream
isolation, i.e. a data burst in one stream does not interfere with another. The
load shedding mechanism acts at input buffers by discarding older data elements
of a flow at a specified rate. It is only active, however, when triggered by the
controller component.

The QoS provisioning component takes decisions about the allocation and
redistribution of resources based on the monitoring of buffers and token buck-
ets. For example, availability of data in buffers of a token bucket implies data
injection over the agreed mean rate, which can trigger different actions based on
occupancy thresholds: 1) dropping data from the buffers, 2) allocating additional
resources to consume the burst of data, 3) reallocation of resources from other
streams. The number of allocated resources for providing service to the aggre-
gate demand may not be enough for a bursty period. In this case, the controller
must detect data streams that require more resources. Data in the computa-
tional phase are stored in buffers associated with each data stream (we denote
these as PU buffers to differentiate them from TB buffers). The PU buffer size
can be used to detect when data are been buffered because there are not enough
allocated resources. For instance, during each control interval 7' the maximum
amount of data that can appear is RT +b. If the PU buffer size is greater than b,
this suggests that not enough resources have been provisioned to sustain the QoS
of this data stream. Note that during a time interval b data can be transferred
to the processing phase if there are enough tokens in the TB.

The bottom part of Fig. 1 shows the control loop configuring the R parameter
and the number of resources for each flow instance. For simplicity, the figure
shows the regulation of one flow instance. Each flow instance monitors its input
and output rates at each stage at a pre-defined sampling rate (magnifying glasses
(a) in the figure). Using these initial parameter values, the control strategy is
initiated, subsequently recording the TB (b) and PU (c¢) input queue buffer
occupancies, and the number of resources in use at the PU (d). The size of
each input buffer is chosen in accordance with the agreed requirements of the
data flow. The controller must estimate the buffer size during execution. When
the input buffer size reaches an established threshold, it triggers the controller
to initiate one of two possible actions: (i) calculate the number of additional
resources (PU) needed (based on those available) to process the additional data
items generated above rate R; (ii) if there are free local resources (not being used
by other data flows), they can be used to increase the rate R of flow associated
with this instance. The amount of resources and the rate value will return to their
previously agreed values when the input buffer size goes below the threshold. A
detailed description of this control loop and validation scenarios can be found in
[3].

It appeared that allocating new resources, action (1), may not be suitable
for handling short periods of resource shortage. The time required to get statis-
tics and the inference process of the rule engine does not allow introduction of
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Fig. 1. Control loop for decision making.

new resources in near real-time. In this paper, we propose to additionally in-
vestigate action (2), redistribute unused resources, and action (3), redistribute
pre-allocated resources from less prioritized to more prioritized users. The choice
of the final action will be determined by the revenue model using a cost, or
penalty, associated with each action. We will describe how these actions can
be easily implemented by the provider by extending the previous token bucket
model.

3.2 Redistribute unused resources by users

When the real amount of injected data over a given time period is lower than
the predicted amount, tokens can be saved by a user and they accumulate in its
associated TB up to a maximum of b tokens (which is the bucket size). Normally,
these excess tokens are dropped by the TB to avoid very large bursts of data
in the future. However, it is possible for a provider to save these tokens in an
additional shared bucket (of maximum size Bj,q.) and to redistribute them at a
low cost — as these tokens typical represent unused resources that have already
been allocated. Figure 2 illustrates this behavior. These tokens in excess could
also have a limited lifetime as symbolically represented by the clock in Fig. 2 in
order to limit their usage within a few control intervals only.

