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the sounds of smart environments  

Development environments 

•  Linux-based systems for higher 
flexibility and better interoperability 
•  most of software tools are targeted for 

Unix 
•  most of gateways devices are Linux-

based (Meshlium, Beagle, Rasperry,…) 
•  When possible, avoid Java 

development and priviledge C, C++ 
and scripts (shell, python) 
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Standard IDE & software tools 

•  Libelium WaspMote 

•  Libelium IDE (Arduino-based) & API development environment 

•  AdvanticSys TelosB 

•  TinyOS 2.1.2 development environment 

•  Audio 

•  Codec2 software (www.codec2.org): c2enc, c2dec!

•  Speex software (www.speex.org): speexenc, speexdec!

•  sox and play package (Linux) 

•  Serial & frame analysis 
•  minicom, cutecom!

•  wireshark!

3 
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Customized speex audio tools 

•  Simple « pure » speex audio decoder without any 
header 
•  Modified version of speex’s sampledec.c 

•  speex_sampledec_wframing : expects framing bytes!

•  speex_sampledec_nframing : no framing bytes 

•  To get a « pure » speex audio encoded file without any 
header 
•  Modified version of speexdec.c (yes speexdec.c and not 

speexenc.c) compatible with speex’s sampledec.c 
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Development of dedicated tools 

•  Serial tools to read host computer serial port 

•  XBeeReceive (C language)  

•  SerialToStdout (python script) 
•  115200 baud version 

•  38400 baud version 

•  Communication tool to send control command packets 
•  XBeeSendCmd (C language) 

•  Communication tool to send binary files 
•  XBeeSendFile (C language) 
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XBeeReceive!

•  XBeeReceive!

•  Main target is 802.15.4 XBee-based gateway 

•  Translates XBee API frame  

•  Reads from the serial port : /dev/ttyUSB0, /dev/ttyS0, …!

•  Reconstructs file in binary mode (handles packet losses) 
•  Assumes each packet with 4 bytes header: 2 bytes for file size & 2 bytes for offset 

•  Can write to Unix stdout & can act as a transparent serial replacement 

•  Can act in a data stream fashion: no header for packets 
USAGE: !./XBeeReceive -baud b -p dev -B -ap0 -v val –stdout –stream file_name!
USAGE: !-baud, set baud rate, default is 38400!
USAGE: !-p /dev/ttyUSB1!
USAGE: !-B indicates binary mode. Assumes 4-bytes header for each pkt (that will be removed)!
USAGE: !-framing expect for framing bytes 0xFF0x55 for binary data!
USAGE: !-ap0, indicates an XBee in AP mode 0 (transparent mode) so do not decode frame structure!
USAGE: !-v 77, use 0x77 to fill in missing value in binary mode!
USAGE: !-stdout, write to stdout for pipe mode in binary mode!
USAGE: !-stream, assumes no header & write to stdout for pipe mode in binary mode!
USAGE: !file_name, name for saving binary file!
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SerialToStdout.py 

•  Simple python script to read serial port when no 
translation is needed 

•  Change baud rate and port as needed 

•  SerialToStdout.py can be use instead of 
XBeeReceive with an XBee in transparent mode  

import serial!
import sys!
!
ser = serial.Serial('/dev/ttyUSB0', 38400, timeout=0)!
!
# flush everything that may have been received on the port to make sure !
# that we start with a clean serial input!
ser.flushInput()!
!
while True:!
    out = ''!
    sys.stdout.write(ser.read(1024))!
    sys.stdout.flush()!
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XBeeSendCmd 

USAGE: !./XBeeSendCmd -p dev [-L][-DM][-at] -tinyos -tinyos_amid id_hex -mac|-net|-addr|-b message!
USAGE: !-p /dev/ttyUSB1!
USAGE: !-mac 0013a2004069165d HELLO!
USAGE: !-net 5678 HELLO!
USAGE: !-addr 64_or_16_bit_addr HELLO!
USAGE: !-b HELLO!
USAGE: !-at to send remote AT command: -at -mac 0013a2004069165d ATMM!
USAGE: !-L insert Libelium API header!
USAGE: !-DM to specify DigiMesh firmware!
USAGE: !-tinyos to forge a TinyOS ActiveMessage compatible packet (0x3F0x05 are inserted)!
USAGE: !-tinyos_amid 6F, to set the ActiveMessage identifier to 0x6F (0x05 is the default)!

