
C. Pham (EGM & LIUPPA/University of Pau) and P. Cousin (EGM)

WP1 Acoustic Test bed Qualification
Audio test-bed description

the sounds of smart environments

Development environments

•  Linux-based systems for higher
flexibility and better interoperability
•  most of software tools are targeted for

Unix
•  most of gateways devices are Linux-

based (Meshlium, Beagle, Rasperry,…)
•  When possible, avoid Java

development and priviledge C, C++
and scripts (shell, python)

the sounds of smart environments

Standard IDE & software tools

•  Libelium WaspMote

•  Libelium IDE (Arduino-based) & API development environment

•  AdvanticSys TelosB

•  TinyOS 2.1.2 development environment

•  Audio

•  Codec2 software (www.codec2.org): c2enc, c2dec!

•  Speex software (www.speex.org): speexenc, speexdec!

•  sox and play package (Linux)

•  Serial & frame analysis
•  minicom, cutecom!

•  wireshark!

3

the sounds of smart environments

Customized speex audio tools

•  Simple « pure » speex audio decoder without any
header
•  Modified version of speex’s sampledec.c

•  speex_sampledec_wframing : expects framing bytes!

•  speex_sampledec_nframing : no framing bytes

•  To get a « pure » speex audio encoded file without any
header
•  Modified version of speexdec.c (yes speexdec.c and not

speexenc.c) compatible with speex’s sampledec.c

the sounds of smart environments

Development of dedicated tools

•  Serial tools to read host computer serial port

•  XBeeReceive (C language)

•  SerialToStdout (python script)
•  115200 baud version

•  38400 baud version

•  Communication tool to send control command packets
•  XBeeSendCmd (C language)

•  Communication tool to send binary files
•  XBeeSendFile (C language)

the sounds of smart environments

XBeeReceive!

•  XBeeReceive!

•  Main target is 802.15.4 XBee-based gateway

•  Translates XBee API frame

•  Reads from the serial port : /dev/ttyUSB0, /dev/ttyS0, …!

•  Reconstructs file in binary mode (handles packet losses)
•  Assumes each packet with 4 bytes header: 2 bytes for file size & 2 bytes for offset

•  Can write to Unix stdout & can act as a transparent serial replacement

•  Can act in a data stream fashion: no header for packets
USAGE: !./XBeeReceive -baud b -p dev -B -ap0 -v val –stdout –stream file_name!
USAGE: !-baud, set baud rate, default is 38400!
USAGE: !-p /dev/ttyUSB1!
USAGE: !-B indicates binary mode. Assumes 4-bytes header for each pkt (that will be removed)!
USAGE: !-framing expect for framing bytes 0xFF0x55 for binary data!
USAGE: !-ap0, indicates an XBee in AP mode 0 (transparent mode) so do not decode frame structure!
USAGE: !-v 77, use 0x77 to fill in missing value in binary mode!
USAGE: !-stdout, write to stdout for pipe mode in binary mode!
USAGE: !-stream, assumes no header & write to stdout for pipe mode in binary mode!
USAGE: !file_name, name for saving binary file!

the sounds of smart environments

SerialToStdout.py

•  Simple python script to read serial port when no
translation is needed

•  Change baud rate and port as needed

•  SerialToStdout.py can be use instead of
XBeeReceive with an XBee in transparent mode

import serial!
import sys!
!
ser = serial.Serial('/dev/ttyUSB0', 38400, timeout=0)!
!
flush everything that may have been received on the port to make sure !
that we start with a clean serial input!
ser.flushInput()!
!
while True:!
 out = ''!
 sys.stdout.write(ser.read(1024))!
 sys.stdout.flush()!

the sounds of smart environments

XBeeSendCmd

USAGE: !./XBeeSendCmd -p dev [-L][-DM][-at] -tinyos -tinyos_amid id_hex -mac|-net|-addr|-b message!
USAGE: !-p /dev/ttyUSB1!
USAGE: !-mac 0013a2004069165d HELLO!
USAGE: !-net 5678 HELLO!
USAGE: !-addr 64_or_16_bit_addr HELLO!
USAGE: !-b HELLO!
USAGE: !-at to send remote AT command: -at -mac 0013a2004069165d ATMM!
USAGE: !-L insert Libelium API header!
USAGE: !-DM to specify DigiMesh firmware!
USAGE: !-tinyos to forge a TinyOS ActiveMessage compatible packet (0x3F0x05 are inserted)!
USAGE: !-tinyos_amid 6F, to set the ActiveMessage identifier to 0x6F (0x05 is the default)!

