P A
the sounds of Smart enviFonment

Ear-IT WP1 Acoustic Test-bed Qualiﬁcatioh

D1.3: Methodology and tools for
measurements and benchmarking on the
_use of acoustic sensors

APFTE

V'

o
-

This document is the EAR-IT deliverable 1.3. It presents the methodology and tools for
measurements and benchmarking on the use of acoustic sensors with a number of
performance indicators. It describes the measure campaigns in Santander's SmartSantander
and Geneva's HobNet test-beds to determine with the proposed methodology and tools the
NETWORK performance indicators while the ENERGY indicators are measured in lab. While 1-
hop transmission can be easily realized with the developed solutions, achieving high audio
quality, the experimentations show that multi-hop audio quality, especially in non-LOS
conditions, heavily depend on the choice of the relay nodes. However, results are promising as
multi-hop audio transmission with packet loss rate below the maximum accepted threshold has
successfully been tested with appropriate position of relay nodes. In addition, energy
consumption has been measured and were found compatible with a smart cities environment
and usage scenario.

o ®
N

‘a o
R

MANDAT !
INTERNATIONAI =1 L I ——

oMY

; . —
WUNINOVA 74 Fraunhofer
l .

Project Number: Project Acronym:

Project Title:
Experimenting Acoustics in Real environments

318381 EAR-IT using Innovative Test-beds

Instrument: Thematic Priority

STREP Future Internet Research and Experiment
Title

Methodology and tools for measurements and benchmarking on the use of acoustic

sensors

Contractual Delivery Date:

October 1%t 2014

Actual Delivery Date:

November 1%t 2014

Start date of project:

October, 1% 2012

Duration:

24 months

Organization name of lead contractor for
this deliverable:

EGM

Document version:

V1.0

Dissemination level (Project co-funded by the European Commission within the Seventh

Framework Programme)

PU Public X
PP Restricted to other programme participants (including the Commission

RE Restricted to a group defined by the consortium (including the Commission)

co Confidential, only for members of the consortium (including the Commission)

Authors (organizations) :

Congduc Pham, EGM
Philippe Cousin, EGM

Abstract :

This document is the EAR-IT deliverable 1.3. It presents the methodology and tools for
measurements and benchmarking on the use of acoustic sensors with a number of performance
indicators. It describes the measure campaigns in Santander's SmartSantander and Geneva's
HobNet test-beds to determine with the proposed methodology and tools the NETWORK
performance indicators while the ENERGY indicators are measured in lab. While 1-hop transmission
can be easily realized with the developed solutions, achieving high audio quality, the
experimentations show that multi-hop audio quality, especially in non-LOS conditions, heavily
depend on the choice of the relay nodes. However, results are promising as multi-hop audio
transmission with packet loss rate below the maximum accepted threshold has successfully been
tested with appropriate position of relay nodes. In addition, energy consumption has been
measured and were found compatible with a smart cities environment and usage scenario.

Keywords :

Acoustic data, benchmark methodology, test-bed, audio streaming

Disclaimer

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Any liability, including liability for infringement of any proprietary rights, relating
to use of information in this document is disclaimed. No license, express or implied, by
estoppels or otherwise, to any intellectual property rights are granted herein. The members of
the project Probe IT do not accept any liability for actions or omissions of Probe IT members or
third parties and disclaims any obligation to enforce the use of this document. This document
is subject to change without notice.

Revision History

The following table describes the main changes done in the document since it was created.

Revision Date Description Author (Organisation)

0.1 15" September Initial drafting C. Pham (EGM)
2014

0.5-0.9 | 1% October Development of full report and several C. Pham (EGM)
2014 iterations after internal review

1.0 29" October Final version

2014

C. Pham (EGM)
P. Cousin (EGM)

Table of Content

EAR-IT WP1 ACOUSTIC TEST-BED QUALIFICATION 1
D1.3: METHODOLOGY AND TOOLS FOR MEASUREMENTS AND BENCHMARKING ON THE USE OF ACOUSTIC SENSORS........ 1
ABSTRACT 1
1. INTRODUCTION ...ccociuiiiiieeiiirteeeeeeiitreeeeeetrreeeesassnsseeeesaasssaseesasssssssassasssssseessassssseessassssseseesssssssseesssssssseeessnsssseeessansnsses 6
2. REVIEW OF EAR-IT TEST-BEDS AND DEVELOPED HARDWAREccceeettiiuuuttttrerereerereeeeeeeeeeeeeeeeeeeeeeessssssssrerereerenes 7
Review of SmartSantander test-bed RAFAWATe.cc.cccueevieiiiiiiiieeieee ettt sae e e aaenee e 7
Review of the HODNEt teSt-Ded MAVAWATEccc.ooveeiieieiieeie ettt ettt ae et e stteebeesaaeenbeenssesnnee e 8
Review of maximum [0T SENAING PEFFOFIANCEc..cccueecuieiieeiiieeie et eee ettt eae et e s aeebeestaeabeesssesnbeessaasnsee e 8
Review of maximum [0T relaying PErfOTMANCEccocoieiueiciiesieecie ettt tee e eaeesbeenseeneees 10
Review of minimum requirements at sender and relay nodes in a multi-hop environment................ccccccoeevenvennne.. 11

3. AUDIO STREAMING AND DEVELOPED HARDWAREocciiiiiiiiiiiiiiiiiiie ittt 13
Motivations & purposes Of QUAIO STFPEAMMINGcccveeueiiiieeie e eieeetee ettt e e et e st et e stse e teessseeseessseenseeseneas 13
Basic principles & COMSIFAINLSccoueiii ittt ettt ettt et et e et e s ab e e beesab e e teesase e seeesaeenseessbeanseenenean 13
Raw audio with 8kHz sampling on Libelitht WASPMOLEcccoovvueeceeiiieiieiiie ittt eae e sve e n 15
Development of a dedicated QUATO DOAFAcccooecueiiiieiieiiieeie ettt ettt et ae e beeaeeneee s 17

4. BENCHMARK METHODOLOGY AND TOOLSciuiiiiiiiiiiiiiiiiiieiti ittt s s s s 24
MEIROAOIOZY ..ottt ettt et e ke et e e bt e eab e e bt eeabeenbeeeeb e e teenabeenteeenbeenbeeenbeeneenene s 24
PACKCE QIALYSIS TOOLS ..ottt ettt e ettt e s et e et e e abeesbeesabe e teeesbeesteessbeenseessbeenseenenean 25

5. NETWORK PERFORMANCE INDICATORS......cccciiiiuutteteeariureeeeeeietreeeeeassrseeeesesonsseesessssssaseesassssssesessnssssesessessnsseessessnses 26
.1 TESS T1 SANIANACT ...ttt ettt ettt et ettt e a ettt nae et e e nteens 26
L1-ROP, SOUFCE 1O AESTIMALION.oc.veeeeeeee ettt ettt ettt e st e et e st e eas e e sttt enbeesseeeaseessseenseessbeanseenanean 27

2-hop transmission. source, relay and deStINATION.c..cccveevueiciiiieeee ettt e e 35
Conclusion of benchmark tests in Santander's SmartSantander test-bed...............ccoccevvvevvieniiivceeniiiiieneeennnn 40

4.2 Tests in Geneva (HODNeEt, HEPIA STLE)ccc.ccceiouieiieiie et ettt et stae e taessseesseesabeensaesabeensaesnseenees 42
L1-ROP, SOUFCE 1O AESTIMALION.oc.v ettt ettt ettt e et e et e st e eabe e e et e e nbaensteeabeessseenseesnbeanseenanean 43

2-hop transmission. source, relay and deStINATION.c..cccveevueecieiiieeet ettt sae e eae e e 48
Conclusion of benchmark tests in Geneva's HEPIA DUIIAING...............c..ccouevceiiiiiiieiieiieeeeee e 52

6. ENERGY INDICATORSeeiiieiuuieeteeiiittaeeeeeasusseeeeaaassseeeeasosssssesssssssseassssssssesssasssssessssassssssssssssssssseessassnsssessasssseseesanns 53
7. BENCHMARKING OTHER TEST-BEDS.......cccittttttieeiurreeeeeiorreeeeeiiirsseeesasssseessesssssessesasossssssesssssssseessasssssesssansssessesanes 58
WHY AOING @ DERCHAIATEK...........ooeeiiiieeiieeie ettt ettt et ettt e et e et e e st e eateesabeanstesebeansaeenseesseesnseensee e 58
ODbJectives Of the DERCHIMATEc..cccuiiiieiii ettt ettt ettt e et e et esaa e et e sabeeseesebeesaennseenees 58
WWRATE YOU TEEA 0 O ..ottt ettt ettt et e et et e e e e e bt e e abeenstesebeanseessbeensaesnseenseesnseenseenes 58
Review of useful documents and EAR-IT deliverables..................ccocouuceeiiiicieiieiiieeie et n 58
Benchmarking ProCOAUTE................coveviiiii ettt ettt ettt et s et e bt e et e teesaseeteeesaeenbeessbeeseenenen 59
CAILFOT BENCHIATK ..ottt ettt ettt ettt e et e st e et e e e aae e bt essaeenseesabeenseessbeansaeenseenses 59
Preliminary results from SUTTEY tESI-DEd................c..ccueeiiiiiieiieei ettt ettt ettt ssae e e sbeeseesenes 59
Preliminary results from EGM teST-Ded.............cc..cccoevuieiiiiiiiieeieei et ee ettt ettt et sate e tee e eseessbeeseesenen 61

8. CONNECTING THE AUDIO ON OTHER IOT PLATFORMScccciiiitiiieeeieiiteeeeeesitreeeeesssesaeeeesssnsseeesssssssessssasnssesssessnnes 64
9. SUMMARY AND CONCLUSIONSceiuttttteeeeitttteeeeasirreeeeeesoesseseessassrsseaesasssseessasssssessesasossssseesssssssseesssssssseessassssessesanes 65
Summary of Main veSUILS Of the VAFIOUS TESIS........c..eivueeeeeeieeeieeeee et eiee et stte et estte e bt eteesbeesseesaseestsessseesssessseenneenes 65
CONMCIUSTONS ...t ettt ettt ettt e bt ettt oot e a et e et et e e et et et ene et e e eene e 66
TO. REFERENCESciiiiiiiiitieeieiitteeeeesttteeeeeesataeeeesaestsseeaeaasassseessassssaseessasssseessasssssesessassnsssesessnssssseessassssseesesssssseeeenanes 67
ANNEX.A: REVIEW OF SOFTWARE ENVIRONMENT, TOOLS AND TEST HARDWAREccociiiiiiiiiiiiiiiiiiicccc e 68
ANNEX.B: BENCHMARKING PROCEDURE FOR OTHER TEST-BEDScccciuiiiiiiiiiiiiiiiiieiie s 83
ANNEX.C: BENCHMARKING PROCEDURE FOR OTHER TEST-BEDS (SLIDES) ...c.uvtertteeteeieenieeeieesieeeseenieeeseenseessesnseesnnes 90
ANNEX.D: AUDIO BOARD ON OTHER IOT PLATFORMS........ccciiiiiiiiiiiiiiiiii it 99

This document is the EAR-IT deliverable 1.3. In previous deliverable 1.2 we defined some
selected performance indicators and presented the minimum requirements for use of acoustic
sensors on the various EAR-IT test-beds based on WSN and IoT nodes with IEEE 802.15.4
radio technology. These performance indicators were categorized into:

1. Network performance indicators (NETWORK)
2. Audio quality indicators (AUDIO),
3. Energy indicators (ENERGY).

This document describes a benchmarking approach to provide performance indicators that
would qualify the various EAR-IT test-beds based on WSN and IoT nodes with IEEE 802.15.4
radio technology. We will review the main performance issues when it comes to support
acoustic data: packet loss rate, relay latency and packet jitter to name a few. We will also
consider audio quality and energy aspects as part of our benchmark methodology in order to
provide both performance and usability indicators.

One main motivation behind an accurate test-bed qualification on the 3 proposed indicators is
the possibility of near real-time multi-hop audio streaming from a source to a control center in
case of emergency, using low-resource IoT nodes (typically the legacy sensors deployed in the
Santander's SmartSantander test-bed). Therefore this document will also present an overview
of audio streaming techniques and the various hardware developed for this objective. The
document is organized as follows:

¢ Chapter 2 will present:
o a review of the EAR-IT test-beds with the associated sensor platform hardware
o a review of the IoT node network performance obtained during the network
qualification phase (see Deliverable 1.1)
o a review of the minimum requirement for use of acoustic data (see Deliverable
1.2)
¢ Chapter 3 will focus on audio streaming features. We start by presenting audio
streaming techniques then describe the motivation behind the developed audio board.
The main characteristics of the audio board as well as the implemented services
developed for enabling and demonstrating multi-hop audio streaming on low-resource
IoT nodes will be presented.
¢ Chapter 4 will present the benchmark methodology and tools
e Chapter 5 will present our tests to determine network performance indicators
¢ Chapter 6 will present our tests to determine energy indicators
e Chapter 7 will describe the proposed benchmark procedure to test other test-beds

¢ Chapter 8 will conclude this document

The EAR-IT test-beds consist in (i) the SmartSantander test-bed and (ii) the HobNet test-bed.
The SmartSantander test-bed is a FIRE test-bed with 3 locations. Being one location, the
Santander city in north of Spain has deployed more than 5000 nodes deployed across the city.
This is the site we will use when referring to the SmartSantander test-bed. HobNet is also a
FIRE test-bed that focuses on Smart Buildings. Although the HobNet test-bed has several sites,
within the EAR-IT project only test-bed located at MANDAT Intl and HEPIA are concerned.
Many information can be found on corresponding project web site (www.smartsantander.eu
and www.hobnet-project.eu) but we will present in the following paragraphs some key
information that briefly present the main characteristics of the deployed nodes.

IoT nodes and gateways

IoT nodes in the Santander test-bed are WaspMote sensor boards and gateways are Meshlium
gateways, both from Libelium. Most of IoT nodes are also repeaters for multi-hops
communication to the gateway. Figure 3 shows on the left part the WaspMote sensor node
serving as IoT node and on the right part the gateway. The WaspMote is built around an Atmel
ATmegal281 micro-controller running at 8MHz. There are 2 UARTSs in the WaspMote that serve
various purposes, one being to connect the micro-controller to the radio modules.

Figure 1: Santander’s IoT node and gateway

Radio module

IoT nodes have one XBee 802.15.4 module and one XBee DigiMesh module. Differences
between the 802.15.4 and the DigiMesh version are that Digimesh implements a proprietary
routing protocol along with more advanced coordination/node discovery functions. In this
document, we only consider acoustic data transmission/relaying using the 802.15.4 radio
module as the DigiMesh interface is reserved for management and service traffic. XBee
802.15.4 offers the basic 802.15.4 [802154] PHY and MAC layer service set in non-beacon
mode. Santander's nodes have the "pro" version set at 10mW transmit power with an
advertised transmission range in line-of-sight environment of 750m. Details on the
XBee/XBee-PRO 802.15.4 modules can be found in [XBeeDigi] [DMDigi].

IoT nodes

Sensor nodes in the HobNet test-bed consist in AdvanticSys TelosB motes, mainly CM5000 and
CM3000, see figure 4, that are themselves based on the TelosB architecture. These motes are
built around a TI MSP430 microcontroller with an embedded Texas Instrument CC2420
802.15.4 compatible radio module. The TelosB description and data-sheet can be found in
[TELOSB]. Documentation on the AdvanticSys motes can be found in [ADVAN]. AdvanticSys
motes run under the TinyOS system [TINYOS]. The last version of TinyOS is 2.1.2 and our
tests use this version.

Figure 2: CM5000 (left) and CM3000 (right)

Radio module

The CC2420 is less versatile than the XBee module but on the other hand more control on low-
level operations can be achieved. The important difference compared to the previous Libelium
WaspMote is that the radio module is connected to the microcontroller through an SPI bus
instead of a serial UART line which normally would allow for much faster data transfer rates.
The CC2420 radio specification and documentation are described in [CC2420].

The TinyOS configuration by default uses a MAC protocol that is compatible with the 802.15.4
MAC (Low Power Listening features are disabled). It also uses ActiveMessage (AM) paradigm to
communicate. As we are using heterogeneous platforms we will rather the TKN154 IEEE
802.15.4 compliant API. We verified the performances of TKN154 against the TinyOS default
MAC and found them greater.

Regarding the network indicators we already reported in deliverable 1.1 the time spent in a
generic send() function, noted tseng, and the minimum time between 2 packet generation,
noted tpk:. toke Will typically take into account various counter updates and data manipulation so
depending on the amount of processing required to get and prepare the data, tp can be quite
greater than teeng. With teenq, we can easily derive the maximum sending throughput that can
be achieved if packets could be sent back-to-back, and with t, we can have a more realistic
sending throughput. In order to measure these 2 values, we developed a traffic generator with
advanced timing functionalities. Packets are sent back-to-back with a minimum of data
manipulation needed to maintain some statistics (counters) and to fill-in data into packets,
which is the case in a real application. On the WaspMote, we increased the default serial baud
rate between the microcontroller and the radio module from 38400 to 125000. The Libelium
API has also been optimized (for instance, we also remove the overhead of waiting for
transmission status, which is not very relevant for real-time acoustic data) to finally cut down
the sending overheads by almost 3 compared to the original Libelium API! Figure 3(top) shows
tsena @and ty for the WaspMote. Results for AdvanticSys TelosB are shown in Figure 5(bottom).

Time in send() and time between 2 packet generation

Libelium WaspMote
=&=time in send(), 125000 =itime in send(), fitted
““*time between send() =*=time between send(), fitted
8 15.30 15-82 10
| 14.78 >
16 14.27
1303 1375
14
L 12
E 10 11.38
£ o 10.88
o 17.03
£ 8
=
6 -
! 5.87
4 3 486 030
386
2 586 336
235 <
0
10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 85 S0 95 100
XBee payload in bytes
Time in send() and time between 2 packet generation
AdvanticSys TelosB
“&=time in send() “@=time in send(), fitted ““*“time between send() “*=time between send(), fitted
30
25.3
43s 234 238 242 246 49
25 e 223 227 % .
212 . .
190 194 197 201 205 20 4
20 3
w
€
£ 15 167 170 174 128 181
159 163 - .
E 137 141 145 148 132 e
10
5
0

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Payload in bytes

Figure 3! tseng @nd ty; for for WaspMote (top) and AdvanticSys TelosB (bottoh'l)

Review of maximum IoT relaying performance

We also used the traffic generator to send packets to a receiver where we measured (i) the
time needed by the mote to read the received data into user memory or application level,
noted t...q, and (ii) the total time needed to relay a packet. Figure 4 shows the results.