•  XBeeSendCmd!

•  Main target is 802.15.4 XBee-based gateway 

•  Send ASCII command with Xbee  

•  Can be used to sent remote AT command to other Xbee module 

•  Support DigiMesh firmware 

•  Example 
•  XBeeSendCmd -addr 0013a2004069165d  ’’/@D0100#’’ 
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XBeeSendFile 

USAGE: !./XBeeSendFile -baud baudrate -p dev -timing tpkt_us tserialbyte_us tafterradio_us -nw -fake -drop 
rate -v val -fill -pktd -pktf -size s -stdout -mac|-net|addr|-b file!
USAGE: !-baud 125000, 38400 by default!
USAGE: !-framing, will use framing bytes 0xFF0x55+SN for binary packets (e.g. audio)!
USAGE: !-timing 50000 20 25000 by default!
USAGE: !-nw, do not wait for TX status response!
USAGE: !-fake, emulate sending. Will write in fakeSend.dat!
USAGE: !-drop 50, will introduce 50 of packet drop. Useful with -fake!
USAGE: !-v 77, use 0x77 to fill in missing bytes in lost packet!
USAGE: !-fill, will fill missing bytes!
USAGE: !-pktd, display generated XBee frames!
USAGE: !-pktf, generate a pkt list file!
USAGE: !-size 50, set packet size to 50 bytes!
USAGE: !-stdout, write to stdout for pipe mode!
USAGE: !-mac 0013a2004069165d!
USAGE: !-net 5678!
USAGE: !-addr 64_or_16_bit_addr, set either 64-bit or 16-bit dest. address!
USAGE: !-b!

•  XBeeSendFile!

•  Main target is 802.15.4 XBee-based gateway 

•  Send binary files with Xbee with controlled timing  

•  Can use any packet size between 1 and 100 bytes 

•  Can insert framing bytes, can introduce packet losses 
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WaspMote+XBee in raw mode 

•  Electret mic with 
amplifier 

•  XBee in AP0 mode 
(transparent mode) 

•  8-bit 4Khz sampling 
gives 32000bps 

•  8Khz sampling gives 
64000bps, requires 
custom API 

ONLY 1 HOP! 
 
 

Xbee GW 

100 8-bit samples (12.5ms) 
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Details of pin connection 

VCC	
  on	
  D2	
  	
  

AUDIO	
  on	
  A2	
  

GND	
  on	
  GND 



the sounds of smart environments  

WaspMote test-bed: XBee gw AP0 
void loop() {!

!val = analogRead(ANALOG2) ; // read analog value!
!val8bit = ((val >> 2) ) ; // convert into 8 bit!

!
 !// write on UART1, need an XBee module!

!// with AP mode 0!
!
 !serialWrite(val8bit,1);!
}!

4KHz sampling!
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat | play --buffer 50 -t raw –r 4000 -u -1 –!
!
8KHz sampling!
> XBeeReceive -baud 125000 -ap0 -stdout dumb.dat | play --buffer 50 -t raw -r 8000 -u -1 -!
!
Save raw data for off-line playing!
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat > test.raw!
> play -t raw –r 4000 -u -1 test.raw!

With XBee GW also in AP0 mode  

Alternatively using SerialToStdout python script, at 38400 baud only 
!
> python SerialToStdout | play --buffer 50 -t raw –r 4000 -u -1 –!

Xbee GW 
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XBee gateway in pkt mode (AP2) 

•  The receiving XBee module may need 
to be in packet mode (AP2) due to 
deployment constraints 

•  Adds overhead of XBee API frame 
decoding: 8KHz sampling may be not 
supported 

4KHz sampling!
> XBeeReceive -baud 38400 –stream dumb.dat | play --buffer 50 -t raw –r 4000 -u -1 –!
!
!
Save raw data for off-line playing!
> XBeeReceive -baud 38400 –stream dumb.dat > test.raw!
> play -t raw –r 4000 -u -1 test.raw!
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Multi-hop audio constraints 

1 

1 tread trelay 

1 
tprocessing 

Need audio encoding!
To reduce audio data size 

Relay 

Relay 

Add overhead! 
 