Collecting tokens in excess and redistribution of tokens can be performed
globally over all user classes. However, limiting token movement within the same



Fig. 2. Redistributing unused resources over a control period.

class may be easier to support, e.g. excess tokens from Gold users can only
be redistributed to other Gold users. Fig. 2 with the dashed box illustrates
this solution where each user class should have their own additional bucket
space. The B,,,, parameter can be different for each user class. For instance,
Bgold - psilver -, pbronze The rationale behind different values for Ba. is
that unused resources from Bronze users could be considered more volatile than
unused resources from Silver or Gold users for instance, as Bronze user resources
may have been statistically allocated. It is possible to generalize this architecture
for a higher number of classes where BCn > BSnz' > ...> B% > BO

max max max

3.3 Redistribute pre-allocated resources from less prioritized users
to more prioritized users

The case of redistributing pre-allocated resources is quite different from the
unused resources case: tokens from a chosen user’s bucket will be moved di-
rectly to another user’s bucket. Figure 3 illustrates this redistribution process
from a Bronze user to a Silver user. Redistribution from less prioritized users
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Fig. 3. Redistribution from low priority users to high priority users.




to more prioritized users is typically the most financially efficient solution for
the provider. Moving tokens directly from one bucket to another may generate
temporary resource shortages for the data flow from which tokens are taken. As
a result, at time of shortage, the revenue model will decide again between the 3
possible actions it can perform.

3.4 An example of dynamic management of resources

Let us explain with an example how redistribution of unused resources and
redistribution of pre-allocated resources from less prioritized users could be used
consistently and conjointly by a provider. Let us denote by TBS» the token
bucket of a user stream u in class C),, and by TBgZZmEd the shared bucket space
in class C,, to keep unused resources (tokens) up to BSn .

Consider that a provider has under-estimated the resources that should be
allocated to a user of class C,, (one reason could be a bursty injection period).
When the system detects that this user does not have a sufficient processing
rate according to its negotiated token bucket data injection rate, the provider
can take unused tokens from TBg:'use 4 that have been collected within class
C,, if any. If there are no unused tokens in class C,,, the provider will take
tokens directly from TBSi of a user u in a lower class C;, with 1 <i <n —1,
and not from the shared bucket space T' B%used of these lower classes C;. The

reason is that resources collected in TijmSe 4 Tepresent more " volatile” resources
than resources kept in TBS" that normally could be somehow mapped to real
resources in the current control interval.

By doing so, the class C), user demand can be satisfied at minimum cost,
therefore limiting the penalty for the provider. If the C; class users, 1 <i < n—1,
from whom tokens have been taken away by users in class C,, have token/resource
shortage, the system will first try to take tokens from the shared unused resource
bucket space of the corresponding class, i.e. TBE;;use 4+ if any, and only then will
try to take token directly from a token bucket of a lower class C, i.e. from

Tij, 1 < j <i—1. This process could be repeated at each class C;. We can
therefore see how this 2-level token movement system can be used to optimally
move resources (unused or pre-allocated) based on a maximum revenue strategy.

4 Evaluation Scenarios

The redistribution of pre-allocated resources from less prioritized users to more
prioritized was illustrated in the evaluation scenarios of [3] by means of the
rule engine controlling TB parameters. In this paper, we will present the results
of different simulation scenarios to show the redistribution of unused resources
by an additional bucket that collects tokens in excess and redistribute them
over the same class, as proposed in section 3.2. We consider two scenarios: (i)
using the rule-engine controller, which validates the shared bucket in an elastic
provisioning approach with tokens representing reliable allocated resources; and



(i) without use of controller actions, which validates the shared bucket with
more volatile tokens.

The scenarios has been modeled using the Reference net formalism [8] to
specify the decision making component. The models have been simulated in Re-
new (see http://www.renew.de), a Java-based editor and simulator based on
reference nets that integrates the Petri net formalism, and the Java program-
ming language. The Java Expert System Shell (Jess), is used to trigger actions
based on threshold monitored values, such as token bucket and PU buffers, and
input/output rates. For this work, the token bucket manager model that pro-
vides a token bucket for each new data stream presented in [2] has been extended
with the common shared bucket. The modeled behavior moves excess tokens to
the common bucket, and all data streams can make use of these tokens if their
buckets are empty and there are no pending data items to be processed in the
PU buffers. At the end of each control period, the common bucket is emptied:
therefore the lifetime of collected unused resources is limited to a control interval.