Read time & processing w/relay time

=®=Read time, WaspMote ==WaspMote processing w/relay time

120 102 108
94

100
g 80
£
o 060
E
= 40
20
0
10 20 30 40 50 60 70 80 S0 100
XBee payload in bytes
Packet read time & packet relay time
“=Packet relay time (non optimized, measured), TelosB
“=packet relay time (optimized, sniffer), TelosB
==packet read time, TelosB
30.0 279 28.1
;o 255 a3
25.0 319 22.7/;————';/
205 20.7 . ot
‘ 187 N il
. 20.0 17.4 — 16.38
o
é 15.0
" 100
5.0 -
0.0)
10 20 25 30 40 50 60 70 80 90 100
Payload in bytes

Figure 4: treaq and treay, for for WaspMote (top) and AdvanticSys TelosB (bottom)

Minimum requirements at the sender side

Codec Minimum sending rate

Raw
4KHz 100 bytes every 25ms
8KHz 100 bytes every 12.5ms

Speex 8000bps

An (1=n<11)
3200bps
Al

An (1<n<9)

Al 24 bytes every 20ms
A2 48 bytes every 40ms
A3 72 bytes every 60ms
A4 96 bytes every 80ms
Codec2
2400bps
Al

9 bytes every 20ms

9*n bytes every n*20ms

11 bytes every 20ms

11*n bytes every n*20ms

Table I: summary of the minimum requirements at the sender side

Buffer size & packet drop relationship at relay nodes

Time before packet drop due to a full receive buffer

WaspMote audio, WaspMote & TelosB relay nodes TelosB audio board, WaspMote relay node

Q 4KHz/W |8KHz/W |4KHz/T |8KHz/T Q Al A2 A3 A4
1000 0.33 0.14 2.33 0.23 1000 1.27 1.81 2.56 3.40
1500 0.49 0.21 3.50 0.34 1500 1.91 2.72 3.84 5.10
2000 0.65 0.28 4.67 0.45 2000 2.54 3.63 5.11 6.79
2500 0.81 0.35 5.83 0.56 2500 3.18 4.53 6.39 8.49
3000 0.98 0.42 7.00 0.68 3000 3.82 5.44 7.67 10.19
3500 1.14 0.49 8.17 0.79 3500 4.45 6.35 8.95 11.89
4000 1.30 0.57 9.33 0.90 4000 5.09 7.25 10.23 13.59
4500 1.46 0.64 10.50 1.02 4500 5.72 8.16 11.51 15.29
5000 1.63 0.71 11.67 1.13 5000 6.36 9.07 12.79 16.99

Table II: time before packet drop due to a full receive buffer

11

Maximum supported packet loss rate

Codec

Maximum packet loss rate
for speech understanding

Raw 4KHz & 8KHz 50%
Speex 8000bps 35%
Codec2
20%
2400bps
30%
3200bps

Table III : summary of the maximum packet loss rate for speech understanding

12

The EAR-IT project is one of these projects which focuses on large-scale "real-life"
experimentations of intelligent acoustics for supporting high societal value applications and
delivering new innovative range of services and applications mainly targeting to smart-
buildings and smart-cities.

Since the beginning, we faced challenges as Internet of things devices are known for their
limited processing capability and also their limited autonomy. Furthermore it was obvious that
wireless network will not allow large transmission and will have limitation in bandwidth (which
was confirmed by D1.1 and D1.2). However EAR-IT decided still to cope with some challenges
and do some experiment to still explore the possibility to ask regular simple device to provide
audio streaming with state of art coding techniques and thanks to our acoustic expert. In
exploring some possibility we will also explore possibility to enable audio to any FIRE/test
facility and give the condition to use audio (This is the del 1.2).

To conduct our research and experiment we had to consider the technical capability of audio
streaming but then also to look at the foreseen potential application. One of the audio
scenarios that we considered in EAR-IT is the audio streaming possibility where audio samples
can be captured on an on-demand basis by an IoT node and streamed in a near real-time
fashion to a control command centre under the supervision of a human operator. Motivations
are to better understand an emergency situation with audio information from people on the
emergency scene.

Acoustic data are usually obtained through a sampling process of an analog signal from a
microphone. Narrow-band sampling processes use a sampling rate lower than 8KHz while
wide-band sampling usually samples at a frequency of at least 16KHz. An A/D converter
usually performs the sampling process providing the digital samples on a number of bits, e.g. a
digital sample on 10 bits gives values between 0 and 1023 for instance. Sampling at 8KHz
means that the A/D converter must provide 1 sample every 125us.

Most of audio processes used in communication networks are narrow-band audio with a
sampling rate equal or lower than 8KHz. Also, samples are usually coded on 8 or 16 bits,
meaning that the digital value provided by the A/D converter is usually mapped (quantization
stage) on 8 or 16 bits. Therefore, in the so-called raw format, the continuous flow of audio
data represents an 64kbit/s data flow if samples are 8-bit wide: 8*8000=64000 bits. The
various steps towards digitized audio are depicted in the next figure below: from sampling to
quantization to obtain digitized audio.

13

Quantization

Amplitude
Continous Discrete
Time
Analog signal Quantized signal
Continous K‘_"ﬁ'd\ +
analog filter / ampli Ideal logical siognal
Sampled signal Digital signal
sampling Audio €D, CCD Computer

Only in this case can we associate
an integer value to the signal

Figure 5: digitized audio

In the EAR-IT project, the hardware limitations of IoT nodes impose the use of narrow-band
audio with sampling rates smaller or equal to 8KHz. Also, the limitations on the sending rate at
the application level and on the radio bandwidth generally discard audio bit rates greater than
64kbps as pointed out in the EAR-IT deliverable 1.1 on the network qualification.

The raw audio can be compressed in various manners and many compression algorithms have
been proposed and used widely in communication networks and applications: traditional wired
telephony systems, Voice over IP, GSM, ... Compression can provide a much smaller bit rate to
adapt the required throughput to the available bandwidth of the transmission system. This is
particularly important for near real-time audio in streaming applications. The term “audio
codec” will then be used as a generic term to designate one audio compression scheme. There
are hundreds of different audio codecs used in the telephony, music and video industry to
name them all. Although not an authoritarian source, a quite exhaustive list of audio codecs
and audio containers are presented on http://en.wikipedia.org/wiki/List _of codecs and
http://en.wikipedia.org/wiki/Comparison_of container_formats.

Once audio has been digitized into 8-bit samples, compressed and grouped into a number of
samples for transmission, near real-time audio streaming usually needs small packet jitter in
order to avoid gaps in the audio playout. As bounded jitter is difficult to achieve because
timing guarantees are difficult to ensure in communication protocols at low cost, a best-effort
approach is commonly used with an intermediate playout buffer. Figure 6 below illustrates the
basic principles of a playout buffer with the objective of shaping and regulating the packet
output rate.

14

Digital signal 160 8-bit samples (20ms)

SR -

Computer

packets
4

playout schecute
p-r

playout schedule
e

1

> e

Figure 6: playout buffer to handle packet jitter

Most of IoT nodes are based on low speed microcontroller (Atmel 1281 at 8MHz for the
Libelium WaspMote and TI MSP430 at 16Mhz for the AdvanticSys) making simultaneous raw
audio sampling and transmission nearly impossible when using only the mote microcontroller.

To leverage these performance issues, one common approach is to dedicate one of the 2 tasks
to another microcontroller:

1. Use another microcontroller to perform all the transmission operations (memory
copies and buffering, frame formatting, among others);

2. Use another microcontroller to perform the sampling operations (generates
interruptions, reads analog input, performs A/D conversion and possibly encodes the
raw audio data).

Our first hardware development is based on the first solution. A Libelium WaspMote is
equipped with an amplified microphone and the host microcontroller has the task of
periodically sampling the noise level. The XBee radio module which has an embedded internal
microcontroller is configured to handle all the sending operations when running in so-called
transparent mode (API mode 0 of XBee module). Figure 7 shows the Libelium WaspMote
hardware.

15

VEC oN D2 st - |

AUDIO on A2 DI nux Tx |
GND on GND |

Figure 7: raw audio capture with Libelium WaspMote

Description

1. Use a pre-amplified MIC and connect it a analog input of the Libelium WaspMote. We
use the following MIC: http://www.cooking-hacks.com/shop/sensors/sound/breakout-
board-for-electret-microphone (see figure3, left) and connect it to the WaspMote (AUD
to Analog2, VCC to Digital 2 to get 3.3V and GND to GND, see figure 3, right).

2. Configure an XBee radio module in transparent mode (API mode 0). Broadcast or
unicast communications can be used but this has to be configured prior to sending any
data because we let the XBee microcontroller do all the sending tasks. Here is a text
taken from the XBee manual from Digi:

« When operating in this mode, the modules act as a serial line replacement - all UART
data received through the DI pin is queued up for RF transmission »

« Data is buffered in the DI buffer until one of the following causes the data to be
packetized and transmitted:

a. No serial characters are received for the amount of time determined by the RO
(Packetization Timeout) parameter. If RO = 0, packetization begins when a
character is received.

b. The maximum number of characters that will fit in an RF packet (100) is
received.

Cc. The Command Mode Sequence (GT + CC + GT) is received. Any character
buffered in the DI buffer before the sequence is transmitted. »

In our case, data will be sent by the XBee radio module internal microcontroller either
on case (a) or (b).

3. Sample the analog input (Analog2) at 4KHz or 8KHz, i.e. read analog value once every
250us or 125us. A/D converter gives a 10-bit sample so it has to be converted into an
8-bit sample.

4. As the XBee radio module is connected to the host microcontroller, i.e. the Atmel 1281,

with a serial UART line, we can just write in a dedicated register the 8-bit sampled
value.

16

5. Receive on a PC or a gateway (Libelium Meshlium for instance) using an XBee radio
module in APO mode that will send data to the PC serial interface.

6. Continuously read PC or gateway serial port and send data to standard output (usually
stdout on a Unix machine). Use redirection to inject stdout into an audio player such
as play (part of sox package on a Linux machine).

The resulting audio bit stream throughput is 64kbps. At the audio source side, the hardware is
capable to sending at that rate because the XBee embedded microcontroller handles all the
framing tasks.

Limitations

Audio streaming is challenging on a multi-hop manner on low-resource IEEE 802.15.4 IoT
nodes because of relaying overheads. Figure 8 below depicts an audio streaming scenario
where a continuous flow of audio packets need to be sent wirelessly from the source IoT node
to the nearest gateway connected to the Internet.

Kb

Figure 8: multi-hop audio challenges

Even though a WaspMote can use its XBee module in transparent mode to increase its sending
capability, it is not efficient for receiving and relaying incoming packets. In addition, with the
XBee radio module configured in transparent mode, it is very difficult to perform multi-hop
transmission because the destination address of the next hop needs to be configured on the
XBee module prior to packet transmission.

Therefore the solution described above with the Libelium WaspMote can practically be realized
only to have 1-hop transmission from the audio source to a gateway, which dramatically
reduces the acoustic sensing possibilities.

To overcome all the limitations associated to raw audio, we developed a dedicated audio board
to handle the sampling and compression steps. By reducing the audio bit stream throughput,
multi-hop audio can be realized by keeping the relaying throughput in the performance range
of intermediated nodes (see figure 4).

17

Regarding the audio compression process, in the EAR-IT project it is important to use open-
source codecs to insure the largest dissemination, compatibility and interoperability. Another
important criteria is the availability of libraries and tools that can be easily installed, used and
integrated on any Linux-box on the market. The minimum requirements therefore greatly
depend on the audio codec that will be used.

The audio board, initially developed for the AdvanticSys TelosB can be connected to other
mote platforms provided that a serial port (UART) can be used to feed in the encoded audio
data. ANNEX.C will describe how the audio board has been successfully connected to a
Libelium WaspMote and to an Arduino MEGA 2560. Connecting the audio board to an
embedded Linux board such as Rasperry PI or BeagleBone can be done in a straightforward
manner with a serial-to-USB adapter and using standard Linux tools/scripts/commands to read
the serial port.

Description

1. Develop a daughter audio board with its own microcontroller that will be connected to
the AdvanticSys expansion connector. The audio board will handle the sampling
operations and encode in real-time the raw audio data into Speex codec
(www.speex.org). 8KHz sampling and 8-bit sample will be used to produce an
optimized 8kbps encoded Speex stream (speex encoding library is provided by
Microchip).

2. The audio board is designed and developed through collaboration with INRIA CAIRN
research team. Figure 9 shows a schematic of the audio board design.

Advanticsys connector & miror ext connector

3
s
5

Momg_out

cmdNim

e
_— I

i . ADMPA0A
. Speaker connector

~"— speaker supply

PGC AGD VPP

WME340

Alim solé

envaudo

mic

vocs{1.8t0 5,5 L~ 33v
L | - .

3.3VAnalog
Figure 9: developed audio board schematic

The audio board has a built-in omnidirectional MEMs microphone (ADMP404 from
Analog Devices) but an external microphone can also be connected. The microphone
signal output is amplified, digitized and filtered with the WM8940 audio codec. The
audio board is built around a 16-bit Microchip dsPIC33EP512 microcontroller clocked at
47.5 MHz that offers enough processing power to encode the audio data in real-time.
From the system perspective, the audio board sends the audio encoded data stream to
the host microcontroller through an UART component. The host mote will periodically
read the encoded data to periodically get fixed size encoded data packets that will be
transmitted wirelessly through the communication stack.

3. Connect the audio board to the AdvanticSys through the 51-pin expansion connector:

18

from the system perspective, the audio board sends the audio encoded data stream
through an UART connection to the host micro-controller.

Advanticsys

, _ , dsPIC33 with 8kbps speex
Specially designed audio real-time encoder
board by INRIA CAIRNS &

Feichter Electronics

Figure 10: developed audio board and AdvanticSys TelosB with the audio board

P17 can be
used to power
on/off the audio
board

Advanticsys
CM3000

W
»
g [
2 8
H
B
ot 12 g [l
1 [= 42
e 7] 7| [43
P4 18 4 4
RTI 19 4
RTIT ?,? :g' f
L $—% r —
y T . 4
4 i)
Ve 1
| U l ovcc

Figure 11: developed audio board connectivity schema on an AdvanticSys TelosB

4. 8KHz speex works with 20ms audio frames: every 20ms, 160 8-bit samples of raw
audio data are sent to the speex encoder to produce a 20-byte audio packet. 2 framing
bytes are added and 2 additional bytes are used to store a sequence number and the
frame size. The total audio packet is then 24 bytes as depicted by figure 12.

19

160 8-bit samples (20ms)

20 bytes of encoded audio data

2 bytes
framing

0XFF0x55 1 byte

Seq. No.

24 or 21 bytes frame

1 byte)
frame size speex_sampledec wframing

Figure 12: audio frame format, encoded audio data are in speex format

5. Read encoded date from the host mote to periodically get fixed size encoded data
packets that will be transmitted wirelessly through the communication stack (provided
by TinyOS environment).

6. Receive on a PC or a gateway (Libelium Meshlium for instance) using another
AdvanticSys mote as a base station mote.

7. Continuously read PC or gateway serial port and send data to standard output (usually
stdout on a Unix machine). Use redirection to inject stdout into a Speex decoder that
will also send on stdout the raw decoded audio data.

8. Use redirection to inject stdout into an audio player such as play (part of sox package
on a Linux machine).

Control software on audio sensor mote

The audio board is independent from the host microcontroller. The host mote will periodically
read the encoded data (made available on a serial port) to periodically get fixed size encoded
data packets that will be transmitted wirelessly through the communication stack.

We implemented some additional features to demonstrate the on-demand multi-hop audio
streaming scenario. The control software can receive a number of ASCII commands prefixed
by "/@" and ended by "#":

1. "C" command to start or stop the audio capture and transmission process

"/@C1#" starts the capture and "/@CO#" stops the capture

2. "D" command to set the destination address (next hop in case of multi-hop). 16-bit
or 64-bit IEEE 802.15.4 address can be specified.

"/@D0100#" or "/@D0013A2004086D82E#"
3. "A" command to aggregate a number of audio frames into a radio packet. Possible
values are 1, 2, 3, 4 or 6. The 6 value has a special meaning as it will be explained

later on in the Multi-hop section. The purpose of audio frame aggregation is to
increase the time window for relaying nodes to relay the audio packet.

20

Speex 8000bps

Al 24 bytes every 20ms
A2 48 bytes every 40ms
A3 72 bytes every 60ms
A4 96 bytes every 80ms
A6 96 bytes every 120ms

Multi-hop audio

Figure 13 illustrates the multi-hop audio streaming scenario. The audio source (0x0090, 16-bit
address) is configured to send audio data to relay node 0x0020 which is also configured to
relay audio data to sink node 0x0100. Aggregation level can be set at any time, even during
an active capture using the A command.

0x0090 Al/2/3/4/6 aggregate audio frames
D0020 set the 16-bit dest. mac addr
C0/1 power off/on the audio board

p—— e
— -
—

e
e
-~ D0100 set the 16-bit

SPEEX AUDIO ENCODING 0x0020 " ~ dest. mac addr
8KBPS Rl ’

~

: ~

python script, RE \\(\
standard Unix scripting tool “\DECODE & PLAY

RECEIVED AUDIO
speex decoding tool from

\
open-source speex distrib ||play tool from sox \ 0x0100
open-source distrib \

Y/

python 115200S8erialToStdout.py speex sampledec wframing | play --buffer 100 -t raw -r 8000 -s -2 -

Figure 13: Multi-hop audio streaming scenario with the developped audio board

When using AdvanticSys TelosB relay nodes, the relaying performance of an optimized version
is sufficient to handle a 24-byte packet every 20ms as shown in figure 14 below. Previous
version of relay nodes required A2 aggregation as relaying a 24-byte packet needed in average
about 19ms. However, this relaying time can be greater than 20ms in many cases, causing
packet drops at the relay nodes.

21

Packet read time & packet relay time

Packet relay time (non optimized, measured), TelosB

==pPacket relay time (optimized, sniffer), Telos8

=o=Packet read time, TelosB

30.0 279 28.1
260 255
25.0 719 27
205 20.7
18.7

E 20.0 -y 174 16.38
s 3
é 15.0
" 100 757

v
=]
w
e
~
X
w B

g
=}

10 20 25 30 40 50 60 70 80 90 100
Payload in bytes

Can handle no aggregation
Figure 14: TelosB relaying performances, no need for aggregation

On the Santander's SmartSantander test-bed, the relay nodes are Lebelium WaspMote which
has higher relaying overheads. In this case, even A4 aggregation mode can not provide a
sufficient time window for the relay node as depicted by figure 15 below.