 

Decode & Play!
Received audio!
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Multi-hop audio solution 

•  Use dedicated audio board for 
sampling/storing/encoding at 8kbps 

•  Allows for multi-hop, encoded audio 
streaming scenarios 

Specially designed audio 
board by INRIA CAIRNS & 
Feichter Electronics 
 
 

dsPIC33 with 8kbps speex 
real-time encoder 
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Details of pin connection 
P1.7 can be 
used to power 
on/off the audio 
board 
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AdvanticSys+audio board 

•  The audio board captures 160 bytes (20ms) of raw 
audio and uses speex codec at 8kbps to produce 
20 bytes to encoded audio data 

•  It sends the encoded audio data through an UART 
line to the host micro-controller 

•  The host micro-controller receives the encoded 
data and sends them wirelessly to the next hop 

•  The last hop is a base station that will forward the 
encoded audio into a speex audio decoder 

•  Output of the speex audio decoder is in raw format 
that can be feed into a player (play) 
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speex at 8kbps 
160 8-bit samples (20ms) 

20 bytes of encoded audio data 

25 or 21 bytes frame 

1 byte!
pkt size!
(21)  speex_sampledec_wframing!

1 byte!
Seq. No.  

2 bytes!
framing!
0xFF0x55  

1 byte!
# samples (20)  
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async event void UartStream.receiveDone(uint8_t* buf, !
!uint16_t len, error_t error){!
!      !      !
!post sendMsg();!

}!

AdvanticSys+audio board 

> XBeeReceive -baud 38400 -B -ap0 -stdout dumb.dat | speex_sampledec_nframing | !
!play --buffer 100 -t raw -r 8000 -s -2 –!

!

With XBee GW in AP0 mode  

With AdvanticSys base station (115200 baud) 
!
> python SerialToStdout | speex_sampledec_wframing | play --buffer 100 -t raw -r 8000 -s -2 -!

Xbee GW 

With XBee GW in AP2 mode (pkt mode)  
> XBeeReceive -baud 38400 -B -stream dumb.dat | speex_sampledec_nframing | !

!play --buffer 100 -t raw -r 8000 -s -2 –!
!
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Relay nodes 

Fully configurable: 
 
Destination node 
Additional relay delay 
Clock synchronization 
 
 

Libelium !
WaspMote 

AdvanticSys !
CM5000, CM3000 

R0/1 enable/disable relay mode!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
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Multi-hop test-bed w/audio board 

R0/1 enable/disable relay mode!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!

0x0040 

Decode & Play!
Received audio!

Speex audio encoding!
8kbps!

0x0010 Relay 

Relay 

0x0020 

0x0030 

A1/2/3/4 aggregate audio frames!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
C0/1 power off/on the audio board!
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Generic & controlled sender 

Fully configurable: 
 
Destination node 
Clock synchronization 
File to send 
Size of packet chunk 
Inter-packet delay 
Binary/Stream mode 
 
 

Use a generic sender node 
to test with a larger variety 
of audio codec: store 
encoded audio file on SD 
card. Audio encoding is 
done on desktop computer 
 
Do not need specific audio 
encoding hardware to test 
quality of streaming 
encoded audio data 
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Multi-hop test-bed w/generic sender 
0x0010 

0x0040 

T130 transmit with inter pkt time of 130ms!
Z50 set the pkt size for binary mode!
Ftest2400.bit set the file name to test2400.bit                !
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
B or S set to binary mode/set to stream mode!

All commands must be prefixed by « /@ » 
and ended/separated by « # » 
 
/@T130#, /@Ftest2400.bit#B#!
 
 

Decode & Play!
Received audio!