•  XBeeSendCmd!

•  Main target is 802.15.4 XBee-based gateway

•  Send ASCII command with Xbee

•  Can be used to sent remote AT command to other Xbee module

•  Support DigiMesh firmware

•  Example
•  XBeeSendCmd -addr 0013a2004069165d ’’/@D0100#’’

the sounds of smart environments

XBeeSendFile

USAGE: !./XBeeSendFile -baud baudrate -p dev -timing tpkt_us tserialbyte_us tafterradio_us -nw -fake -drop
rate -v val -fill -pktd -pktf -size s -stdout -mac|-net|addr|-b file!
USAGE: !-baud 125000, 38400 by default!
USAGE: !-framing, will use framing bytes 0xFF0x55+SN for binary packets (e.g. audio)!
USAGE: !-timing 50000 20 25000 by default!
USAGE: !-nw, do not wait for TX status response!
USAGE: !-fake, emulate sending. Will write in fakeSend.dat!
USAGE: !-drop 50, will introduce 50 of packet drop. Useful with -fake!
USAGE: !-v 77, use 0x77 to fill in missing bytes in lost packet!
USAGE: !-fill, will fill missing bytes!
USAGE: !-pktd, display generated XBee frames!
USAGE: !-pktf, generate a pkt list file!
USAGE: !-size 50, set packet size to 50 bytes!
USAGE: !-stdout, write to stdout for pipe mode!
USAGE: !-mac 0013a2004069165d!
USAGE: !-net 5678!
USAGE: !-addr 64_or_16_bit_addr, set either 64-bit or 16-bit dest. address!
USAGE: !-b!

•  XBeeSendFile!

•  Main target is 802.15.4 XBee-based gateway

•  Send binary files with Xbee with controlled timing

•  Can use any packet size between 1 and 100 bytes

•  Can insert framing bytes, can introduce packet losses

the sounds of smart environments

WaspMote+XBee in raw mode

•  Electret mic with
amplifier

•  XBee in AP0 mode
(transparent mode)

•  8-bit 4Khz sampling
gives 32000bps

•  8Khz sampling gives
64000bps, requires
custom API

ONLY 1 HOP!

Xbee GW

100 8-bit samples (12.5ms)

the sounds of smart environments

Details of pin connection

VCC	
 on	
 D2	
 	

AUDIO	
 on	
 A2	

GND	
 on	
 GND

the sounds of smart environments

WaspMote test-bed: XBee gw AP0
void loop() {!

!val = analogRead(ANALOG2) ; // read analog value!
!val8bit = ((val >> 2)) ; // convert into 8 bit!

!
 !// write on UART1, need an XBee module!

!// with AP mode 0!
!
 !serialWrite(val8bit,1);!
}!

4KHz sampling!
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat | play --buffer 50 -t raw –r 4000 -u -1 –!
!
8KHz sampling!
> XBeeReceive -baud 125000 -ap0 -stdout dumb.dat | play --buffer 50 -t raw -r 8000 -u -1 -!
!
Save raw data for off-line playing!
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat > test.raw!
> play -t raw –r 4000 -u -1 test.raw!

With XBee GW also in AP0 mode

Alternatively using SerialToStdout python script, at 38400 baud only
!
> python SerialToStdout | play --buffer 50 -t raw –r 4000 -u -1 –!

Xbee GW

the sounds of smart environments

XBee gateway in pkt mode (AP2)

•  The receiving XBee module may need
to be in packet mode (AP2) due to
deployment constraints

•  Adds overhead of XBee API frame
decoding: 8KHz sampling may be not
supported

4KHz sampling!
> XBeeReceive -baud 38400 –stream dumb.dat | play --buffer 50 -t raw –r 4000 -u -1 –!
!
!
Save raw data for off-line playing!
> XBeeReceive -baud 38400 –stream dumb.dat > test.raw!
> play -t raw –r 4000 -u -1 test.raw!

the sounds of smart environments

Multi-hop audio constraints

1

1 tread trelay

1
tprocessing

Need audio encoding!
To reduce audio data size

Relay

Relay

Add overhead!