Read time & processing w/relay time

“o=Read time, WaspMote ~“=WaspMote processing w/relay time

XBee payload in bytes

Figure 15: WaspMote relaying performances, need specific aggregation mode

22

In order to provide multi-hop audio streaming on slow IoT nodes, it is necessary to discard a
number of audio frames at the source. This is the purpose of the special A6 aggregation mode:
6 audio frames are captures to provide a 120ms time window but only 4 audio frames are
transmitted. This behavior is illustrated in figure 16.

20 bytes of encoded audio data

Add framing
bytes

1

2 3 5 6 8

A6 aggregate audio frames

Figure 16: A6 aggregation mode for slow relay nodes

23

In previous deliverable 1.2 we defined some selected performance indicators and presented
the minimum requirements for use of acoustic sensors on the various EAR-IT test-beds based
on WSN and IoT nodes with IEEE 802.15.4 radio technology. These performance indicators
were categorized into:

1. Network performance indicators (NETWORK)
2. Audio quality indicators (AUDIO),
3. Energy indicators (ENERGY).

The audio quality indicators have already been presented and discussed in previous deliverable
1.2. In this document we will measure experimentally the network performance indicators and
the energy indicators on the two EAR-IT test-beds, i.e. Santander’s SmartSantander and
Geneva’s HobNet. Figure 17 illustrates from the source to the destination the various multi-hop
constraints and limitations that will impact the audio transmission.

SOURCE S
_______________ o1

tsen -
dI t l ________ I___!read

rela

tpkl ! I tprocessing
t,m{ S \
\

Intermediate nodes can have
limited performances PLAY RECEIVED '

FILE

Figure 17: multi-hop constraints and limitations
For network indicators, we will measure:

Packet jitter at the source
Packet loss rates at 1-hop
Packet loss rates at 2-hop
Packet relaying time at relay nodes
Packet relaying jitter at relay nodes

AW E

For energy indicators, we will measure:

1. Energy consumption at the audio source
2. Energy consumption at the relay nodes

24

Packet analysis tools

The main tool that we will use is the wireshark packet analysis tool. We developed a
promiscuous packet sniffer with an AdvanticSys TelosB mote that can be connected to
wireshark in order to display captured frames and get timestamped data on packets that are
captured. wireshark will allow us to use frame reception time to visualize packets for statistic
collection such as transmission latencies and frame jitter. Using the IEEE 802.15.4 frame
sequence number we can also obtain packet loss patterns and derive the packet loss rate.
Figure 18 below shows an illustration of the packet sniffer and the wireshark tool.

Time from
reference
time

“wZxXCe Q+
ne Tme source Oetnetson Lenges Lequence umber Gtrainfo Dats
P) s S I
a2 MN:M Cr0e™ "1 n TE S35 D808 Yoy
e »2.1% 3 TS 88349)40l
DEEE 2,154 » Yes
e »2.1% » Yes
e M2.1% »
DIEE 2.8 »
THEE 8213 »
0 N2.15.4 ¥
0F 82,154) T fi
T M2.15.4 ¥ lme rom
2154) previous
82154 ¥ .
o 2,154 ! d pl yed
LR BN " Is a
24)
o 214 "
" 1.4)
" 2194)
" .4) 148 0 421120
" Frame 20: 35 bytes oo wire (298 BU13), 33 bytes captured (289 bits)
. ol Time: Dec 31, 1999 16:02: 00 80400 ST
Pratacels in frame wpae dats
~ DANE S82.35.4 Seta, Sst 108, Src) msen, Rad FCS
» Srame Control PLele. GaT (SuSSd
e
* (R
DesTiAMTion: Sudiee
.
3. MtTPr (3 eCl. empeled FCIA0a04)
* [Eapert Iafe fwarw/Chechsenl: Bod PC3)
P et 126 ytes)
fown 4108 12 I I M M0 TT Nl M e el AN
ooie 26 36 26 26 36 26 30 26 26 26 26 24 26 34 26 30 MISMIAS SIAASE
TR '
D Pie " Some e Do too) sedo Pachets 2099 Dnpleyed 2899 Marked 0 Load tme: 200 291 Profie Defoult

Figure 18: packet analysis tool

25

5. Network performance indicators

In all the tests described here, the transmission power is set to the maximum radio module
power (on the CC2420 of the AdvanticSys TelosB, TinyOS sets the transmission power by
default to 0dBm) or to the maximum allowed transmission power (in the case of XBee Pro
module for instance on the Libelium WaspMote the European regulation sets the maximum
transmission power to 10dBm). In addition, we chose to disable MAC level retransmission in
order to highlight packet losses.

4.1 Tests in Santander

All the tests described in this section have been performed in the Santander city during the
test campaigns on Feb, 11" and Feb 12™, 2014. 3 locations have been selected. They are
identified in figure 19. Gateways (Meshlium) are identified with a red rectangle.

H 3 - = ‘
Location 2 s Location 3)
7 ' oo°°°° >

o v °°°° o
351 358 266 537 538

356 % o -

267

~

— .‘-r.‘ 8

Figure 19 : test locations in Santander (Santander map from Google Maps)

Location 1 is an open-space location on the marina. It has been selected for line-of-sight
transmissions. Location 2 is a very dense, central location. It has been selected for tests of non
line-of-sight transmission because there are many buildings. Location 3 is a small urban place
surrounded by apartment buildings. It has been selected to tests the impact of interference
traffic in a typical urban location. In total, we performed 11 tests:

e Location 1: test #1 ... test #5
e Location 2: test #6 ... test #10
¢ Location 3: test #11

The tests are also divided into 1-hop and 2-hop transmission:

e 1-hop: test #1, #2, #3, #6, #7, #8, #11
e 2-hop: test #4, #5, #9, #10

26

1-hop, source to destination
Packet inter-arrival time and packet jitter, line-of-sight transmission

Test #1 is at Santander’s location 1 and we measured the packet inter-arrival time from an
8KHz raw audio WaspMote (see figure 7) is placed at location 392 to its associated gateway
(Meshlium). The test is depicted in figure 20. This testswill also allow us to measure the packet
loss rate in order to predict the audio quality based on the study presented in the previous
section. There are no 802.15.4 interference traffic on the radio channel that we selected
(channel 18).

The audio WaspMote is programmed with a 30s cyclic ON-OFF behavior. Each period is 15s
long. During ON period, the mote captures and sends raw audio data: a 100-byte packet every
12.5ms (100*125us=12.5ms). Thus, 15s of audio generates 1200 packets, one every 12.5ms.

Test 1 - radio channel 18
WaspMote 8KHz
392 =»Meshlium

Figure 20 : test #1 at location 1

Packet inter-arrival time, 392(WaspMote)-Meshlium

0.05
0.045
0.04
0.035
0.03
0.025

0.02

time in second

0.015

0.01
0.005

68
135
202
269
336
403
470
537
604
671
738
805
872
939

1006
1140

~
o
o~
—

1073
1274
1341
1408
1475
1542
1609
1676
1743
1810
1877
1944
2011
2078
2145
2212
2279
2346

Packet index

Figure 21 : packet inter-arrival time, test #1

27

Figure 21 shows the packet inter-arrival time of 2 ON periods of the audio WaspMote. The line
at the middle of the graph is the OFF period. The mean inter-arrival time is 0.0139s with a
standard deviation of 0.0001176. We can see that packet jitter at 1-hop is very low. In
addition, we observed only 1 lost packet out of a total of 2400.

Test #2 consists in a longer transmission distance where the receiver is placed at location 29,
see figure 22.

Test 2 — radio channel 18
WaspMote 8KHz
392=>»29

\
WO calle Gefgp M°
T o™

Figure 22 : test #2 at location 1

Figure 23 shows the packet inter-arrival time of 2 ON periods of the audio WaspMote. Here, we
observed only 4 lost packets out of a total of 2400.

Packet inter-arrival time, 392(WaspMote)-29

0.05
0.045
0.04
0.035
0.03
0.025
0.02

time in second

0.015

0.01
0.005

135
202
269
336
403
470
537
604
671
738
805
872
939
1006
1073
1140
1207
1274
1341
1408
1475
1542
1609
1676
1743
1810
1877
1944
2011
2078
2145
2212
2279
2346

Packet index

Figure 23 : packet inter-arrival time, test #2

28

Test #3 now uses the developed audio board plugged into an AdvanticSys TelosB Mote. Figure
24 shows the TelosB with audio board placed on location 392 and sending audio data to the
Meshlium at 1-hop.

Test 3 — radio channel 18
Audio board speex 8KHz - A6
392 =»Meshlium

Figure 24 : test #3 at location 1

We use a specific aggregation mode, so-called A6, in this test because relay nodes based on

Libelium WaspMote have limited relaying performances as shown previously in figure 4(top).

Even if test #3 is a 1-hop test, we wanted to have the same configuration than the multi-hop
test that will be described later in this document.

A6 aggregation mode captures 6 audio frames but only send 4 of them in a single 96-byte
radio packet. This behavior was depicted in figure 16. Capturing 6 audio frames provides a
time window of 6*¥20ms=120ms. This is required for Libelium WaspMote relay nodes as it will
be explained in more details in the multi-hop test section. The important information here is
that the audio source sends a packet every 120ms and that the total payload of the packet is
96 bytes.

29

The AdvanticSys TelosB with the audio board is programmed to start/stop capture and
transmission on an on-demand basis. Figure 25 shows the packet inter-arrival time during a
30s (approximately) audio capture . Here, we observed 27 lost packets out of a total of 234
(giving a packet loss rate of about 11.53%). Note that the transmission power of the CC2420
radio module of the TelosB is lower than the one of XBee module (0dBm against 10dBm).

Packet inter-arrival time, 392(audio-board)-Meshlium
0.6

o o
IS n

time in second
=]
w

—

,7
—
—
—
—
——
——
P—
P—
—
—
—
—_
-
—_—
—_—
—
—
—

P —

L

——

I

}

I

T

NN AN A SM00 N AN AN 0N A SN0 N A SN N A3
NN M ST TN LW ONMNO0OOOO0O0 O A AN ANMMOMS W WM W WS 0 OO
™ ™ = = o A A A A A A N

Packet index

Figure 25 : packet inter-arrival time, A6 level, test #3

If we take the mean from packet 1 to packet 24 (before the first packet loss) then we have a
mean inter-arrival time of about 0.1247s with a standard deviation of 0.000879. The packet
jitter is then, once again, very small.

In test #6, we used Santander’s location 2 and we placed the audio WaspMote 8KHz at
location 352. The receiver is placed at the Meshlium depicted in figure 26. Although there is no
occulting buildings, it is not an open space as there are many people and parked cars in the
street.

Test 6 — radio channel 18
WaspMote 8KHz 361
352 =»Meshlium -

.O

Figure 26 : test #6 at location 2

30

Figure 27 shows the packet inter-arrival time of 2 ON periods of the audio WaspMote. The line

at the middle of the graph is the OFF period. We observed 423 lost packets in the first ON
period (35.35%), with several packet loss bursts, and 204 lost packets in the second ON
period (17%). Each period have a total of 1200 packets.

0.4

0.35

0.3

0.25

0.2

time in second

Packet inter-arrival time, 352(WaspMote)-Meshlium

N
<
—

o
D
i

" AN UMM AN~ AR LM AN ULM AN UM AN N M
T OO MO MO ANMNSNANMNSNANYO O A0 WNONOT O SO S0 MO0 M0
NN MMM T TN OONNOMOODNODO AN NNMMSSTT WML WOW

S B B B B B I B B B IR I o I B B]

Packet index

Figure 27 : packet inter-arrival time, test #6

1729

Figure 28 shows for the first ON period, where the number of packet losses is higher, the inter-

arrival time after one or more packet losses, in descending order. Without packet losses, the

inter-arrival time is around 0.0139s as in test #1.

0.35

0.3

0.25

0.2

0.15

time in second

0.1

0.05

0

Lo I T S ¥ I g
—

Packet inter-arrival time on packet loss, sorted in descending order

RO mrm (AR
UHHHHUHHHHHH\HHHHHHHUHHHHHHHHHHHHHHHHHHHHHH\HHHHHHHUHHHHHHH\HHHHHHUHHHHHH
AN NN A AN ®N AWLMo O~
TN O N0 O —NNMS WO WO~

N ™M
Lo I I o I B B I I e B B |

<

Figure 28 : packet inter-arrival time after losses, test #6. First ON period, descending order.

31

Packet loss rate in dense, urban, non line-of-sight transmission

Test #7 consists in a non line-of-sight transmission with the audio WaspMote. Figure 29
shows the test location where the source audio WaspMote is placed at location 353, around the
corner when compared to the previous test.

Test 7 — radio channel 18
WaspMote 8KHz
353 =»Meshlium

’:' e 3%4

(|

\°

':‘ o o

Figure 29 : test #7 at location 2

Figure 30 shows the packet inter-arrival time of the ON periods of the audio WaspMote. The
line at the middle of the graph is the OFF period. We observed a total of 1494 lost packets out
of a total of 2400 packets. The packet loss rate here is therefore 62.25%. We can clearly see
here the impact of the non line-of-sight transmission on the packet loss rate in a dense urban
area.

Packet inter-arrival time, 353(WaspMote)-Meshlium

0.5
0.45
0.4
0.35
0.3
0.25
0.2

time in second

0.15
0.1
0.05

—
=
—

101
126
151
176
201
226
251
276
301
326
351
501
526
551
576
601
626
651
676
701
726
751
776
801
826
851
876
901

O - — WO
~ O N oS
M < T T T

Packet index

Figure 30 : packet inter-arrival time, test #7

32

Test #8 now consists in a non line-of-sight transmission with the developed audio board and
the TelosB. Similar to the previous case, the source audio mote is placed at location 353.

Again, the aggregation level is A6 (giving a 96-byte radio packet).

Figure 31 shows the packet inter-arrival time during a 25s (approximately) audio capture. As
can be seen, the packet loss rate is very high (inter-arrival time is very high). We observed
185 lost packets out of a total of 201 (only 16 packets are received), thus giving a packet loss
rate of about 92.03%. This is mainly explained by the much weaker transmission power of the
CC2420 radio module of the TelosB compared to the one of the XBee module (0dBm against

10dBm).

Packet inter-arrival time, 353(audio-board)-Meshlium

time in second
w B w

N

0
8 9 10 11 12 13

Packet index

4 6

Figure 31 : packet inter-arrival time, A6 level, test #8

1 |
1 2 3 5 7

14 15 16

Figure 32 shows the wall-clock time on the x-axis at which packets have been received.
Normally, the receiver should receive a 96-byte packet every 120ms as shown in figure 25

describing test #3. Here we can clearly see the high number of packet losses.

Packet wall-clock arrival time

1 & & ¢ ooy o ¢ o0 e <

0
210.00 215.00 220.00 225.00 230.00 235.00 240.00 245.00

time is second

Figure 32 : packet wall-clock arrival time, A6 level, test #8

33

Test #11 uses location 3 on radio channel 12 with both background traffic from other sensors
and many WiFi networks as depicted in figure 33. We again use A6 aggregation level here to
be in the same condition than relaying scenario.

Test 11 — radio channel 12

Audio board speex 8KHz — A1
mobility in area =»pkt analyser
with background traffic & WiFi

267

v 1
e g e |-| s T
/ °° B N
266 1~ sag} ©¥=
) 537 ‘\
I v \
‘) : pkt analyser |
[
|

Figure 33 : test #11 at location 3

Figure 34 shows the packet inter-arrival time during a 40s (approximately) audio capture.
Here, we observed 2 lost packets out of a total of 324 (giving a packet loss rate of about
0.61%).

Packet inter-arrival time, audio-board-w/interferences
0.3

0.25
0.2

0.15

time in second

0.05

NI

’l\ ’\ “."HH“.H\MI.H
mﬂ'mNﬁomwl\\Dmgle—‘Omwl\w
ST LV O™~ O NN M N O M WO O
™ e~ AN AN AN AN AN AN AN NN NN

Packet index

L “H

MJJHHHHJHM

— O MO0~ O WINM ST N N - O Y 00~
— = N TN O N0 O O - N
N =~ e~

0

136

Figure 34 : packet inter-arrival time, A6 level, test #11

If we take the mean then we have a mean inter-arrival time of about 0.1258s with a standard
deviation of 0.01. The packet jitter is then, once again, very small. Although we can not be
categoric, this test shows that SmartSantander background service traffic and WiFi
interferences do not have much impact on the audio traffic.

34

Test #4 and test #5 were performed at Santander’s location 1. The Telosb audio board is
placed at location 11 and transmits to the Meshlium through a WaspMote relay node placed at

location 392. Figure 35 below illustrates the test scenario. Test #4 uses Al aggregation level

while test #5 uses A6.

Test 4 & 5 —radio channel 18
Audio board speex 8KHz - A1 & A6
11 =392 (relay) =»Meshlium

-

&
'0-0 Calle fo%\ Mol
T 30

Figure 35 : test #4 and #5 at location 1

For test #4 the packet capture trace of the TelosB audio board shows a total number of
packets of 3216 for about 64s of audio capture and transmission. 176 packets were not

received, so 3040 were correctly captured by the packet promiscuous sniffer. The packet loss

rate is about 5.78%. With no packet losses, the mean inter-arrival time is about 0.02078s with

a standard deviation of 0.001 showing that the packet jitter at the source is once again very

small.

Packet inter-arrival time, 11(TelosB)-392(Relay)-Meshlium
at audio source

Packet index
Figure 36 : packet inter-arrival time from the audio source, Al level, test #4

35

Now, if we look at what is relayed by the WaspMote relay node in test #4, we observed 817
successfully transmitted packets out of the 3040 packets successfully sent by the audio source
and captured by the promiscuous sniffer. This means that only 26.87% of packets has been
successfully transmitted (73.13% of packet dropped or lost) by the relay node and received by
the Meshlium. With the IEEE 802.15.4 sequence number, we were able to determine that the
relay node successfully received at least 883 packets but 66 packets were lost during
transmission to the Meshlium. The difference between 3040 and 883 (2157 packets) are
packets that were most probably dropped at the relay node due to buffer overflow because of
the Al aggregation level at the audio source: the mean packet inter-arrival time from the relay
node (see figure 37) in case of no packet drop is about 0.0609s (see relaying latencies as
shown previously in figure 6(top) for a 25-byte packet) while the audio source sends 1 packet
every 0.020s.