Relay 

Relay 

0x0020 

0x0030 
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codec2/speex with generic sender 

•  Use codec2/speex encoding software to 
produce encoded audio file 

•  Store encoded audio file (.bit/.spx) on SD 
card 

•  Configure the generic sender for sending 
the encoded audio file 
•  Define packet size 
•  Determine inter-packet send time 

•  Receive the encoded audio stream, decode 
the data and determine audio quality 
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Produce encoded audio file: codec2 

•  Initial file: test.raw in 16-bit, signed 
•  Use sox to get 16-bit, signed if your 

raw file is not in this format 
•  Encode at 2400bps with 

•  c2enc 2400 test.raw test2400.bit 
•  Store test2400.bit on SD card 
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Codec2 encoding 
320 8-bit samples (40ms) 

7 bytes of encoded  
audio data 

at 1400bps 

at 2400bps & 3200bps 
160 8-bit samples (20ms) 

6 bytes of encoded  
audio data 

8 bytes of  
encoded  
audio data 

2400bps 3200bps 
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Codec2 at 2400bps & 3200 

1 byte!
Seq. No.  

2 bytes framing!
0xFF0x55  

at 2400bps & 3200bps 
160 8-bit samples (20ms) 

6/8 bytes of encoded!
audio data 

XBeeReceive!

c2dec!

1 byte!
pkt size  

2 bytes!
file size  

2 bytes!
offset  
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Multi-hop tests with codec2 

Decode & Play!
Received audio!

0x0010 

0x0040 

/@Ftest2400.dat#B#!
/@Z40#!
/@T90#!

Sample Audio: 13s!
PCM = 104000B!
Codec2 at 2400bps !
gives 3900B  

> XBeeReceive -framing –B rcv-test2400.bit!
> c2dec 2400 rcv-test2400.bit - | play -t raw -r 8000 -s -2 –!

!
!
> XBeeReceive -framing –B -stdout rcv-test2400.bit | bfr -b1k -m2% - | !

!c2dec 2400 - - | play -t raw -r 8000 -s -2 -!

Store & Play 

Streaming 

Relay 

Relay 

0x0020 

0x0030 
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Produce encoded audio file: speex 

•  Initial file: test.raw in 8-bit unsigned 
or 16-bit signed 

•  Encode at 8000bps with 
•  speexenc --8bit --bitrate 8000 

test.raw test8000.spx!

•  Produce a raw speex byte stream with 
modified version of speexdec!
•  speexdec test8000.spx > t8000raw.spx!

•  Store t8000raw.spx on SD card 
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Multi-hop tests with speex 

Decode & Play!
Received audio!

0x0010 

0x0040 

/@Ft8000raw.spx#B# !/@Ft8000raw.spx#S#!
/@Z25# ! ! !/@Z21#!
/@T20#!

Sample Audio: 13s!
PCM = 104000B!
speex at 8000bps !
gives 14368B  

> XBeeReceive -framing –B t8000raw.spx!
> cat t8000raw.spx | speex_sampledec_nframing | play -t raw -r 8000 -s -2 –!

!
!
> XBeeReceive –B -stdout -stream t8000krw.spx | bfr -b1k -m2% - | !

!speex_sampledec_wframing | play -t raw -r 8000 -s -2 -!

Store & Play 

Streaming 

Relay 

Relay 

0x0020 

0x0030 
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Frame analysis 

•  Use wireshark as frame analysis tool 
•  AdvanticSys TelosB mote as 

promiscuous sniffer mote, connected 
to wireshark to display captured 
frames 

•  Frame reception time can be 
visualized for statistic collection 
•  Transmission latencies 
•  Frame jitter 
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wireshark frame capture 
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Sensitivity of codecs 

audio 
Encode in 

raw, codec2 
& speex 

.raw 
.bit 
.spx 

Pkt losses & 
byte errors 

.raw
.bit 
.spx 

Convert 
in .wav 

.raw.wav 
.bit.wav 
.spx.wav 

Quality test 

.raw.wav 
.bit.wav 
.spx.wav 

Quality 
indicator 

Apply various loss patterns 
before decoding 

LAB TESTS 
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Apply packet loss rate 

•  Use XBeeSendFile to control 
•  Timing between packet sending 
•  Packet loss probability 

 
> XBeeSendFile -fake -drop 25 -stdout test2400.bit > test2400-25loss.bit 

> XBeeSendFile -fake -v 77 -fill -drop 25 -stdout test2400.bit > test2400-25loss-fill.bit 

Codec2 2400bps, series of 6-byte encoded audio packets 

1 2 3 4 

1 3 4 

1 2 3 4 
77 77 77 77 77 77!