Decode & Play!
Received audio!

the sounds of smart environments

Multi-hop audio solution

•  Use dedicated audio board for
sampling/storing/encoding at 8kbps

•  Allows for multi-hop, encoded audio
streaming scenarios

Specially designed audio
board by INRIA CAIRNS &
Feichter Electronics

dsPIC33 with 8kbps speex
real-time encoder

the sounds of smart environments

Details of pin connection
P1.7 can be
used to power
on/off the audio
board

the sounds of smart environments

AdvanticSys+audio board

•  The audio board captures 160 bytes (20ms) of raw
audio and uses speex codec at 8kbps to produce
20 bytes to encoded audio data

•  It sends the encoded audio data through an UART
line to the host micro-controller

•  The host micro-controller receives the encoded
data and sends them wirelessly to the next hop

•  The last hop is a base station that will forward the
encoded audio into a speex audio decoder

•  Output of the speex audio decoder is in raw format
that can be feed into a player (play)

the sounds of smart environments

speex at 8kbps
160 8-bit samples (20ms)

20 bytes of encoded audio data

25 or 21 bytes frame

1 byte!
pkt size!
(21) speex_sampledec_wframing!

1 byte!
Seq. No.

2 bytes!
framing!
0xFF0x55

1 byte!
samples (20)

the sounds of smart environments

async event void UartStream.receiveDone(uint8_t* buf, !
!uint16_t len, error_t error){!
! ! !
!post sendMsg();!

}!

AdvanticSys+audio board

> XBeeReceive -baud 38400 -B -ap0 -stdout dumb.dat | speex_sampledec_nframing | !
!play --buffer 100 -t raw -r 8000 -s -2 –!

!

With XBee GW in AP0 mode

With AdvanticSys base station (115200 baud)
!
> python SerialToStdout | speex_sampledec_wframing | play --buffer 100 -t raw -r 8000 -s -2 -!

Xbee GW

With XBee GW in AP2 mode (pkt mode)
> XBeeReceive -baud 38400 -B -stream dumb.dat | speex_sampledec_nframing | !

!play --buffer 100 -t raw -r 8000 -s -2 –!
!

the sounds of smart environments

Relay nodes

Fully configurable:

Destination node
Additional relay delay
Clock synchronization

Libelium !
WaspMote

AdvanticSys !
CM5000, CM3000

R0/1 enable/disable relay mode!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!

the sounds of smart environments

Multi-hop test-bed w/audio board

R0/1 enable/disable relay mode!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!

0x0040

Decode & Play!
Received audio!

Speex audio encoding!
8kbps!

0x0010 Relay

Relay

0x0020

0x0030

A1/2/3/4 aggregate audio frames!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
C0/1 power off/on the audio board!

the sounds of smart environments

Generic & controlled sender

Fully configurable:

Destination node
Clock synchronization
File to send
Size of packet chunk
Inter-packet delay
Binary/Stream mode

Use a generic sender node
to test with a larger variety
of audio codec: store
encoded audio file on SD
card. Audio encoding is
done on desktop computer

Do not need specific audio
encoding hardware to test
quality of streaming
encoded audio data

the sounds of smart environments

Multi-hop test-bed w/generic sender
0x0010

0x0040

T130 transmit with inter pkt time of 130ms!
Z50 set the pkt size for binary mode!
Ftest2400.bit set the file name to test2400.bit !
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
B or S set to binary mode/set to stream mode!

All commands must be prefixed by « /@ »
and ended/separated by « # »

/@T130#, /@Ftest2400.bit#B#!

Decode & Play!
Received audio!