The 2-hop packet loss rate can be determined by taking 3216 as the initial number of audio
packets and 817 as the number of received packet at the Meshlium: 74.6%.

Packet inter-arrival time, 11(TelosB)-392(Relay)-Meshlium
at relay node

0,25
0,2
©
[
80,15
Q
wv
£
go,l
=
0,05
Q il Abbdsidaishiibibbsadidbibibibiibisbini dhdibid Wadbobibdabadiasiibibsaibbababbisibibbdinibibabiibidbabidadadd TP TINY bbasibisanibidadiiadiibi Lduad
L B @D T ¥ T o 0 e B @) T T ¥ 0 e O @ O o ¥ T T O @ T S ¥ N 0 O e @ O S ¥ B 0 B e B @ D T I ¥ B 0 O B B @))
NN W™= < OANNMNDOMOLOIAONSSTNTNOMWOWO = ITNO NN~ T O
AN AN AN NN T T T NN NN W W ONMNSNMNTDMNSNOOO

Figure 37 : packet inter-arrival time from the relay node, Al level, test #4

For test #5, the audio source aggregation level is A6, therefore more suitable for WaspMote
relaying overhead of about 105ms (96-byte packet). The packet inter-arrival time from the
audio source is very similar to what was presented in test #3 with figure 25, therefore we are
not reproducing this graph. The important information is that 312 packets were sent for about
38s of audio capture (theoretically we have 312*6*0.02 because of A6 aggregation mode). We
observed 43 lost packets so 269 packets are actually received by the relay node (packet loss
rate of about 13.78%). Figure 38 shows the packet inter-arrival time from the relay node for
test #5.

The relay node received 269 packets from the audio source. We observed 31 lost packets while
the relay node is relaying to the Meshlium. Therefore we have a packet loss rate of about

11.52%.

Once again, to obtain the 2-hop packet loss rate, we can take 312 as the initial number of
audio packets and 238 as the number of received packet at the Meshlium: 23.7%. Compared
to the previous case of Al aggregation level, we can see that proper usage of aggregation
level to meet the relaying capability significantly improved the audio transmission.

36

We also observed some truncated packets because of the lower reliability of the XBee serial
communication with the WaspMote microcontroller. We expect to improve this issue in the
future to decrease further the 2-hop packet loss rate.

Under no packet losses, the mean inter-arrival time is 0.109s with a standard deviation of
0.0216.

Packet inter-arrival time, 11(TelosB)-392(Relay)-Meshlium

0,5 at relay node, A6

0,45
0,4
0,35

o
w

e 0,25
0,2
0,15
0,1

time in second

anm I.H .M\m JanHm il .MHM T 'I } I Jn‘ I

HO"D!\ o™ A~ N = S W — M = O~ N N o m
Nm-:rq-mtor\oooomo!-cNvamuoLor\oomoo—cNm
™ o e e e e e e e NN NN N

Packet index
Figure 38 : packet inter-arrival time from the relay node, A6 level, test #5

In test #9, we have the same configuration than test #8 but added a relay node at location
351 as depicted in figure 39 below. Audio source aggregation level is A6.

Test 9 — radio channel 18
| | Audio board speex 8KHz - A6

353 =»351 (relay) = Meshlium

ik

Figure 39 : test #9 at location 2

37

Figure 40 show the inter-arrival time of all audio packets both from the audio source and from
the relay node. However, similar to test #8, packets from the audio board suffer from many
losses and only 9 packets were received. They are indicated with red bars in figure 40.

Packet inter-arrival time, 353(TelosB)-351(Relay)-Meshlium
at Meshlium, all packets, A6

time in second
o o o L e
S5 OO 0 = N & O 0N

o
)

MmO N (<2 Y o T B S o o T @) B ¥ B e BN B 2 0 B @) |
T T N O O ~NMNMNOOOOODOO OO "+ N N MM MN < N N W W
L I e B B B o O e B o R B)

Packet index

Figure 40 : packet inter-arrival time from both the audio source and the relay node, A6 level, test #9

There have been 352 packets received by the relay node and 137 have been successfully
relayed and received at the Meshlium. 188 packets were not received thus the packet loss rate
is about 53.40%. This test shows that transmission in a dense environment with many
buildings, moving people and cars is very challenging.

In test #10, we placed the promiscuous sniffer between the relay node and the Meshlium, at
the *x’ location indicated in figure 41 in order to capture packet from both the audio source and
the relay node.

P

Test 10 - radio channel 18
| | Audio board speex 8KHz - A6
353 =»351 (relay) = Meshlium

,A':‘c'

Figure 41 : test #10 at location 2, with the packet analyser in the middle

38

Figure 42 shows the inter-arrival time from the audio source. We can see that there are very

few packet losses (4 packets were lost out of a total of 405 packets representing about 50s of
audio capture at aggregation level A6).
Packet inter-arrival time, 353(TelosB)-351(Relay)-Meshlium
03 from audio source, A6
0,25
€ 0,2
c
[]
g
£0,15
Q
E
E 01
0,05
O | | | | | | 1
L e o N ¥ o N o @) I B o 0 N 0 T S) O B o 0 O T B @) T O 0 T ¥ T S @ D R O o T ¥ I S @ I e N o T ¥ TN Y) B B 0 0 I ¥ 0 TN
AN N T O™ O N MT WM WO OO =« AN N OMNNDO AN MT OIS0,
™ o A A AN AN AN AN AN AN AN AN N NN MmN Mmom

Packet index

Figure 42 : packet inter-arrival time from the audio source, A6 level, test #10

Figure 43 shows the inter-arrival time from the relay node. The relay node received 400

packets but only 398 were successfully captured by the promiscuous sniffer (2 packets were
lost and they are shown in red bars, the 3 other packets with higher inter-arrival time are due

to relaying delays). Again, we can see that there are very few packet losses.

Packet inter-arrival time, 353(TelosB)-351(Relay)-Meshlium

from relay node, A6
0,45

0,4
0,35
0,3
0,25
0,2
= 0,15
0,1
0,05

Time in seconds

N O MmO un~S O -
n OO O - N <
o o NN NN

25
37
49
61
73
85
97
109
121
133
145
253
265
277
289
301
313
325
337
349
361
373
385

Packet index

Figure 43 : packet inter-arrival time from the relay node, A6 level, test #10

The results of test #10 actually confirm that the high proportion of packet losses of test #9,
where the promiscuous sniffer was placed at the Meshlium, is mainly due to the relay node-

397

Meshlium link (from location 351 to Meshlium). Relay node placement or selection then have a

very strong impact on relaying reliability as most nodes are placed against building walls.

Test #10 also provides measures of the packet relaying time at the WaspMote relay node. The

next table reproduces the first lines of the wireshark capture where we can see in the “delta
time” column the difference between the time at which the packet from the audio source is

39

captured and the time at packet from the relay node has been captured. This time can be
considered as the relay time. The audio source has address 0x0090 and the relay node has
address 0x1ddf.

index time[src dest type SN delta time data

4 885,225984 [0x0090 Ox1ddf Data, 25 0,664384|FF55C9141DD8C9500039CE702040AFAC7A62B310ED2DDA1B...
5 885,331936|0x1ddf |0x0100 Data, 32 0,105952 | FF55C9141DD8C9500039CE702040AFAC7A62B310ED2DDA1B..
6 885,362464|0x0090 Ox1ddf Data, 26 0,030528|FF55CF143EA7AB5B5F12B580C00957F05C1020E81DD5046C...

7 885,467968 |0x1ddf 0x0100 Data, 33 0,105504 | FF55CF143EA7AB5B5F12B580C00957F05C1020E81DD5046C...
8 885,48864(0x0090 |0x1ddf Data, 27 0,020672|FF55D5141DC1C4767E82A1C8E116968030A08B7F9FD48DC1..

9 885,595072 |0x1ddf 0x0100 Data, 34 0,106432|FF55D5141DC1C4767E82A1C8E116968030A08B7F9FD48DC1...
10 885,615552|0x0090 [Ox1ddf Data, 28 0,02048 | FF55DB141DD8C47C40ADBE59D040A1A3D8A09BD646303DD7..
11 885,721312|0x1ddf 0x0100 Data, 35 0,10576 |FF55DB141DD8C47C40ADBE59D040A1A3D8A09BD646303DD7...
12 885,740352|0x0090 Ox1ddf Data, 29 0,01904 [FF55E1141B955E93BESEA772A113FBO31260EBE97F58BFFB...

We can see that this relay time is about 105ms is these few lines. Figure 44 plots the relay
time of all relayed packets (398 packets) and the mean value is 0.10854 with a standard
deviation of 0.00255. This is quite consistent with what was previously measured for
WaspMote motes and shown in figure 4(top).

Relaying time at WaspMote relay node
0,14
0,13
0,12
0,11
0,1
© 0,09
§ 0,08
o
c 0,07
g 0,06
F 0,05
0,04
0,03
0,02
0,01

11
21
31
41
51
61
71
81
91
101
111
121
131
141
151
161
171
181
191
201
211
221 =
231
241
251
261
271
281
291
301
311
321
331
341
351
361
371
381
391

packet index

Figure 44 : relay time of the relay node, A6 level so 96-byte packet, test #10

We summarize the main results of the benchmark tests performed in Santander in the table
below:

Santander, SmartSantander test-bed
test scenario Pkt jitter at source pkt jitter at relay pkt loss rate
1-hop LOS open space very small (1) NA 0% - 12% (2)
1-hop LOS urban very small (1) NA 35% (2)
1-hop NLOS urban very small (1) NA 60% - 92% (2)
2-hop open space very small (1) very small (4)(5) 5% - 23% (3)
2-hop urban very small (1) very small (5)(5) 53% (3)

1. The packet jitter at the source, for both the WaspMote audio mote and the AdvanticSys
TelosB audio board, is very small and can be easily compensated at the destination with
a very simple playout buffer.

40

2. The packet loss rate at 1-hop in LOS condition, and when the distance of next hop is
similar to what can be found in Santander, is very small. In non-LOS condition, for
instance with buildings in-between, the packet loss rate can be very high: we for
instance found packet loss rate as high as 92% with the developed audio board in a
dense urban environment in non-LOS condition.

3. At 2-hop or more, using relay nodes, non-LOS condition can be overcome, and
reception quality can greatly be improved. This is particularly important in in-door
environment as shown in the HEPIA building. However, the choice of the relay nodes
can have a big impact of the performances. In urban environment, the packet loss rate
can still be high and more hops may be needed at the cost of higher latencies.

4. The packet relaying times measured with a promiscuous sniffer are consistent of what
have been predicted in the previous deliverable. According to the maximum relaying
capabilities, an appropriate aggregation level at the source can be used to reduce the
packet losses at intermediate relay nodes.

5. The packet relay jitter was found again quite small and can be easily compensated at
the destination with a very simple playout buffer.

Therefore, as a result of the benchmark tests, the SmartSantander test-bed in
Santander is capable of supporting streamed audio both in open space and urban
environment when LOS transmission is possible. in NLOS conditions, 1-hop
transmission is not capable of providing a sufficiently small packet loss rate for an
acceptable audio quality (packet loss rate much higher than 35%). Using 2-hop or
more transmission can leverage the NLOS conditions and decrease the packet loss
rate in urban environment. However, the choice of the relay nodes is of critical
importance increase transmission quality and there are certainly many interesting
issues to dynamically chose the right relay nodes. In all cases, the packet jitter at
the source and at the relay nodes is very small.

41

The second set of tests is performed at HEPIA site in Geneva. We chose this site because it is
quite representative of various environments that can be found in buildings for Smart Buildings
purposes. Figure 45 shows various parts of HEPIA building with long corridors (3),
student/public restaurants and halls (1) and even an in-door chimney (2) with quite interesting
transmission particularities.

ol i

Figure 45 : various images of the HEPIA building

In total, we performed 7 tests on 3 locations of the HEPIA building:
e Location 1: test #1, #2 and #3
e Location 2: test #4
e Location 3: test #5, #6 and #7

The tests are also divided into 1-hop and 2-hop transmission:

e 1-hop: test #1, #4, #5, #6
e 2-hop: test #2, #3, #7

Only AdvanticSys TelosB motes will be used, both for audio source (the developed audio

board) and the relay nodes because these are the hardware platforms deployed in HobNet for
Smart Buildings applications.

42

In test#1, the audio source is placed in location 1 of HEPIA, in the student cafeteria. The
audio source mote is strapped on one of the pillar of the cafeteria, somewhere in equal
distance from the 2 entrances of the cafeteria. The promiscuous sniffer is moved from one
entrance to the other by the outside hall. The configuration of test#1 is illustrated in figure 46
below, with A1 aggregation level, i.e. one 24-byte packet every 20ms.

Test 1 — radio channel 12
Audio board speex 8KHz - Al
Inside restaurant =»around main hall

/'2'.
s

. -
-
. [e—

HI

W * IR

!

2 ol [T
i

Figure 46 : test#1 in the main hall of the HEPIA building
Figure 47 shows the packet inter-arrival time during a 86s (approximately) audio capture. As
the receiver is moved around the main hall, through the glass wall, we can observe variations
on the number of packet losses. In total, we observed 687 lost packets out of a total of 4280
(giving a packet loss rate of about 16%).

The maximum number of consecutive lost packets is 8. The mean inter-arrival time is 0.24

43

Packet inter-arrival time, AudioBoard-AroundMainHall

ST SNO M OO ANWMOATNOMNMOWIOINWMOVOEATHNOMNOIAIANMOV—ETSNOM
OOF!F(HHNNNMMM#@VQ’U)U”MQD&D&Dr\l\l\l\wwwmmmoc
= ANM TN OO0 O =AM wn ~ o0 O = NN TN OO N T N

™ o A A A A A A A AN AN AN AN AN AN ANNANANONOMN MmN M

Packet index
Figure 47 : packet inter-arrival time from the audio board, Al level, test#1

In test#4, we tested the transmission quality on the in-door chimney, see figure 48 below.
The audio board is placed on the metallic structure shown with the red rectangle.

Test 4 —radio channel 12
Audio board speex 8KHz - A2
In-door chimney =»various floor

Figure 48 : test#4 in in-door chimney of the HEPIA building

44

Figure 49 shows the inter-arrival time at the receiver when it moves from the base floor up to

the last floor of the building, following the stairs around the chimney.

Packet inter-arrival time, AudioBoard-Chimney

T NOMUOUAANMOATNOMNMUWOAOAOANWUMOOEATHNOMNMWUAOAOANWMOO —ET~NOMmM
S ANTVDONADO A M T NN DDONMTONVO=FANMWL OMNOO - <
S NN TN OMNNDO A ANMT N OONDNO A NMTOMNONDO N MWL WS 0

™o A A A A A A AN NN NN NN ANNMOMOOONONON NN M

Packet index
Figure 49 : packet inter-arrival time from the audio board, A2 level, test#4

We observed 2556 packet losses out of a total of 6572 packets. The packet loss rate is
therefore quite high, 38.89%.

Figure 50 shows the number of lost packets when the receiver moves. At several moments, we

can have 165 lost packets in a row.

Packet losses, AudioBoard-Chimney

180
160
« 140
w
Lo
% 120
S
8 100
s
E80
€ 60
z
40
20 !
‘ A ‘ W
0 aibds - bl
TN <T N OMNNDO AN T NHNODNDOANMNMTOMNODO - AN MWLM OO O -« M <
NN TN ONOODO A ANMST W OO = N MNM<TOMNOODNDO =N MWL OIS
™ e e AN AN AN AN AN AN AN AN AN OO NN NN M

Packet index
Figure 50 : number of lost packets in a row, A2 level, test#4

In test#5, we tested the transmission quality in a long corridor, illustrated by figure 51. The

audio board is placed on a concrete pillar at one end of the corridor. We moved the receiver to

the other end (to the corridor entrance, towards the stairway), then went down one floor.

45

Test 5 — radio channel 12
Audio board speex 8KHz - A1
34 P corridor =» 2"

l" fl
||. (

Figure 51 : test#5 in a long corridor of the HEPIA building

Figure 52 shows the number of lost packets as the receiver is moved towards the corridor
entrance, to the stairways and to level 2 of the building. We measured 2861 lost packets out of
a total of 6713 packets, giving a packet loss rate of about 42.61%.

Packet losses, AudioBoard-Corridor
200
180
160

Number of packet lost
e e
52 0 ©® O N B
O O O © © O

N
o

o

1
112
223
334
445
556
667
778
889

1000
1111
1222
1333

g

1555
1666
1777
1888
1999
2110
2221
2332
2443
2554
2665
2776
2887
2998
3109
3220
3331
3442
3553
3664
3775

Packet index
Figure 52 : number of lost packets in a row, Al level, test#5

We can however observe that the lost packets are concentrated in the right-most part of figure

52, when the receiver was actually in the stairway, towards 2nd floor. Before the receiver went
to 2nd floor, the packet loss rate was below 8%.

46

In test#6, we placed the receiver one floor below the audio board as illustrated by figure 54,
first near the elevator, then a bit farther. Figure 55 shows the number of lost packets. The
packet loss rate is very high, about 81%, especially when the receiver is moved away from the
stairs (right-most part of figure 61).

250

N
o
o

[y
w
o

100

number of packet lost

w
o

Test 6 —radio channel 12
Audio board speex 8KHz - Al
3rd 9 2nd

/

; ‘u,

Figure 54 : test#6 in a long corridor of the HEPIA building, receiver in 2nd floor

Packet losses, AudioBoard-Corridor-3rd to 2nd floor

Packet index

Figure 55 : number of lost packets in a row, Al level, test#6

Ll il | J AL | }m.l _& N
N OO MNMMNSN =N OO MMNSN =M = OOMMNSN = OO MMNSN =M W
NI ~NOAN<T OO OO MmWOWNOMWMOOO NN O NSNS ON
A AN AN AN NN NN T T TN NN N WO WO W OSSN

47

In test#2 and test#3 we placed a relay node in the restaurant as shown in figure 56. The
audio board is set like in test#1, the relay node is placed between the audio board and the exit
in the back of the central picture in figure 56. Test#2 uses Al aggregation and test#3 uses A2
aggregation.

Test 2 & 3 —=radio channel 12
Audio board speex 8KHz - A1 & A2
Inside restaurant =»relay =»main hall

—
inl

p— ‘i) T
143 iy

e

"

.

e :

F
I

Figure 56 : test#2 & test#3 in the main hall of the HEPIA building, with relay node

Figure 57 shows the number of lost packets. We have observed 86 lost packets out of a total
of 1681 packets, resulting in a packet loss rate of about 5.11%.