4.1 Redistribution of tokens in an elastic scenario

The first scenario considers data streams at the same priority level. We assume
4 Gold (i.e. high priority) customer streams with a period of control of T=1
second and all data streams have same requirements: R=20 and b=10. The
maximum number of data to be processed is 120 data chunk/second and a token
is required to process a data chunk. We assume that each resource can process 10
data chunk/s (therefore requiring in the worst case a maximum of 12 processing
units). Input streams follow on ON-OFF process where ON and OFF periods
follow a uniform distribution between 2 to 5 seconds and alternate each other.
Data injection rates within the ON period follows an exponential law (Poisson
distribution) therefore varying the data injection rate over time. On average
about 4 resources are required for the 4 data streams (each stream sends on
average 20 data/second half of the time). For the first set of simulations we
compare the behavior of the system with and without the common bucket (of
capacity BZ%4 = 80 tokens). These simulations are developed in combination
with the use of the rule engine to provide enough resources throughout the
simulation period. The rule engine triggers actions for dropping data when the
TB buffer occupancy is over an established threshold, adding/removing resources
in a elastic way (borrowing resources from low priority data streams) and tuning
TB parameters to use the new added resources or available resources when PU
buffers have accumulated data (which is an indication that not enough resources
are available). All simulations reproduce the same input data injection rates for
comparison purpose.

To calculate the revenue with Eq. 1 we assume a cost of 20 units/second per
PU for clients and 15 units/second per PU for provider. We assume the client
pays for having the processing rate R all the time. Taking into account that
the data stream rates are irregular and the client send data at a rate R/2 on
average, the provider will suffer from a high penalization, for example 30 times
the price paid by the client, i.e. 600 units, if it does not provide enough resources.



A penalty occurs when the output rate is under the agreed rate R if there are
data in the TB buffer. In this way, it is easy for the client to monitor whether
the provider is allocating enough resources or not. If the buffer is full, the output
rate should be at least equal to R. If the throughput is under this value, data
in the buffer are being accumulated and will be delayed to be processed in the
next control intervals due to the lack of resources.
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20000 =—Shared Bucket
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#PU inicial with elastic provisioning

Fig. 4. Scenario I: Redistribution of tokens in an elastic scenario with different baseline
PUs (horizontal axis) and using control loop to avoid penalties. Revenue is measured
in an abstract unit, but can be mapped to a particular economic currency.

Figure 4 shows the provider’s revenue for different number of initial PUs and
an elastic provisioning of resources scenario. The x-axis represents the initial
baseline number of resources and the y-axis the aggregated revenue over 300
seconds of simulation. These results show the maximum revenue when enough
resources are available to satisfy the demand. Providing less resources than this
baseline increases the number of penalties, and providing more resources as base-
line increases the cost. The common bucket however does not improve signifi-
cantly the aggregated throughput as shown in Figure 6, but the throughput of
each individual data stream is improved as shown in the sample data stream
output of figure 5. If we look at time interval 20s-40s, 70s-80s and 140s-150s we
can see that the shared bucket allows the output throughput to closely follow
the input data injection rate. This behavior can be more clearly seen with 9
PUs than with 4 PUs, i.e. when there are globally enough resources. Without
the shared bucket the output throughput is clearly limited by the b parameter
(maximum amount of tokens in the bucket) and a shortage of tokens limits the
output throughput to R until the TB buffer is emptied.

The bottom of Figure 7 shows that the average number of PUs provisioned
(their cost being represented by the last term in Eq. 1) in an elastic scenario is
not affected by the use of the shared bucket. However the number of penalizations



(second term in Eq 1.) is clearly reduced with the use of the shared bucket as
illustrated in Figure 7(top).