Relay

Relay

0x0020

0x0030

the sounds of smart environments

codec2/speex with generic sender

•  Use codec2/speex encoding software to
produce encoded audio file

•  Store encoded audio file (.bit/.spx) on SD
card

•  Configure the generic sender for sending
the encoded audio file
•  Define packet size
•  Determine inter-packet send time

•  Receive the encoded audio stream, decode
the data and determine audio quality

the sounds of smart environments

Produce encoded audio file: codec2

•  Initial file: test.raw in 16-bit, signed
•  Use sox to get 16-bit, signed if your

raw file is not in this format
•  Encode at 2400bps with

•  c2enc 2400 test.raw test2400.bit
•  Store test2400.bit on SD card

the sounds of smart environments

Codec2 encoding
320 8-bit samples (40ms)

7 bytes of encoded  
audio data

at 1400bps

at 2400bps & 3200bps
160 8-bit samples (20ms)

6 bytes of encoded  
audio data

8 bytes of  
encoded  
audio data

2400bps 3200bps

the sounds of smart environments

Codec2 at 2400bps & 3200

1 byte!
Seq. No.

2 bytes framing!
0xFF0x55

at 2400bps & 3200bps
160 8-bit samples (20ms)

6/8 bytes of encoded!
audio data

XBeeReceive!

c2dec!

1 byte!
pkt size

2 bytes!
file size

2 bytes!
offset

the sounds of smart environments

Multi-hop tests with codec2

Decode & Play!
Received audio!

0x0010

0x0040

/@Ftest2400.dat#B#!
/@Z40#!
/@T90#!

Sample Audio: 13s!
PCM = 104000B!
Codec2 at 2400bps !
gives 3900B

> XBeeReceive -framing –B rcv-test2400.bit!
> c2dec 2400 rcv-test2400.bit - | play -t raw -r 8000 -s -2 –!

!
!
> XBeeReceive -framing –B -stdout rcv-test2400.bit | bfr -b1k -m2% - | !

!c2dec 2400 - - | play -t raw -r 8000 -s -2 -!

Store & Play

Streaming

Relay

Relay

0x0020

0x0030

the sounds of smart environments

Produce encoded audio file: speex

•  Initial file: test.raw in 8-bit unsigned
or 16-bit signed

•  Encode at 8000bps with
•  speexenc --8bit --bitrate 8000

test.raw test8000.spx!

•  Produce a raw speex byte stream with
modified version of speexdec!
•  speexdec test8000.spx > t8000raw.spx!

•  Store t8000raw.spx on SD card

the sounds of smart environments

Multi-hop tests with speex

Decode & Play!
Received audio!

0x0010

0x0040

/@Ft8000raw.spx#B# !/@Ft8000raw.spx#S#!
/@Z25# ! ! !/@Z21#!
/@T20#!

Sample Audio: 13s!
PCM = 104000B!
speex at 8000bps !
gives 14368B

> XBeeReceive -framing –B t8000raw.spx!
> cat t8000raw.spx | speex_sampledec_nframing | play -t raw -r 8000 -s -2 –!

!
!
> XBeeReceive –B -stdout -stream t8000krw.spx | bfr -b1k -m2% - | !

!speex_sampledec_wframing | play -t raw -r 8000 -s -2 -!

Store & Play

Streaming

Relay

Relay

0x0020

0x0030

the sounds of smart environments

Frame analysis

•  Use wireshark as frame analysis tool
•  AdvanticSys TelosB mote as

promiscuous sniffer mote, connected
to wireshark to display captured
frames

•  Frame reception time can be
visualized for statistic collection
•  Transmission latencies
•  Frame jitter

the sounds of smart environments

wireshark frame capture

the sounds of smart environments

Sensitivity of codecs

audio
Encode in

raw, codec2
& speex

.raw
.bit
.spx

Pkt losses &
byte errors

.raw
.bit
.spx

Convert
in .wav

.raw.wav
.bit.wav
.spx.wav

Quality test

.raw.wav
.bit.wav
.spx.wav

Quality
indicator

Apply various loss patterns
before decoding

LAB TESTS

the sounds of smart environments

Apply packet loss rate

•  Use XBeeSendFile to control
•  Timing between packet sending
•  Packet loss probability

> XBeeSendFile -fake -drop 25 -stdout test2400.bit > test2400-25loss.bit

> XBeeSendFile -fake -v 77 -fill -drop 25 -stdout test2400.bit > test2400-25loss-fill.bit

Codec2 2400bps, series of 6-byte encoded audio packets

1 2 3 4

1 3 4

1 2 3 4
77 77 77 77 77 77!