If we look back at test#1 that did not use the relay node, the right-most part of figure 47 from
packet index 3822 to 4280 (458 packets) corresponds to when the receiver was located at the
same place (near the exit door) than in test#2. We then observed 62 lost packets, resulting in
a packet loss rate of about 13.53%. We can clearly see the benefit of using the relay node
inside the restaurant space to improve the reception quality in the main hall.

48

Packet losses, AudioBoard-MainHall with relay

45
4
‘8"3.5
2 3
>
1]
825
[re.
© 2
™
2
1.5
£
-
€ 1
0.5
0 -mm———— 1 \ 0 L L
L B o B B B T e e B B R o e R e O B B TR o I O s O I O B o e O O B B R o R R B B)
N OO MO MO MO MO MO MO UMOWUMOWUMOWMOWMmOWmOWmOouWm
T -t N AN N T TN N W ONMNMNODODOODOOOO =@ - NN OMYTN T <T NN
™ < = = = = = = ¢ ¢~ - -~

Packet index
Figure 57 : number of lost packets in a row, Al level, test#2
We show in figure 58 the output of test#3 with the A2 aggregation level. We observed the

same level of packet losses: 30 lost packets out of a total of 520 resulting in a 5.76% packet
loss rate.

Packet losses, AudioBoard-MainHall with relay

2.5
w 2
"
Lo
-
2
o 1.5
©
Q
-
(=]
s 1
e
£
g
0.5
0 \ | | J | |
NN OO AN MMOON AN OO =SSN0 =SSN MOO N AN mM O N
N T O 0N = N < OO NT NN O AN MM WOOWO - mMm<T O
™ e AN AN AN AN AN AN MO NN ST T T

Packet index

Figure 58 : number of lost packets in a row, A2 level, test#3

In test#7, we added a relay node to test#6 where we placed the receiver one floor below
(level 2) the audio board, a bit away from the stairways. The relay node was fixed at the
corridor entrance, near the stairs to level 2 as shown in figure 59.

49

Test 7 = radio channel 12
Audio board speex 8KHz - A2
34 =» relay =» 2" with sniffer in-the-middle

Figure 59 : test#7 in a long corridor of the HEPIA building, receiver in 2nd floor, relay at corridor
entrance, near the stairways

Compared to test#6 where the packet loss rate was about 81%, we observed here 342 lost
packets out of a total of 1170 packets, resulting in a packet loss rate of about 30%. Adding the
relay node at the corridor entrance, near the stairways greatly improves the reception quality
at one floor below, keeping the packet loss rate below 35% therefore allowing for a reasonable
audio quality. Figure 60 shows the number of lost packets for this test.

Packet losses, AudioBoard-Corridor-3rd to 2nd floor- with relay

16
14
-
3 12
kT
x 10
Q
a
u.8
o
3 g
o
£
=4
’ l
1
0 L g llull‘l. i \ B0 00 L0 Lu l.m.mm.“ L0 (000U ACE AL ORI et
NN O =SSNSO AN O AN O =SSNSO A SN O N S
NN ™SO MINOO M WOE = ™M W O OO N<T~NONUNSNENO NWmOO
™ v = 1 N NN M N MM MN < T T NN N NN WOWWORNNSNMNSNMNO®

Packet index

Figure 60 : number of lost packets in a row, A2 level, test#7

50

Test#7 also provides measures of the packet relaying time at the AdvanticSys TelosB relay
node. The next table reproduces the first lines of the wireshark capture where we can see in
the “delta time” column the difference between the time at which the packet from the audio
source is captured and the time the packet from the relay node has been captured. This time
can be considered as the relay time. The audio source has address 0x0090 and the relay node
has address 0x0200.

index time |src dest type SN delta time data
1 129.959456|0x0090 0x0200 Data, 89 0.033504 |FF55DF141B992B0OA54E519CFA180BCES58459739C04E739CE...
2 129.970112 [0x0200 0x0100 Data, 209 0.010656 |FF55DF141B992B0A54E519CFA180BCE58459739C04E739CE..
3 130.002912 [0x0090 0x0200 Data, 90 0.0328 |FF55E11419D9A4A4038008402DC007240BB6CB925405AA6A..
4 130.014208 [0x0200 0x0100 Data, 210 0.011296 |FF55E11419D9A4A4038008402DC007240BB6CB925405AA6A..
5 130.044128|0x0090 0x0200 Data, 91 0.02992 |FF55E3141B9442722EBB2E59776CE73834EA439CFFDFA9CA..
6 130.053632|0x0200 0x0100 Data, 211 0.009504 |FF55E3141B9442722EBB2E59776CE73834EA439CFFDFA9CA...
7 130.084512|0x0090 0x0200 Data, 92 0.03088 [FF55E5141B944277FEA72E76775795E5FFABCE725FD4AF39...
8 130.094016|0x0200 0x0100 Data, 212 0.009504 |FF55E5141B944277FEA72E76775795E5FFABCE725FD4AF39...
9 130.126752 [0x0090 0x0200 Data, 93 0.032736 |FF55E7141B942E52FEA5795BFF579CBB3FA902C05FD4E739..
10 130.136256 [0x0200 0x0100 Data, 213 0.009504 |FF55E7141B942E52FEA5795BFF579CBB3FA902C0O5FD4E739..
11 130.16896 [0x0090 0x0200 Data, 94 0.032704 |FF55E9141B945C7CCD012A53A040B72B23A95A9C69FFA9DY..
12 130.180256|0x0200 0x0100 Data, 214 0.011296 |FF55E9141B945C7CCD012A53A040B72B23A95A9C69FFA9DS...
13 130.209248|0x0090 0x0200 Data, 95 0.028992 |FF55EB141B944282F7B9D973FD5CECBB3BB6539C5DDB39CE...
14 130.220224|0x0200 0x0100 Data, 215 0.010976 |FF55EB141B944282F7B9D973FD5CECBB3BB6539C5DDB39CE...
15 130.251808 [0x0090 0x0200 Data, 96 0.031584 |FF55ED141B941087EFDB2E7677F2E738BDEECBB39EF739D9..
16 130.263104 [0x0200 0x0100 Data, 216 0.011296 |FF55ED141B941087EFDB2E7677F2E738BDEECBB39EF739D9..

We can see that this relay time is about 10ms is these few lines. Figure 61 plots the relay time
of all relayed packets (6380 packets) and the mean value is 0.10959 with a standard deviation
of 0.00323. Some relaying time appeared higher (at 40ms) because the initial packet from the
audio board was not captured. In this case, the value represent the time difference from the
last relayed packets. As the aggregation level was A2 (the payload is then 48 bytes), the audio
packets are sent every 40ms by the audio source. Therefore, even if the original packet from
the audio board was not captured, a time difference of about 40ms means that the relay jitter
is very small.

Relaying time at AdvanticSys TelosB relay node
0.1

0.09

0.08

Time in second
© o o
o ©o o
v [+2] ~

o
o
=

157

313

469

625

781

937
1093
1249
1405
1561
1717
1873
2029
2185
2341
2497
2653
2809
2965
3121
3277
3433
3589
3745
3901
4057
4213
4369
4525
4681
4837
4993
5149
5305
5461
5617
5773
5929
6085
6241

packet index

Figure 61: relay time of an AdvanticSys TelosB relay node, test#7

Now, compared to the relaying time shown previously in figure 4(bottom), the measures are
quite consistent with what have been measured with the optimized version of our relay nodes.

51

We summarize the main results of the benchmark tests performed in Geneva in the table

below:

Geneva, HEPIA building

test scenario

Pkt jitter at source

pkt jitter at relay

pkt loss rate

1-hop no occlusion

very small (1)

NA

0% - 8% (3)

1-hop occlusion

very small (1)

NA

16% - 81% (4)

2-hop

very small (1)

very small (5)(6)

5% - 30% (2)

1. The packet jitter at the source (AdvanticSys TelosB audio board), is very small and can
be easily compensated at the destination with a very simple playout buffer.

2. At 2-hop or more, using relay nodes, non-LOS condition can be overcome, and
reception quality can greatly be improved. This is particularly important in in-door
environment as shown in the HEPIA building. However, the choice of the relay nodes
can have a big impact of the performances.

3. Inindoor environment, LOS transmissions (actually the distance between the source
and the sink is quite small) show very low packet loss rate, similar to what can be
found in open space environment.

4. Inindoor environment, NLOS transmissions can rapidly become very difficult,
decreasing dramatically the reception quality.

5. The packet relaying times measured with a promiscuous sniffer are consistent of what
have been predicted in the previous deliverable. According to the maximum relaying
capabilities, an appropriate aggregation level at the source can be used to reduce the
packet losses at intermediate relay nodes.

6. The packet relay jitter was found again quite small and can be easily compensated at
the destination with a very simple playout buffer.

Therefore, as a result of the benchmark tests, the Geneva's HEPIA test-bed is
capable of supporting streamed audio in LOS transmission. in NLOS conditions, 1-hop
transmission is not capable of providing a sufficiently small packet loss rate for an
acceptable audio quality (packet loss rate much higher than 35%). Using 2-hop or
more transmission can leverage the NLOS conditions and decrease the packet loss
rate. However, the choice of the relay nodes is of critical importance to increase
transmission quality, especially when transmitting from one floor to another. In all
cases, the packet jitter at the source and at the relay nodes is very small.

52

We also set-up some energy consumption measures in order to determine the cost of
capturing and transmitting audio data on an intensive basis. We use facilities from the SIAME
laboratory of University of Pau and 2 students performed the experimental measures on both
the WaspMote audio mote and the AdvanticSys TelosB with the developped audio board.

Figure 62(left) shows the stabilized power supply used to power the sensor boards, and figure
68(right) shows the voltage measure station.

Figure 62: stabilized power supply (left), measure station (right)

Figure 63 shows for the WaspMote audio at 4kHz the cumulated energy consumption when the
radio module is not plugged into the board. We can therefore measure the consumed energy
when the board is idle and when the board is sampling at 4kHz. The behavior that is hard-
coded into the mote is “idle” for 5s followed by “capture” for 15s.

WaspMote 4KHz
Cumulated energy consumption, idle & capture
5
4.5
4
35
2 37— Idle
225 177 36mW
G 2T 0036/
1.5
1
0.5
0 LS L 4 LS L 4 LS LS L 4 L}
0 5 10 15 20 25 30 35 40 45
Time (s)

Figure 63: cumulated energy consumption, WaspMote audio, 4kHz, idle & capture

We then plugged the radio module (the XBee) and repeated the measures. Figure 64 shows
the new cumulated energy consumption.

53

WaspMote 4KHz
Cumulated energy consumption, idle & capture & transmit

Idle
84mW
0.084 J/s

o N B O

T T T T T

0 5 10 15 20 25 30 35 40 45
Temps (s)

Figure 64: cumulated energy consumption, WaspMote audio, 4kHz, idle & capture & transmit

We can see that the energy consumed in “idle” mode when the radio is ON is higher than in
the previous case, i.e. 0.084 J/s instead of 0.036 J/s. When capturing and transmitting, the
WaspMote consumes about 0.531 J/s. With 2 AA batteries that usually are assumed to have an

amount of energy of 18720 J, a simple prediction would allow for a continuous capture and
transmission for about 9h and 47min.

We then use the 8kHz version. Figure 65 shows the cumulated energy consumption when the
radio module is not plugged into the board.

WaspMote 8KHz
Cumulated energy consumption, idle & capture

6

> Idle
=4 36mwW
Pt 0.036 J/s
23 A
e
W,

1

0 5 10 15 20 25 30 35 40 45

Time (s)

Figure 65: cumulated energy consumption, WaspMote audio, 8kHz, idle & capture
We can see that the consumed energy is very close to the 4kHz version meaning that sampling

at 8kHz does not impact much on the board consumption. However, when the radio module is
now plugged in, figure 66 shows the new cumulated energy consumption.

54

WaspMote 8KHz
Cumulated energy consumption, idle & capture & transmit

20
18
16 Idle
14 85mwW
=
—12 0.085 J/s
g 10
T 8
6
4
2
0 L] 1 1 1 L 1 1
0 5 10 15 20 25 30 35 40 45
Time (s)

Figure 66: cumulated energy consumption, WaspMote audio, 8kHz, idle & capture & transmit

We can see that the “idle” consumption is the same than for the 4kHz version depicted in
figure 64 and that the “capture & transmit” consumption raises to 0.610 J/s because of the
larger amount of data transmitted. Again, a simple prediction with 2 AA batteries would give a
continuous capture and transmission for about 8h and 30min.

In figure 67, we show the cumulated energy consumption for the AdvanticSys TelosB with the
audio board. Since the radio module cannot be disconnected, we only have the case of “idle”
and “capture & transmit”.

AdvanticSys+audio board
Cumulated energy consumption, idle & capture & transmit

10
8

3] de

2 4 +— 68mW
, | 0.068)/s

L A T L 1

0 10 20 30 40 50 60 70
Time (s)

Figure 67: cumulated energy consumption AdvanticSys TelosB+audio board, idle & capture & transmit

Here, we can see that the “idle” consumption with the radio ON is lower than the consumption
for the WaspMote in “idle” mode with the XBee on, i.e. 0.068 J]/s instead of 0.085 J/s. The
energy consumed while capturing and transmitting is also lower: 0.330 J/s with the audio
board plugged in performing the real-time capture and speex compression. Again, a simple
prediction would give a continuous capture and transmission for about 15h and 45min.

55

In figure 68, we plot the cumulated energy consumption for the WaspMote mote (those of
Santander’s SmartSantander test-bed) when relaying 100 packets of size 30 bytes. A traffic
generator was used to generate 1 packet every 400ms.

WaspMote relay node
Cumulated energy consumption to relay 100 30-byte packets
12
10 1
s 87
> 6 -
[T}
c
w4
2
0 L] L] L] L] L] L] 1] L] 1
0 5 10 15 20 25 30 35 40 45
Time (s)

Figure 68: cumulated energy consumption WaspMote, relay

We found that the WaspMote needs about 0.1] to relay a 30-byte packet. Using conservative
assumption, the energy needed to relay 1 byte could be estimated at 0.0033 J. Table IV
therefore can give an estimation of the relaying energy cost at various aggregation levels.

payload (bytes) Aggregation level | relay consumption (J)
25

A1 0.0827
50 A2 0.1654
75 A3 0.2481
100 A4 0.3308

Figure IV: energy consumption WaspMote, relay

If we consider the 100-byte case and the A6 dedicated aggregation level (which capture 6
audio frames to send only 4 audio frames, giving a time window of 120ms), then the
WaspMote relay node can relay for about 1h and 53min.

In figure 69, we plot the cumulated energy consumption for the AdvanticSys TelosB mote
(those of Geneva’s Hobnet test-bed) when relaying 100 packets of size 30 bytes. A traffic
generator was used to generate 1 packet every 400ms.

56

AdvanticSys TelosB relay node
Cumulated energy consumption to relay 100 30-byte packets

O L] L] L] L] L]
0 5 10 15 20 25 30 35 40 45
Time (s)

T T T

Figure 69: cumulated energy consumption AdvanticSys Telosb, relay

We found that the AdvanticSys TelosB needs about 0.03] to relay a 30-byte packet. Using
conservative assumption, the energy needed to relay 1 byte could be estimated at 0.001 J.
Table V therefore can give an estimation of the relaying energy cost at various aggregation
level.

payload (bytes) Aggregation level | relay consumption (J)
25 A1 0.0250
50 A2 0.0500
75 A3 0.0750
100 A4 0.1000

Table V: energy consumption AdvanticSys, relay

If we consider the 100-byte case and the A4 aggregation level (which gives a time window of
80ms), then the AdvanticSys TelosB relay node can relay for about 4h and 10min.

57

The EAR-IT project working in various test beds in city environment (Santander) and in-door
building (in Geneva), has demonstrated that promising applications can be developed using
audio (traffic monitoring, security, energy efficiency, etc). Also using advanced audio codec
(i.e. speex, codec2) we have demonstrated that even constrained network using 802.15.4
radio can be used for audio applications as audio streaming (the most constrained case) can
be performed with only 2kbps bandwidth which is often available on these networks.

The project has now also defined the minimum condition for any test bed to be capable of
hosting audio and audio related applications (see EAR-IT deliverable 1.2). The purpose of the
benchmark procedure for other test-beds is to determine whether a given test bed is capable
of providing the minimum requirements for supporting audio traffic.

1. Determine whether a given test bed is capable of providing the minimum
requirements for supporting audio traffic

2. Indicators and target values are given together with supporting documentation

1. Download the procedures and be ready to perform the tests on your test bed

2. Either use the developped audio mote or a simple traffic generator with a promiscuous
packet sniffer that can also be downloaded

3. Determine if your test bed is “"audio ready” by filled-in data in an excel sheet given
where script can generate indicators which can be compared to minimum necessary

4. Audio source and audio hardware on TelosB can be borrowed to check on a real audio
streaming conditions

The proposed benchmark procedure is described in a set of slides "WP1 Acoustic Test-bed
Qualification/Benchmarking procedure for other test-beds", see ANNEX.C of this
document. Read this document for detailed instructions on the benchmark procedure and the
usage of the various tools that have been developped. The general benchmark methodology
was also described in an earlier document "WP1 Acoustic Test-bed Qualification/Qualify
and Benchmark Test-beds for Acoustics in Deployment of Targeted Applications". Our
test-bed and various control software are also described in "WP1 Acoustic Test-bed
Qualification/Audio Test-bed Description”, see ANNEX.A of this document. Please refer to
these documents as well as to deliverable "WP1 Acoustic Test-bed Qualification/D1.2 :
Miminium requirements for use of acoustic sensors" that describe the developped audio
board, the audio constraints and the purposes the test-bed benchmarking procedure.
Additionally, there are a number of publications that you might find usefull as well:

1. C. Pham, P. Cousin, A. Carer, "Real-time On-Demand Multi-Hop Audio Streaming with
Low-Resource Sensor Motes", Proceedings of IEEE SenseApp, in conjunction with LCN
2014, Edmonton, Canada, September 2014.

2. C. Pham and P. Cousin, "Benchmarking low-resource device test-beds for real-time
acoustic data", Proceedings of the 9th International Conference on Testbeds and

58

Research Infrastructures for the Development of Networks & Communities
(TridentCom'2014) , Guangzhou, China, May 5-7, 2014. Slides .pdf

3. C. Pham and P. Cousin, "Streaming the Sound of Smart Cities: Experimentations on the
SmartSantander test-bed", Proceeding of the 2013 IEEE International Conference on
Internet of Things (iThings2013), Beijing, China, August 20-23, 2013. Slides .pdf

The benchmarking procedure is explained in the EAR-IT web site:
http://www.ear-it.eu/audio-benchmarking

All resources such as scripting tools, Excel template files and communication tools are available
for download.