First Scenario: Input & output of a sample data stream with 4 baseline
PUs and elastic provisioning
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Fig. 5. Data stream input & output in an elastic provisioning scenario.

4.2 Redistribution of tokens in a non-elastic scenario

The second scenario uses the same number of data streams than previously but
without rules to provide additional resources in an elastic way. Therefore, when
there are shortage of resources, the benefit of the redistribution feature can be
better seen. In this scenario data streams have a more sporadic behavior to en-
able greater usage of the shared bucket: ON and OFF period durations follow
a uniform distribution between 1 to 3 seconds, but now an ON period have a



First Scenario: Aggregate input & output with 4 baseline PUs and elastic

=
o
o

60

20
10

input/output in data/second
wv
o

provisioning — 5ggregate input
——aggregate output without shared bucket

QL0 0 9D 9000
VRN EVINEY
Simulation time (sec)

O
K

Fig. 6. Aggregated input and output in an elastic provisioning scenario.
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Fig. 8. Scenario II: Redistribution of tokens in a non-elastic scenario with different
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probability of 1/3 to occur. Again, data injection rates follow a Poisson distri-
bution. Therefore, for 4 data streams sending on average 20 data chunk/second
the number of required resources is around 3. Figure 8 shows the provider’s rev-
enue with different number of initial provisioned PUs. With less than 3 PUs, the
number of penalizations makes the revenue to decrease and the shared bucket
gives a lower revenue when there is shortage of resources. Provisioning between 3
and 5 PUs makes the shared bucket very useful as a low cost solution to balance
the usage of resources between classes. Figure 9 shows how throughput closely
follows the input data injection rate at time interval 110s-120s and 210s-220s.

Second Scenario: Input & output of a data stream with 5 PUs and non
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5 Related Work

Auto-scaling of resources has been identified as one of the main challenges for
Cloud Computing. The main concern to optimize the use of resources is to
automatically scale quickly up and down in response to load in order to save
money, but without violating SLAs [1]. There is emerging interest in process-
ing automated elastic resource provisioning over shared Cloud. Three main ap-
proaches have been pointed out to quickly scale resources [9]. First, reactive
mechanisms, mainly use elasticity rules or threshold-based rules pre-defined by
service providers [10,7,11]. Second, predictive mechanisms try to learn from
previous data history and resource usage to construct mathematical models to
forecast resource demands. These approaches are useful when regular behavior
pattern can be identified, but can not forecast unpredictable burstiness [12, 13].
This problem has been considered in [14] to propose pattern matching scaling
based algorithms as an alternative to mathematical models that do not consider
arbitrarily-repetitive self-similarities. And third, hybrid approaches [15] that in-
tegrate the 2 previous approaches or, more recently, use theory of control [16].
A brief reference to related work on elastic resources provisioning of workflow,
streaming and event processing have been presented in [3].

6 Conclusion and Future work

We propose (i) an architecture that features a token bucket process envelop to
support data throttling, (ii) a rule-based control loop to enable corrective actions
to be triggered when QoS is violated: the control loop monitors QoS for each ap-
plication and chooses an action that maximises revenue over a pre-defined control
interval, and dynamic corrective actions embedded in token bucket extensions
to (iii) re-distribute unused resources among users, and (iv) to re-distribute pre-
allocated resources from less prioritized users to more prioritized users — in the
context of stream processing applications. The validation scenarios have shown
that the token bucket extension based on a shared bucket to redistribute re-
sources increases data stream throughput when there are enough resources on
average to serve the aggregated demand. We showed that from a revenue-based
perspective, optimization of resources with low-cost solutions using local unused
resources is very effective compared to buying remote resources. Future work
will consider additional aspects to calculate the instant revenue considering the
cost of additional processing units, taking into account the number of virtual
machines that can be executed on a single machine, or the estimation of the
workload as a function of historical data (using previous service executions)
with different parameters (operation, data size, window size, etc.).
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