ANNEX.B of this document reproduces the benchmarking procedure web pages.

ANNEX.C of this document shows the accompanying slides that explain further the
benchmark procedure.

A "Call for Benchmark" has also been issued to various scientific partners in order to validate
the benchmark procedure and to have additional NETWORK indicators from other test-beds.

The University of Surrey accepted to conduct our benchmark procedure on their test-bed. The
outcome was two-folds: first, the provided tools and benchmark procedure were validated by
the Surrey team, second, the preliminary results consist of packet loss rate. Figure 70 below
the packet interarrival time from the traffic generator. The packet loss rate was found vey
small, 5.07% (11 packet losses out of a total of 218), and fully compatible with
speex audio requirements.

Packet inter-arrival time, Surrey test

2.5
2
=
o 1.5
o
V]
v
£
v
£ 1
K =]
0.5
0 CLAL LA AL AL IRINIRINIRIN L LU L L L L L LALALLL L L) LU L
S~ MO AN MO 00O AN A S0 N A0 N A SN0 A S onun
e NN N S TN O ONMNOOOODONDO0O O A AN ANMMMST DWW O 00 0 O O
Lo I B IR B IO IR O O R o R o L o R O o R o R o R o B oY)

Packet index

Figure 70 : packet inter-arrival time from the traffic generator, 100-byte packets

59

Figure 71 below shows the Surrey test settings.

ATLANS

40 ALISYIAINN

]
ﬁ;v

910W gs0|a] 924N0S

1339W-G 1noge :apou

910w gso|a] Jajus/Aejay

910W gso|a] uoneunnsaqg

UOIIBUIISIP 3] pUB 9POU 324N0S 3] U3IMIS] dauelsi(

: test settings at University of Surrey

Figure 71

60

EGM has a TST-based test-bed. TST motes are depicted in figure 72. They are designed and
distributed by TST Sistemas in Spain.

Figure 72 : TST mote

The TST mote main characteristics are summarized in Table VI below.

Microcontroller 32 bits STM with ARM
Cortex-M3 core

Clock Frequency 72 MHz

Flash Memory 1 MB

RAM Memory 96 kB

Serial Interfaces 3 UART, 2 12C, 1 SPI

Input / Output Ports Up to 6 analog, up to 20
digital

Timer resolution 0.1 ms

Table VI: TST mote characteristics

The radio module is the XBee radio that was already studied. The main differences that we can
expect from the TST motes are the much more powerful micro-controller clocked at a much
faster clock rate than low-end sensor motes previously studied, i.e. Libelium WaspMote,
Arduino and AdvanticSys TelosB.

The preliminary tests to verify the suitability of the EGM test-bed for acoustic data are
performed on:

1. TST mote's sending capability, in case the audio board is connected to these motes as
audio source,
2. TST mote's relaying capability in case these motes are deployed to relay acoustic data
Sending capability
Figure 73 shows the TST send overhead as the payload is increased. According to Table I, the

TST mote is perfectly capable of handling audio data from the audio board, i.e. one
24-byte packet every 20ms.

61

120

B0

6.0

Transmission Time [ms]

40

20

0.0

Relaying capabiliy

Regarding the relaying capability for multi-hop audio streaming, figure 74 shows the relaying

Transmission Time depending on Payload Size

5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 B8O
Payload Size [Bytes]

Figure 73 : TST mote sending overhead

overhead as the payload is increased.

40.0

35.0

30.0

25.0

20.0

Relay Time [ms]

15.0

100

50

0.0

y=04802x+0.8013

85 90 95 100

Relay Time depending on Payload Size

245

36.7

5

10

15 20 25 30 35 40 45 50 55 6D 65 70 75
Payload Size [Bytes]

Figure 74 : TST mote relaying overhead

80 B85 90 95 100

62

Once again, referring to Table I which indicates that a relay node must be able to relay a 24-
byte packet in less than 20ms, we can see that the TST mote can satisfied this constraint.
However, as it has previously been observed on the AdvanticSys TelosB motes, a mean relay
time of 18.3ms for a 25-byte packet does not mean that all relays can be performed in less
than 20ms. In this case, it is much safer to use A2 aggregation level to have a time window of
40ms. Figure 74 shows that the relay time for a 50-byte packet is on average 24.5ms, which is
much lower than 40ms.

We can conclude that the EGM test-bed based on TST motes is fully capable of
handling acoustic data.

63

The audio board has been designed to ease connectivity to other sensor mote platforms. The
encoded audio stream is sent through an UART line (at 115200 or 38400 baud that could be
configured on the audio board firmware). A 5V supply and a GND must be supplied, that are
generally available on most sensor platforms. The host microcontroller should poll the
corresponding serial input for data in order to get 20-byte audio frames every 20ms.

The audio board has been successfully connected to a Libelium WaspMote (the hardware that
are deployed in Santander), see figure 72, and an Arduino MEGA 2560 board. ANNEX.D
describes the procedure.

- . . == el L ee .* e .
WAMGIAREE » " . Lo
»

~SERIAL-1-T

AUX-SERIAL-1-R

Al ERIAL = 2-RX

" ERIAL = 2-TX

RESERVEL

)v—.'[‘
TX on AUX-SERIAL-1-RX ANALOGS |° °f M GND |*
| o W HUX_F .
(RX on AUX-SERIAL-1-TX) * M HUX_TX |»
ENSOR POMER |*] ! ENSOR POLER |

VCCon 5V = >' ¢

GND on GND T

Figure 72 : connecting the audio board to a Libelium WaspMote

64

Based on the results of deliverable 1.1 during the network qualification process, we developed
an audio board with real-time sampling and encoding capabilities to allow for multi-hop audio
streaming scenario. The audio board can be connected to most of sensor motes provided that
a serial port is available.

We performed in-situ tests in both Santander and Geneva test-beds to determine in real
conditions the network performances. For network indicators, we measured:

Packet jitter at the source
Packet loss rates at 1-hop
Packet loss rates at 2-hop
Packet relaying time at relay nodes
Packet relaying jitter at relay nodes

AW e

For energy indicators, we measured:

6. Energy consumption at the audio source
7. Energy consumption at the relay nodes

Network indicators

Santander, SmartSantander test-bed

test scenario

Pkt jitter at source

pkt jitter at relay

pkt loss rate

1-hop LOS open space very small (1) NA 0% - 12% (2)
1-hop LOS urban very small (1) NA 35% (2)
1-hop NLOS urban very small (1) NA 60% - 92% (2)

2-hop open space

very small (1)

very small (6)(7)

5% - 23% (3)

2-hop urban

very small (1)

very small (6)(7)

53% (3)

Geneva, HEPIA building

test scenario

Pkt jitter at source

pkt jitter at relay

pkt loss rate

1-hop no occlusion

very small (1)

NA

0% - 8% (4)

1-hop occlusion

very small (1)

NA

16% - 81% (5)

2-hop

very small (1)

very small (6)(7)

5% - 30% (3)

1. The packet jitter at the source, for both the WaspMote audio mote and the AdvanticSys
TelosB audio board, is very small and can be easily compensated at the destination with

a very simple playout buffer.

2. The packet loss rate at 1-hop in LOS condition, and when the distance of next hop is
similar to what can be found in Santander, is very small. In non-LOS condition, for
instance with buildings in-between, the packet loss rate can be very high: we for
instance found packet loss rate as high as 92% with the developed audio board in a
dense urban environment in non-LOS condition.

3. At 2-hop or more, using relay nodes, non-LOS condition can be overcome, and
reception quality can greatly be improved. This is particularly important in in-door
environment as shown in the HEPIA building. However, the choice of the relay nodes

can have a big impact of the performances. In urban environment, the packet loss rate

can still be high and more hops may be needed at the cost of higher latencies.

4. In indoor environment, LOS transmissions (actually the distance between the source
and the sink is quite small) show very low packet loss rate, similar to what can be

found in open space environment.
5. In indoor environment, NLOS transmissions can rapidly become very difficult,
decreasing dramatically the reception quality.

6. The packet relaying times measured with a promiscuous sniffer are consistent of what
have been predicted in the previous deliverable. According to the maximum relaying
capabilities, an appropriate aggregation level at the source can be used to reduce the
packet losses at intermediate relay nodes.

7. The packet relay jitter was found again quite small and can be easily compensated at
the destination with a very simple playout buffer.

Energy indicators

1. The energy consumption of the audio boards (both WaspMote and AdvanticSys TelosB)
are found compatible with smart cities scenarios where nodes can be recharged at
periodic moments in the day (at night for instance).

2. The relaying energy consumption was found to be the limiting factor in the system.
However, in all cases, the relaying duration is larger than 1h. In emergency scenario
where some minutes of streamed acoustic data are requested, we believe that 1h can
be enough, especially if some advanced scheduling or audio source selection
mechanism are implemented.

Santander test-bed

Ther SmartSantander test-bed in Santander is capable of supporting streamed audio both in
open space and urban environment when LOS transmission is possible. in NLOS conditions, 1-
hop transmission is not capable of providing a sufficiently small packet loss rate for an
acceptable audio quality (packet loss rate much higher than 35%). Using 2-hop or more
transmission can leverage the NLOS conditions and decrease the packet loss rate in urban
environment. However, the choice of the relay nodes is of critical importance increase
transmission quality and there are certainly many interesting issues to dynamically chose the

right relay nodes. In all cases, the packet jitter at the source and at the relay nodes is very
small.

Geneva test-bed

The Geneva's HEPIA test-bed is capable of supporting streamed audio in LOS transmission. in
NLOS conditions, 1-hop transmission is not capable of providing a sufficiently small packet loss
rate for an acceptable audio quality (packet loss rate much higher than 35%). Using 2-hop or
more transmission can leverage the NLOS conditions and decrease the packet loss rate.
However, the choice of the relay nodes is of critical importance to increase transmission
quality, especially when transmitting from one floor to another. In all cases, the packet jitter at
the source and at the relay nodes is very small.

66

[802154]
[ADVAN]

[CC2420]

[DMDigi]

[TELOSB]

[TINYOS]
[XBeeDigi]

IEEE Std 802.15.4™-2006.

http://www.advanticsys.com/shop/wireless-sensor-networks-802154-mote-
modules-c-7_3.html

ChipCon CC2420, 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver.
www.ti.com/lit/ds/symlink/cc2420.pdf

XBee®/XBee-PRO® DigiMesh RF Modules product manual (90000991_E), Digi
International Inc. January 6, 2012

www.willow.co.uk/html/telosb_mote_platform.html and/or
http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=252

The TinyOS operating system. http://www.tinyos.net/

XBee®/XBee-PRO® RF Modules product manual (90000982_G), Digi International
Inc. August 1, 2012.

67

Development environments

« Linux-based systems for higher
flexibility and better interoperability

« most of software tools are targeted for
Unix

 most of gateways devices are Linux-
based (Meshlium, Beagle, Rasperry,...)

 When possible, avoid Java
development and priviledge C, C++
and scripts (shell, python)

:

Standard IDE & software

Libelium WaspMote
Libelium IDE (Arduino-based) & API development environment
AdvanticSys TelosB

TinyOS 2.1.2 development environment

Audio
Codec?2 software (): c2enc, c2dec
Speex software (): speexenc, speexdec

sox and play package (Linux)
Serial & frame analysis

minicom, cutecom

wireshark

]

3

4

Customized speex audio tools)

+ Simple « pure » speex audio decoder without any
header

* Modified version of speex’s sampledec.c
* speex sampledec wframing : expects framing bytes

*+ speex_ sampledec nframing : no framing bytes

« To get a « pure » speex audio encoded file without any
header

* Modified version of speexdec.c (yes speexdec.c and not
speexenc.c) compatible with speex’s sampledec.c

Development of dedicated

« Serial tools to read host computer serial port

+ XBeeReceive (C language)

*+ SerialToStdout (python script)

115200 baud version
38400 baud version

+ Communication tool to send control command packets

*+ XBeeSendcCmd (C language)

« Communication tool to send binary files
+ XBeeSendFile (C language)

69

XBeeReceive

XBeeReceive
. Main target is 802.15.4 XBee-based gateway
+ Translates XBee API frame

. Reads from the serial port : /dev/ttyUusBo, /dev/ttyso, ..

. Reconstructs file in binary mode (handles packet losses)
. Assumes each packet with 4 bytes header: 2 bytes for file size & 2 bytes for offset
. Can write to Unix stdout & can act as a transparent serial replacement

. Can act in a data stream fashion: no header for packets

USAGE: ./XBeeReceive -baud b -p dev -B -ap0 -v val —stdout —stream file_name

USAGE: -baud, set baud rate, default is 38400

USAGE: -p /dev/ttyUSB1

USAGE: -B indicates binary mode. Assumes 4-bytes header for each pkt (that will be removed)
USAGE: -framing expect for framing bytes O0xFF0x55 for binary data

USAGE: -ap0, indicates an XBee in AP mode 0 (transparent mode) so do not decode frame structure
USAGE: -v 77, use 0x77 to fill in missing value in binary mode

USAGE: -stdout, write to stdout for pipe mode in binary mode

USAGE: -stream, assumes no header & write to stdout for pipe mode in binary mode

USAGE: file name, name for saving binary file

>

SerialToStdout.py

« Simple python script to read serial port when no
translation is needed

« Change baud rate and port as needed

import serial
import sys

ser = serial.Serial('/dev/ttyUSBO', 38400, timeout=0)
flush everything that may have been received on the port to make sure
that we start with a clean serial input
ser.flushInput()
while True:
out = "'

sys.stdout.write(ser.read(1024))
sys.stdout.flush()

« SerialToStdout.py can be use instead of
XBeeReceive With an XBee in transparent mode

I

XBeeSendCmd

. XBeeSendCmd

. Main target is 802.15.4 XBee-based gateway
. Send ASCII command with Xbee

. Can be used to sent remote AT command to other Xbee module
. Support DigiMesh firmware

. Example
. XBeeSendCmd -addr 0013a2004069165d "/@D0100#"

USAGE: ./XBeeSendCmd -p dev [-L][-DM][-at] -tinyos -tinyos_amid id_hex -mac|-net|-addr|-b message
USAGE: -p /dev/ttyUSB1

USAGE: -mac 0013a2004069165d HELLO

USAGE: -net 5678 HELLO

USAGE: -addr 64_or_16_bit_addr HELLO

USAGE: -b HELLO

USAGE: -at to send remote AT command: -at -mac 0013a2004069165d ATMM

USAGE: -L insert Libelium API header

USAGE: -DM to specify DigiMesh firmware

USAGE: -tinyos to forge a TinyOS ActiveMessage compatible packet (0x3F0x05 are inserted)
USAGE: -tinyos_amid 6F, to set the ActiveMessage identifier to 0x6F (0x05 is the default)

the sounds of smowt evwivonumenty

XBeeSendFile

. XBeeSendFile

. Main target is 802.15.4 XBee-based gateway

. Send binary files with Xbee with controlled timing

. Can use any packet size between 1 and 100 bytes

. Can insert framing bytes, can introduce packet losses

USAGE: ./XBeeSendFile -baud baudrate -p dev -sensor -timing tpkt_us tserialbyte us tafterradio_us -nw -fake
-drop rate -v val -fill -pktd -pktf -size s -stdout -mac|-net|addr|-b file

USAGE: -baud 125000, 38400 by default

USAGE: -sensor, will send image pkt to a sensor sniffer

USAGE: -framing, will use framing bytes 0xFF0x55+SN for binary packets (e.g. audio)
USAGE: -timing 50000 20 25000 by default

USAGE: -nw, do not wait for TX status response

USAGE: -fake, emulate sending. Will write in fakeSend.dat

USAGE: -drop 50, will introduce 50 of packet drop. Useful with -fake

USAGE: -v 77, use 0x77 to fill in missing bytes in lost packet

USAGE: -fill, will fill missing bytes

USAGE: -pktd, display generated XBee frames

USAGE: -pktf, generate a pkt list file

USAGE: -size 50, set packet size to 50 bytes

USAGE: -stdout, write to stdout for pipe mode

USAGE: -mac 0013a2004069165d

USAGE: -net 5678

USAGE: -addr 64_or_16_bit_addr, set either 64-bit or 16-bit dest. address

USAGE: -b

the sounds of smourt evwirorumenty

WaspMote+XBee in raw mode

* Electret mic with
amplifier

« XBee in APO mode

(transparent mode)
gives 32000bps

64000bps, requires
custom API

9

+ 8-bit 4Khz sampling

+ 8Khz sampling gives

10

AUX-SERIAL-1-TX [¥]

pIcITALS [* *] GND AUX-SERIAL-1-RX | *

DIGITALS [+ | DIGITALZ AUX-SERIAL-2-RX | *

DIGITAL4 |= =| DIGITALS AUX-SERIAL-2-TX | =

DIGITAL2 |* =| DIGITALZ RESERUED | =

laiIad 5ND | =

VCCOoN D2 o | ANALOGS [* | ANALOG? > GND | =
ANALOG4 |®* =| ANALOGS MUX_RX |=

AUDIO on A2 anaLoa2 |+ »| ANALOG3 MUs_TX |»
I SENSOR POMER [* =| ANALOG1 SENSOR POWER | =

GND on GND 6PS POMER [* ®| 5V SENSOR POLER ool | e
spa Le_=] scL o6 L)

72

void loop() {
val = analogRead(ANALOG2) ; // read analog value
val8bit = ((val >> 2)) ; // convert into 8 bit

// write on UART1, need an XBee module
// with AP mode 0 2
<y

serialWrite(val8bit,1l);

} y ‘ K

With XBee GW also in APO mode

4KHz sampling
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat | play --buffer 50 -t raw —r 4000 -u -1 —

8KHz sampling
> XBeeReceive -baud 125000 -ap0 -stdout dumb.dat | play --buffer 50 -t raw -r 8000 -u -1 -

Save raw data for off-line playing

> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat > test.raw
> play -t raw —r 4000 -u -1 test.raw

Alternatively using SerialToStdout python script, at 38400 baud only

> python SerialToStdout | play --buffer 50 -t raw —r 4000 -u -1 —

e —

XBee gateway in pkt mode (AP2)),

« The receiving XBee module may need
to be in packet mode (AP2) due to
deployment constraints

« Adds overhead of XBee API frame
decoding: 8KHz sampling may be not
supported

4KHz sampling
> XBeeReceive -baud 38400 —stream dumb.dat | play --buffer 50 -t raw —r 4000 -u -1 —

Save raw data for off-line playing
> XBeeReceive -baud 38400 —stream dumb.dat > test.raw
> play -t raw —r 4000 -u -1 test.raw

L

13

14

Specially designed audio
board by INRIA CAIRNS &
Feichter Electronics

streaming scenarios

the soundy of smout evwirovuments

« Use dedicated audio board for
sampling/storing/encoding at

8kbps

« Allows for multi-hop, éncoded audio

the sounds of smauwt evwironumenty

P1.7 can be
used to power
on/off the audio
board

1L

74

AdvanticSys+audio board

« The audio board captures 160 bytes (20ms) of raw
audio and uses speex codec at 8kbps to produce
20 bytes to encoded audio data

« It sends the encoded audio data through an UART
line to the host micro-controller

* The host micro-controller receives the encoded
data and sends them wirelessly to the next hop

« The last hop is a base station that will forward the
encoded audio into a speex audio decoder

* Output of the speex audio decoder is in raw format
that can be feed into a player (play)

D

speex at 8kbps

160 8-bit samples (20ms)

20 bytes of encoded audio data
1 byte
Seqg. No.

24 or 21 bytes frb
|

speex_ sampledec wframing

2 bytes
framing
0xFF0x55

1 byte
frame size

L T —

75

AdvanticSys+audio board

async event void UartStream.receiveDone(uint8_t* buf,
uintl6é_t len, error_t error){

post sendMsg();

335)

With AdvanticSys base station (115200 baud)

> python SerialToStdout | speex_sampledec_wframing | play --buffer 100 -t raw -r 8000 -s -2 -

> XBeeReceive -baud 38400 -B -ap0 -stdout dumb.dat | speex_sampledec_nframing
play --buffer 100 -t raw -r 8000 -s -2 —

With XBee GW in AP2 mode (pkt mode)

> XBeeReceive -baud 38400 -B -stream dumb.dat | speex sampledec_nframing |
play --buffer 100 -t raw -r 8000 -s -2 —

L

Relay nodes

ADVANTICSYS
CM5000, CM3000

LIBELIUM
WASPMOTE

Fully configurable:

- RO/1 enable/disable relay mode
Destination node D0013A2004086D828 set the 64-bit dest. mac addr
Addmonmrdaydeby D0080 set the 16-bit dest. mac addr

Clock synchronization

S

76

SPEEX AUDIO ENCODING
8KBPS

Al/2/3/4 aggregate audio frames
D0013A2004086D828 set the 64-bit dest. mac addr
D0080 set the 16-bit dest. mac addr

C0/1 power off/on the audio board

0x0030
R0/1 enable/disable relay mode
D0013A2004086D828 set the 64-bit dest. mac addr
D0080 set the 16-bit dest. mac addr

DECODE & PLAY
RECEIVED AUDIO

19

the sounds of smout evwirovumnenty

Use a generic sender node
to test with a larger variety
of audio codec: store
encoded audio file on SD
card
Do not need specific audio Fully configurable:
encoding hardware to test —— Ak Destination node
quality of streaming Clock synchronization
encoded audio data : File to send

Size of packet chunk

Inter-packet delay
Binary/Stream mode

20

21

22

Multi-hop test-bed w/generic sender)

0x0010

T130 transmit with inter pkt time of 130ms

Z50 set the pkt size for binary mode
Ftest2400.bit set the file name to test2400.bit
D0013A2004086D828 set the 64-bit dest. mac addr
D0080 set the 16-bit dest. mac addr

B or S set to binary mode/set to stream mode

All commands must be prefixed by « /@ »

and ended/separated by « # »

T1 il

DECODE & PLAY
RECEIVED AUDIO

the sounds of smout evwivovrumenty

codec2/speex with generic sender

« Use codec2/speex encoding software to
produce encoded audio file

« Store encoded audio file (.bit/.spx) on SD
card

« Configure the generic sender for sending
the encoded audio file

« Define packet size
« Determine inter-packet send time

Receive the encoded audio stream, decode
the data and determine audio quality

the sounds of smourt evwirorumenty

78

roduce encoded audio file: codec:

« Initial file: test.raw in 16-bit, signed

« Use sox to get 16-bit, signed if your
raw file is not in this format

« Encode at 2400bps with
e c2enc 2400 test.raw test2400.bit
Store test2400.bit on SD card

2

Codec2 encoding

320 8-bit samples (40ms)

at 1400bps

7 bytes of encoded
audio data

at 2400bps & 3200bps
160 8-bit samples (20ms)

2400bps 3200bps
8 bytes of

encoded
audio data

o

6 bytes of encoded
audio data

79

25

26

Codec2 at 2400bps & 3200

at 2400bps & 3200bps
160 8-bit samples (20ms)
: 1 byte
2 bytes framing y @ 6/8 bytes of encoded
0xFF0xX55 Seq. No. Y

audio data

XBeeReceive |:> .

c2dec

the sounds of smout evwirovumenty

/@Ftest2400.dat#B#

/@Z40# o &
/@T90# N 0x0040
0x0030

STORE & PLAY

> XBeeReceive -framing —B rcv-test2400.bit

> c2dec 2400 rcv-test2400.bit - | play -t raw -r 8000 -s -2 —

STREAMING

> XBeeReceive -framing —B -stdout rcv-test2400.bit | bfr -blk -m2% - | DECODE & PLAY
c2dec 2400 - - | play -t raw -r 8000 -s -2 - RECEIVED AUDIO

l!EiEEEEEEEEiEEEEEEi!EEiiEEE5!!

4

Produce encoded audio file: speex

)

« Initial file: test.raw in 8-bit unsigned
or 16-bit signed

« Encode at 8000bps with

* speexenc --8bit --bitrate 8000
test.raw test8000.spx

 Produce a raw speex byte stream with
modified version of speexdec

* gspeexdec test8000.spx > t8000raw.spx

« Store t8000raw.spx on SD card
27

/@Ft8000raw. spx#B# /@Ft8000raw.spx#S#
/@z25%# /RZ21#
/@QT20#

STORE & PLAY

> XBeeReceive -framing —B t8000raw.spx
> cat t8000raw.spx | speex_sampledec_nframing | play -t raw -r 8000 -s -

STREAMING

> XBeeReceive —B -stdout -stream t8000krw.spx | bfr -blk -m2% - | DECODE & PLAY
speex_sampledec_wframing | play -t raw -r 8000 -s -2 - RECEIVED AUDIO

2

81

30

es

20 bytes of encoded audio data

Add framing

bi‘res

2 3 5 6 8

A6 aggregate audio frames

the soundy of smart evwivorunenty

« Use XBeeSendFile to control

« Timing between packet sending
« Packet loss probability

Codec2 2400bps, series of 6-byte encoded audio packets

> XBeeSendFile -fake -drop 25 -stdout test2400.bit > test2400-25loss.bit

> XBeeSendFile -fake -v 77 -fill -drop 25 -stdout test2400.bit > test2400-25loss-fill.bit

O O = W

77 77 77 77 17 77

the soundy of smouwt evwirovumenty

82

(reproduction of the benchmark procedure web pages)

Benchmarking IEEE 802.15.4 low-resource
device test-beds for audio traffic: procedure &
tools

as part of EAR-IT WP1: Acoustic Test-bed Qualification

C. Pham (LIUPPA laboratory, University of Pau, France & EGM) and P. Cousin
(EGM, EAR-IT deputy project manager)

In the context of the FP7 EAR-IT project on acoustic surveillance in smart environments, this page describes and
provides links to various tools for benchmarking low-resource device test-beds based on IEEE 802.15.4 connectivity.

last update: July 17th, 2014.

Why doing a benchmark ?

The EAR-IT project as working in various test beds in city (Santander) and with building (in Geneva) has demonstrated
that nice applications can be developed using audio (traffic monitoring, security, energy efficiency, etc). Also using
advanced audio codec (i.e. speex, codec2) we have demonstrated that even constrained network using 802.15 wireless
network can be used for audio applications as audio streaming (the most constrained case) can be performed with only
2kbps bandwidth which is often available on these networks.

The project has now defined the minimum condition for any test bed to be capable of hosting audio and audio related

applications (see EAR-IT deliverable 1.2). Doing this benchmark is easy and will allow your test bed to expand its
usage for a broad range of amazing applications and research cases using acoustic.

Objectives of the benchmark

1. Determine whether a given test bed is capable of providing the minimum requirements for supporting audio
traffic

2. Indicators and target values are given together with supporting documentation

What you need to do

—

Download the procedures and be ready to perform the tests on your test bed

2. Either use the developped audio mote or a simple traffic generator with a promiscuous packet sniffer that can
also be downloaded

3. Determine if your test bed is “audio ready” by filled-in data in an excel sheet given where script can generate
indicators which can be compared to minimum necessary

4. Audio source and audio hardware on TelosB can be borrowed to check on a real audio streaming conditions

83

Documents and EAR-IT deliverables

The proposed benchmark procedure is described in a set of slides "WP1 Acoustic Test-bed Qualification/Benchmarking
procedure for other test-beds". Read this document for detailed instructions on the benchmark procedure and the usage
of the various tools that have been developped. The general benchmark methodology is also described in an earlier
document "WP1 Acoustic Test-bed Qualification/Qualify and Benchmark Test-beds for Acoustics in Deployment of
Targeted Applications". Our test-bed and various control software are also described in "WP1 Acoustic Test-bed
Qualification/Audio Test-bed Description". Please refer to these document as well as to deliverable "WP1 Acoustic
Test-bed Qualification/D1.2 : Miminium requirements for use of acoustic sensors" that describe the developped audio
board, the audio constraints and the purposes the test-bed benchmarking procedure. Additionally, there are a number of
publications that you might find usefull as well:

1. C.Pham,P. Cousin, A. Carer, "Real-time On-Demand Multi-Hop Audio Streaming with Low-Resource
Sensor Motes", Proceedings of IEEE SenseApp, in conjunction with LCN 2014, Edmonton, Canada,
September 2014.

2. C.Pham and P. Cousin, "Benchmarking low-resource device test-beds for real-time acoustic data",
Proceedings of the 9th International Conference on Testbeds and Research Infrastructures for the Development
of Networks & Communities (TridentCom'2014) , Guangzhou, China, May 5-7, 2014. Slides .pdf

3. C.Pham and P. Cousin, "Streaming the Sound of Smart Cities: Experimentations on the SmartSantander test-
bed", Proceeding of the 2013 IEEE International Conference on Internet of Things (iThings2013), Beijing,
China, August 20-23,2013. Slides .pdf

Benchmark tools

We developped in collaboration with INRIA CAIRNS and Feichter Electronics a daughter audio board with speex
compression capability. The audio board is connected to a low-resource device, allowing real-time audio capture and
compression. You actually don't need the audio board for the benchmark, but if you want to test real audio streaming on
your test-bed, we can provide you with the audio mote, see the "Contact" section at the end of this page.

* To use the full audio benchmark procedure with the developped audio board, proceed with all steps from
#1 to #6. You will be able to perform 1-hop audio streaming, determine relay capability of your test-bed for
multihop audio and determine 1-hop packet loss rate in real audio conditions in your test-bed environment.

* To perform a simple benchmark of your test-bed to determine the relaying capability of your test-bed for
multi-hop audio, you can proceed with steps #2, #5 and #6. Note that if you already have your own traffic
generator and promiscuous packet analyser, you can only check in EAR-IT deliverable 1.2 whether your test-
bed performances are adequate to support our audio mote traffic.

1/ Developped audio board and associated software

Figures below show the developped audio board that was initially designed to be connected to an AdvanticSys CM3000
mote (or CM3300 or CM4000), that will be referred to as the TelosB audio mote.

84

The control software for the Telosb audio mote gets the compressed data from the audio board and sends them to the
next hop (a BaseStation or a relay node). The BaseStation is another TelosB mote that is connected to a Linux computer
to act as a Sink. The BaseStation is not mandatory in the benchmark procedure but we can use it to listen in real-time to
the audio stream. The archive for the source code of the TelosB audio and the BaseStation can be obtained here, all
source code are under the TinyOS 2.1.2 operating system. Please refer to TinyOS installation instructions for setting up
the TinyOS environment.

e archive for the source code of the TelosB audio and the BaseStation

The TelosB audio mote can be used to benchmark the test-bed for acoustic data. speex handles audio data in
FRAME_SIZE. The value of FRAME_SIZE on the audio board is 160 bytes. Then encoding takes FRAME_SIZE bytes
and compresses them is a number of encoded bytes. For 8000 bps rate, the encoded packet size is 20 bytes and the
periodicity is 20ms. The BaseStation receives packets from the audio board. Each packet has frame delimiters (OxFF
0x55 SN) prior to the number of bytes (0x14=20) per packet in the output stream. SN will store an 8-bit sequence
number. An example is shown below:

OxFF 0x55 0x00 0x14
OxFF 0x55 0x01 0x14
OxFF 0x55 0x02 0x14

To build the TelosB audio mote with IEEE 802.15.4 16-bit address of 0x0090:
> CFLAGS=" —DNODE_SHORT_ADDRESS=OXO 090 —DDEST_SHORT_ADDRESS=OXO 100" make telosb

Then install with:

85

> make telosb reinstall bsl,/dev/ttyUSBO

To build and install the BaseStation mote with IEEE 802.15.4 16-bit address of 0x0100:

> CFLAGS=-DNODE_SHORT ADDRESS=0x0100 make telosb
> make telosb reinstall bsl,/dev/ttyUSBO

Then refer to "WP1 Acoustic Test-bed Qualification/Benchmarking procedure for other test-beds" to see how the
TelosB audio mote can be controlled wirelessly with the XBeeSendCmd tool.

2/ XBeeSendCmd

We use an XBee S1 from Digi (802.15.4, not ZigBee) as a radio gateway to send control messages. We provide the
XBeeSendCmd tool that uses such gateway to send ASCII command. However, you can use any similar tools (or the
X-CTU program provided by Digi) to send pure ASCII command sequence with an IEEE 802.15 .4 radio module.
Please refer to "WP1 Acoustic Test-bed Qualification/Benchmarking procedure for other test-beds" for a list of ASCII
control sequence used to control the TelosB mote.

The source code for XBeeSendCmd is available here:

* source code of the XBeeSendCmd

To compile:

> g++ -Wno-write-strings -o XBeeSendCmd XBeeSendCmd.c -1lrt
Example (trigger audio capture and transmission at the TelosB audio mote):

> XBeeSendCmd -p /dev/ttyUSBO -addr 0090 "@/CIL#"
3/ Simple speex decoder at the sink

We also provide a simple speex decoder that waits for frame delimiters (0XxFF 0x55) and that will decompress the audio
stream into raw format to Linux's stdout. The source code for speex sampledec wframing is available here:

* source code of the speex sampledec wframing

To compile:

> gcc -DWITH PKT FRAMING -o speex sampledec wframing speex sampledec.c -lspeex -lspeexdsp

See below for an example of usage

86

4/ 1-hop scenario with TelosB audio mote and BaseStation

Once you have the TelosB audio mote and the BaseSation mote, you can test by triggering the audio capture and listen
in real-time to the audio stream. Here are the procedure:

—

Connect the XBee gateway to a computer (on /dev/ttyUSBO for instance)

2. Connect the TelosB BaseStation to a computer (the same here, on /dev/ttyUSB1 for instance)

3. Run a python script that will continuously read the serial port for compressed audio data and that will forward
these data to the speex decoder

> python 115200S8erialToStdout.py /dev/ttyUSBl | ./speex sampledec wframing
| play --buffer 100 -t raw -r 8000 -s -2 -

Power on the TelosB audio mote
Use XBeeSendCmd

1. to activate the TelosB audio mote, you may need to send the control command twice

bl

> XBeeSendCmd -p /dev/ttyUSBO -addr 0090 "@/Cl#"

2. to stop the TelosB audio mote

> XBeeSendCmd -p /dev/ttyUSBO -addr 0090 "@/CO#"

5/ Promiscuous packet sniffer for wireshark

We provide a promiscuous packet sniffer under TinyOS to be connected to the wireshark packet analyser. It's usage
for the benchmark of test-bed is described in "WP1 Acoustic Test-bed Qualification/Benchmarking procedure for other
test-beds". The promiscuous packet sniffer is based on the TKN154 protocol stack and the TestPromiscuous or
packetsniffer example. We improved TestPromiscuous to build a sniffer node. The source code is available
here:

e archive for the source code of the promiscuous packet sniffer

To build and install the packet sniffer:

> CFLAGS:"—DSNIFFER_CONF —DPCAP_SERIAL_OUTPUT" make telosb
> make telosb reinstall bsl, /dev/ttyUSBO

Then there is a simple python program that will continuously read the serial port and send data to wireshark. The
mote will capture packets and will send pcap-formatted data to the serial port. More information on pcap format can be
found here. The python program is TelosbToStdoutPcap.py

Then you can run the following command with your TelosB mote plugged in your computer on /dev/ttyUSBO:

> python TelosbToStdoutPcap.py | wireshark -k -i -

you may need to give sudo permission:

> python TelosbToStdoutPcap.py | sudo wireshark -k -i -

If running on /dev/ttyUSBI1, just specifiy it in the command:

> python TelosbToStdoutPcap.py /dev/ttyUSBl | wireshark -k -i -

You can see the graphical result below:

87

File Edit View Go Capture Analyze Statistics Telephony Tools Help

S o a

exgs mnesrrarTtEE el EEE®

a:zn_mn: - Wireshark

22.038816

00:13:22:00:40:86:d8:34

00:13:22:00:40:92:20:78

Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34,

Tw_nmn__ Expression. _E_gu@_
No.. | Time Source Destination Protocol Info

1 0.000000 00:13:22:00:40:76:20:5e Broadcast 1EEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

2 2.101024 00:13:22:00:40:76:20:5e Broadcast 1EEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

3 4.200896 00:13:22:00:40:76:20:5e Broadcast 1EEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

4 6.300768 00:13:22:00:40:76:20:5e Broadcast 1EEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

5 7.824096 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:70 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:70, Src: Maxstrea 00:40:86:d8:34, Bad FCS
6 68683.201776 IEEE 802.15.4 Ack, Bad FCS

7 8.400576 00:13:22:00:40:76:20:5e Broadcast IEEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

8 10.500416 00:13:22:00:40:76:20:5e Broadcast IEEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

9 11.066176 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:70 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:70, Src: Maxstrea 00:40:86:d8:34, Bad FCS
10 68683.201776 IEEE 802.15.4 Ack, Bad FCS

11 12.600160 00:13:22:00:40:76:20:5e Broadcast IEEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

12 14.700160 00:13:22:00:40:76:20:5e Broadcast IEEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

13 15.163840 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:78 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34, Bad FCS
14 15.166624 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:78 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34, Bad FCS
15 15.169408 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:78 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34, Bad FCS
16 15.172224 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:78 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34, Bad FCS
17 16.799936 00:13:22:00:40:76:20:5e Broadcast IEEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

18 18.899744 00:13:22:00:40:76:20:5e Broadcast I1EEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

19 20.999616 00:13:22:00:40:76:20:5e Broadcast 1EEE 802.15.4 Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

20 22.030464 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:78 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34, Bad FCS
21 22.033248 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:78 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34, Bad FCS
22 22.036032 00:13:22:00:40:86:d8:34 00:13:22:00:40:92:20:78 IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34, Bad FCS

5.4
5.4

24 23.100576

00:13:22:00:40:76:20:5e

Broadcast

Data, Dst: Broadcast, Src: Maxstrea 00:40:76:20:5e, Bad FCS

Frame Number: 23

Arrival Time: Jan 1, 1970 €1
[Time delta from previous captured frame: ©.002784000 seconds]
[Time delta from previous displayed frame: ©.002784000 seconds]
[Time since reference or first frame: 22.038816000 seconds]

23 (28 bytes on wire, 28 bytes captured)

:00:58.313760000

Frame Length: 28 bytes

Capture Length: 28 bytes
[Frame is marked: False]
[Protocols in frame: wpan:data]

P Frame Control Field: Data (@xcc61)
Sequence Number: 88
Destination PAN: 0x3332
Destination: Maxstrea 00:40:92:20:78 (00:13:22:00:40:92:20:78)
Source: Maxstrea 00:40:86:d8:34 (00:13:22:00:40:86:d8:34)
FCS: exffff (Incorrect, expected FCS=0x2b32

P [Expert Info (Warn/Checksum): Bad FCS]

<~ Data (5 bytes)

Data: 48454C4C4F
[Length: 5]

~ IEEE 802.15.4 Data, Dst: Maxstrea 00:40:92:20:78, Src: Maxstrea 00:40:86:d8:34, Bad FCS

CCELIM61 cc 58 32 33 78 20 92 460 00 a2 13 00 34 d8 86

CLICEN40 00 a2 13 00 48 45 4c 4c 4f ff ff 8....HEL LO..

QO Frame (frame), 28 bytes Packets: 26 Displayed: 26 Marked: 0

- Profile: Default

88

You can see various scenarios in this snapshot:

—

broadcast packets do not need acknowledgment (see frame 1 for instance)

2. unicast packets need acknowledgment and the ACK is captured when the receiver is active (see frames 5 and 6
for instance)

3. unicast packet to an non-existing device will generate 1 transmission and 3 retransmissions (the default

retransmission count in IEEE 802.15 .4, see frame 13-16 for instance)

Limitations:

1. The timestamps for ACKs are normally incorrect from the SFD, but a turn around is proposed when using
wireshark
1. when a packet is an ACK packet, take the previous timestamp and add 192us (12
symbol=aTurnAroundTime)
2. additionally adds 354us which is the ACK transmission time at 250kbps (11 bytes)
2. FCS is not valid so all frames will have bad checksum but it is not important as all captured frames already
have good checksum for the radio module to accept them
3. When the sniffer is started while there are lot's of traffic, it may happen that the script sends a truncated frame
read from the serial port resulting in an error such as "frame too long". You can have a more "secure" start by:
1. press and maintain the reset button on the sniffer mote
2. start the python script
3. when wireshark is running, release the reset button. Since the radio module only accept valide
frames (FCS is checked) starting the script well before the mote ensures that no truncated information
from the serial port will be sent to wireshark.

Acknowledgments:

The original development tool for plugging a mote to wireshark has been provided by Pierre-Yves Lucas from
University of Brest. He wrote a simple program to translate XBee API format to pcap format in order to be able to use
wireshark with XBee module. We improved this idea by porting it to TelosB and MicaZ and CC2420 radio using
TinyOS and TKN154 which is a much more powerful environment.

6/ Packet analysis script and Excel template

As described in "WP1 Acoustic Test-bed Qualification/Benchmarking procedure for other test-beds" here are:

1. Anexample of the wireshark capture converted into text format
2. The pkt-loss-rate awk script
3. The Excel template

Contact information

The TelosB audio board can be borrowed if you are willing to benchmark your test-bed. Please contact Philippe Cousin
(EGM) from EAR-IT project.

89

Objectives of test-bed benchmarking)

« Determine whether a given test-bed is capable of providing
the minimum requirement for supporting audio traffic

« Packet loss rate
« Relaying capability
« Typical 1-hop packet loss rate need to be measured

« Performances of relay nodes need to be benchmarked for
multi-hop audio

« EAR-IT support

Audio source nodes are provided
Source code of packet sniffer is available

Analysis script and Excel template are provided

the soundy of smauwt evwivorunmenty

Summary of audio characteristics

i o
Codec Minimum sending rate
Raw
4KHz 100 bytes every 25ms
8KHz 100 bytes every 12.5ms

Speex 8000bps

Al 24 bytes every 20ms
A2 48 bytes every 40ms
A3 72 bytes every 60ms
A4 96 bytes every 80ms

the sounds of smawt evwivorunenty

90

Procedure & tools for
benchmarking a new
test-bed

the soundy of smauwt eswivorunenty

Benchmarking a new test-bed

« Determine 1-hop packet loss rate
from audio source to either first relay
node or gateway

Use maximum distance between audio
source and first relay/gateway

« Determine performance of relay
nodes

Packet relay latency
« Packet relay jitter

the sounds of ymauwt evwivorunenty

91

6

Frame analysis

« Use wireshark as frame analysis tool

« Use an AdvanticSys TelosB mote as
promiscuous sniffer mote, connected to
wireshark to display captured frames

« Frame sequence number and reception
time can be visualized for statistic
collection

 Number of lost frames, frame loss rate
 Frame transmission latencies

 Frame jitter

the soundy of smauwt eswivorunenty

Example: packet losses &

the soundy of smauwt eswivorumenty

92

Example: relay latency

Original frame

the soundy of smauwt eswivorunenty

the sounds of smart evwivonumenty

93

9

10

4
llustration: 1-hop packet loss rate

-

— "Jm‘.:':o - o
O L O O!_ Calle GB'-QEAI ' -
P"“‘f O. L8 LO a0 .

Sniffer node will
capture all frames in
order to determine
packet loss rate for
typical/maximum 1-
hop distance

.

e
Y -
C0 cale GE':QLE' Mol o,

00l
2 X

Sniffer node will
capture all frames
(those from audio
source and those
from relay node) in
order to measure

relay latency & jitter

: warim
the sounds of smaut enwironumenty

94

11

12

the soundy of smouwt evwirovunenty

7

implified way to measure relay Iate

« Instead of using the audio source to
measure the relay latency,
XBeeSendCmd can be used to send a
number of packets of a given size at a
given rate

« Example: broadcast 10 packets of 100
bytes, one every 500ms

XBeeSendCmd -p /dev/ttyUSBO -b -size 100 -n 10 -t 500

« Use wireshark as previously described

« Add custom columns info to have

IEEE 802.15.4 frame sequence number (wpan.seq_no)
Time from previously displayed frame

« Export the wireshark capture in text format,
applying filters as needed (if filters, export only
displayed frames)

« Also save the wireshark capture in pcap format for
future usage as the pcap format stores all the
information to apply additional filters if needed

the sounds of smout evwivonumenty

95

No Source Destination Protocol Info SN Time
0x0078 0x0000 IEEE 802.15.4 Data, Dst: 0x0000, Src: 0x0078, Bad FCS 1 0.000000
00:13:22:00:40:8b:c8:1b 0x0090 IEEE 802.15.4 Data, Dst: 0x0090, Src: Maxstrea 00:40:8b:c8:lb, Bad FCS 38 233.28793
IFEE 802.15.4 Ack, Bad FCS 38 0.000544
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 96 0.657184
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 97 0.125856
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 98 0.124384
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 99 0.125472
0%0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 1 0.124416
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Ba 01 0.124448
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad] 102 0.124128
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad] 103 0.125760
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad] 104 0.124800
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad] 105 0.124736
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad] 106 0.125120
0%0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad] 107 0.124192
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad] 108 0.123328
0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad] 109 0.125920
0x0090 IEEE 802.15.4 0x0100, Src: 0x0090, Bad) 110 0.125728
asaog IEEE 802.15.4 0x0100, Src: 0x0090, Badlw 111 0.122624
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 112 0.125344
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 113 0.124800
q IEEE 802.15.4 0%0100, Src: 0x0090, Bad FCS 114 0.125024
Ident'fy relevant part IEEE 802.15.4 0x0100, Src: 0x0090, Bad ECS 115 0.125760
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 116 0.123040
. H IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 117 0.124768
remOV|ng ||neS IEEE 802.15.4 0%0100, Src: 0x0090, Bad FCS 118 0.124960
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 119 0.125408
8 IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 121 0.249952
associated to control
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 123 0.125632
messages (those IEEE 802.15.4 0x0100, Src: 0x0090, Bad ECS 124 0.124416
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 126 0.249088
IEEE 802.15.4 0%0100, Src: 0x0090, Bad FCS 127 0.126912
used to Start/stop the IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 128 0.123168
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 129 0.124800
. IEEE 802.15.4 0%0100, Src: 0x0090, Bad FCS 130 0.125984
aud|0 Capture IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 131 0.123200
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 132 0.124800
IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 133 0.125440
e ® IEEE 802.15.4 0%0100, Src: 0x0090, Bad FCS 134 0.124160
238.813440 0x009 0x0100 IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 135 0.126656
238.936928 0x0090 0x0100 IEEE 802.15.4 0x0100, Src: 0x0090, Bad FCS 136 0.123488
239.060896 0x0090 0%0100 IEEE 802.15.4 0%0100, Src: 0x0090, Bad FCS 137 0.123968
239.187200 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 138 0.126304

the sounds of smowt evwivornumenty

Simply determine packet loss rate

« Use the provided awk script to
process the text file

« Be sure to have a text file with only
the relevant frames (remove the
control messages at the beginning
and at the end of the captured trace)

« Example

. awk -f pkt-loss-rate.awk mytrace.txt

the sounds of smoaut evwivonumenty

96

Awk results

resources — bash — 120x24

MacBookProRetina-de-Congduc-Pham: resources cpham$ awk —-f pkt-loss-rate.awk 03-392-meshlium-audio-board-A6.txt

4 233.945664 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x010@, Src: @x0090, Bad FCS 96

nb packet: 1 los @ total lost:

5 234.071520 0x0090 0x@100 IEEE 802.15.4 Data, Dst: 0x@10@, Src: 0x@09@, Bad FCS 97

nb packet: 2 los 0 total lost: @

6 234.195904 ©0x@ IEEE 802.15.4 Data, Dst: 0x0100, Src: 90, Bad FCS 98

nb packet: 3 los lost: 0

7 234.321376 0x@ IEEE 802.15.4 Data, Dst: 0x0100, Src: ©x@09@, Bad FCS 99

nb packet: 4 lo lost: @

8 234.445792 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 100

nb packet: 5 lost: @ total lost: @

9 234.570240 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 101

nb packet: 6 lost: @ total lost: @

10 234.694368 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 102

nb packet: 7 lost: @ total lost: @

11 234.820128 0x0090 0x0100 IEEE802.15.4 Data Nct: 0¢0100 Src: 010090 Bad FCS 10

nb packet: 8 lost: @ total lost: resources — bash — 120x24

ig é:z;z:?géalgzzfgg zi?:?°1§555 202 261.709152 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: ©0x0090, Bad FCS 62

13 235.069664 0x0090 @x0100 IEEE| NP Packet: 223 lost: @ total lost: 24

nb packet: 10 lost: @ total lost 203 261.835520 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 63

14 235.194784 0x0090 0x@100 IEEE| "D Packet: 224 lost: U,total lost:

nb packet: 11 lost: @ total lost 204 261.960032 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 64
nb packet: 225 lost: @ total lost: 24
205 262.083232 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 65
nb packet: 226 lost: @ total lost: 24
206 262,208352 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 66
nb packet: 227 lost: @ total lost: 24
207 262.334048 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 67
nb packet: 228 lost: @ total lost: 24
208 262.458176 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 68
nb packet: 229 lost: @ total lost:
209 262.707392 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x009@, Bad FCS 70
nb packet: 231 lost: 1 total lost: 25
210 263.081280 0x0090 0x0100 IEEE 802.15.4 Data, Dst: 0x0100, Src: 0x0090, Bad FCS 73
nb packet: 234 lost: 2 total lost: 27
nb packet 234
nb lost 27
loss rate 11,5385
MacBookProRetina-de-Congduc-Pham: resources cpham$

the sounds of smawt evwivormenty

se Excel to vizualize loss patterns

Copy/Paste the

text into an
Excel blank
page, using text
importation
assistant to
separate data
into columns

Coter Pocer ~ |G L|S| B I SALEIEIS (L rusionner Blildole S2L48) e forne | R Insérer Supprimer Format Trémes Aa

) Avertissement de sécurité Les connexions de données ont été désactivées. Activer le contenu
rr— = 5

5 4 o TEEE WITST o, pas s e "OR00%0.. BT

: b SR E I E OE OE 2 B2 =2 2

= IS 2 E EE E B E = E OE

= e = E EBEE E B £ = B OE

= = D E BBEE BE EEE =5 E

FE- 2 E BEEE OE OEGZ S E E Th lect only rel t

= EES T 2 E EE OE OE E B3 OE en select only relevan

20 19235816576 00090 w0100 IEEE 802154 Dam, Dst: 00100, Src 0003, Bad 3 f & |

0| o2 0000 ooio e smiss ows ox oows e o ma s rames & columns,

= bEr s T E ZEE E OEZ o= = OB discarding control

= el = R

26 25236565312 0x0090 0x0100 IEEE 802154 Data, Dst: 0x0100, sec: 0x0030, Bad FCS H T

z e 2 E EEE OE EE OE 55 OE messages if needed (i

5 o T T — you have used the awk

= s 2 B B E E = E B3 B t bef hould

= PEE=—= = E EE B E =E = T E E SCript berore, you shou

= 2 E BEBEE E 2 E&5 E .

36 238.0632 00090 100 e 802154 Data, ot 00100, e 0003, Bad Fes h tt tf|

> |ssimciss 0000 oo i aaise oms Dm 0000 we 00w md s ave a correct text rile

= e D E e B BT &= 5 OE

= b B E EE E EF 2 B 3 OE

= = B E EE OE =E 2 B 3 OE

= B S E EE E = =2 B2 3 2

the sounds of smout evwivonumenty

97

opy selection into th

[- el - (il A A abe. |) Remvoyer 1a igne automatiuement + [Standard il = h Normal = [Ao, S8
coer Qe ~ (G5 (i (LA &2 - < % w48 wseariome | e
Averssamensde sécurits Lo connesions de donnes nekdésacivees. jecomens

y .
; Voyere ai2ieces ot 3
2 phtsize Ecarttype "0.00087937 b loss 27 %loss. 115384615
; Pciet - sove i it s
5 @ sise om ow S oam me 1S o osese 2
c e anise o o Se oamo me 1o ;
; @ sise om o o o P
5 @ sise om o =
s @ wise om o e s
i @ snise om o se oamo me s H
12 e 2154 ows 0w se oamo me s :
i @ sise om o Se oamo me s i
@ siss om o Se oame me s :
s @ siss om o Se oamo me s i o
it @ siss om o Yo oame me s 5 o
3 @ wiss om o Yo oame me s u o
@ s om o Se oamo me s i o
@ wiss om o H o
@ wiss om o o o
3 oaio @ e om o H o
: o oo ogio m weise om0 w o . _—)
g BB = Packet inter-arrival time, 392(audio-board)-Meshlium
Wise om 0w H
802154 Data, Ost: 2 06
ise oma 0w “
3 ®ise oma om ,,
28 802154 Data, Ost: 2 1 05
: 154 oa 0w : g0e
= |] @ sise om o 5 H
5[Gs73es oo @ siss om o B o 203
5 oao @ wiss om o " o £
36 33 %0090 IEEE. 802154 Data, ost: 35 [E
- 5 oo @ wiss om o H o £
38 E 0x0090 IEEE 802154 Data, Dst: 37 o 02
H oo @ e om0 H o
» oo @ mnise o o T — e on » o
‘ H oo @ mnise o o Se oame mi 1S R . 01
£ 3 banssons oo @ sise om o = :
a . % o0 @ e om o =
“ a 2 0009 @ wise om o = S o
a oo @ sise om o o “ i g g i e g
s oo e TP — e . AARARIRTERRIAGEEANNARIGE
s oo @t mnise o o “
a8 as 0x0090 IEEE 802154 Data, Os: sre: 4 Packet index
“ oawso @ snise o o e P
o oawso @ sise om o e > :
: P oao @ sise om o e ; E
5 oao @ siss om o = ; o
5 % oa @ siss om o e 5 o
a oa @ wiss om o = = :
3 petoreds oo @ wiss om o = H :
: s z 5 A
T Aui iS00 e ToT e Ve S35 30 T T T T T R e S T T T T T e T T

the sounds of smowt evwivornumenty

« Refer to EAR-IT deliverable 1.2

« With 1-hop packet loss rates, check
whether the value is acceptable, i.e.
below 50% for raw audio and below

5% for speex audio

« Check whether the relay time of your
test-bed is compatible with audio
requirements, use aggregation if
needed

the sounds of smoauwt evwironumenty

98

Audio board on WaspMote

é-
i
3‘

TX on AUX-SERIAL-1-RX
(RX on AUX-SERIAL-1-TX)

VCCon 5V

LY. ..

GND on GND

the soundy of smauwt evwivorunenty

WaspMote control program

uint8 t b;

uint8 t sample_ count=0;
long previous, previous2;
long interval=5;

long intervalMAX=18;

previous = millis();
previous2 = previous;

while(((millis()-previous) < interval) && ((millis()-previous2) <
intervalMAX) && sample count < AUDIO_FRAME SIZE) {

if (serialAvailable(l)) {
b=serialRead(1l);
audio_buffer[audioDataIndex+sample_count]=b;

sample count++;
previous=millis();

// we actually got something from the serial port
gotFrame=true;

the soundy of smawt evwivorunenty

100

