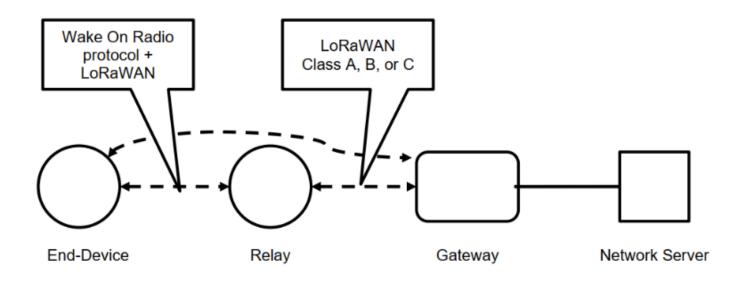
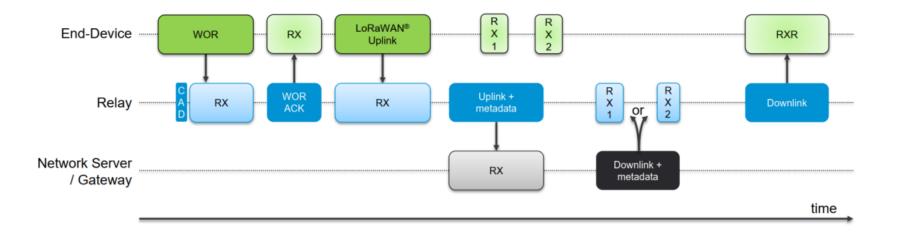


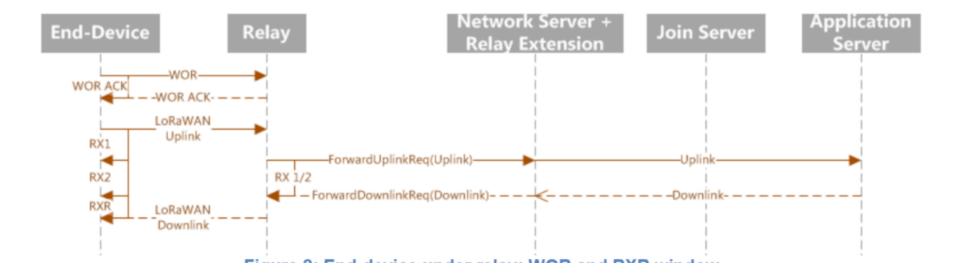
SYNCHRONOUS AND SCHEDULING MECHANISM FOR RELAY & SMART VISION FOR WILD FIRE DETECTION

Van-Lic Tran, Manh-Thao Nguyen, Fabien Ferrero LEAT, Université Côte d'Azur

07/2024


Introduction to Relay


Water meter application in Vietnam


Relay specification

- The idea of Relay has been introduced in LoRaWAN Relay workshop and then presented in The Things Conference 2019
- In September 2022, the LoRa Alliance released the LoRaWAN Relay Specification TS011-1.0.0

LoRaWAN Relay Specification TS011-1.0.0

LoRaWAN Relay Specification TS011-1.0.0

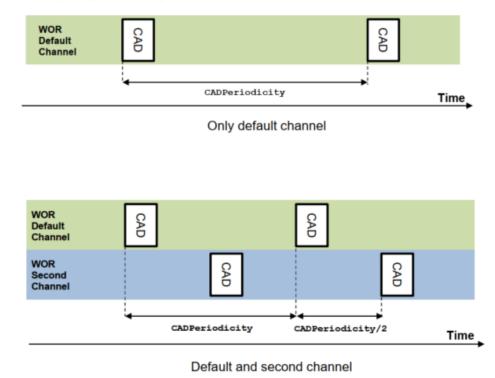
WOR

Send by ED

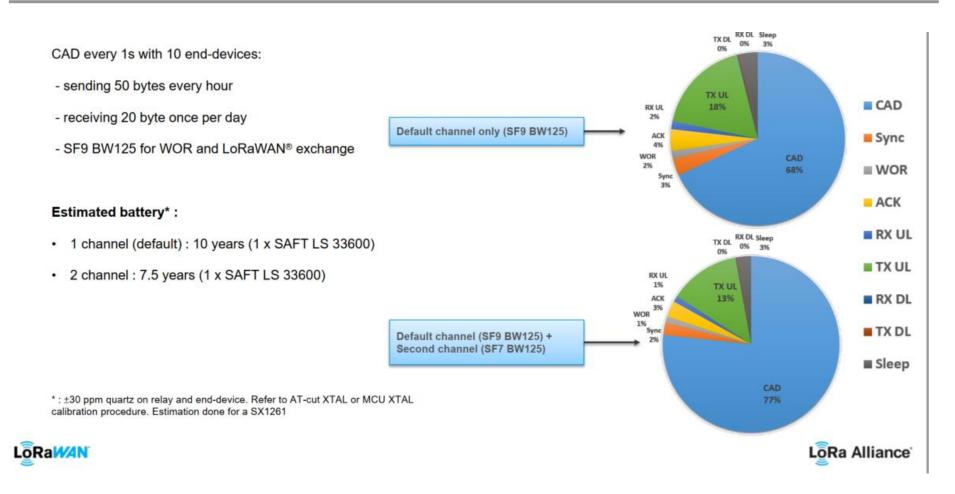
WOR ACK **LoRaWAN®**

Uplink

Send by relay

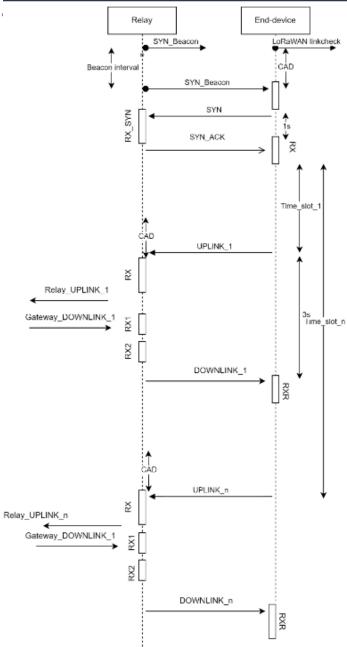

X

R


X 2

18 s

- WOR : Wake On Radio
- · RXR : Relay reception window
- WOR ACK: Wake On Radio Acknowledge
- · WOR specification:
 - Variable preamble length (up to 1 s)



LoRaWAN Relay Specification TS011-1.0.0

Actual limitation is the number of end-devices (<16) and the relay frequency plan (cell network)

SYNCHRONOUS AND SCHEDULING MECHANISM

RL: SYN Beacon packet format

1 byte	4 bytes	1 byte
RelayID	Timestamp_Relay	Numslot

ED: SYN packet format

1 byte	1 byte	4 bytes	1 byte	1 byte
DevAddr	uptime	TimestampED	Channel	DR

RL: SYN ACK packet format

1 byte	4 bytes		
DevAddr	Timestampslot		

SYNCHRONOUS MECHANISM FOR RELAY

- Transmission Time (T_x)
 - SF = 9

CRC = 1

- BW = 125 kHz
- Payload Size = 50 bytes

 $T_{\text{CAD}} = \frac{32}{BW} + \frac{2^{SF}}{BW} + \frac{2^{SF} \times SF}{1750 \times 10^3}$

 $T_{\rm transmission} = T_{\rm SYN \; Beacon} + T_{\rm SYN \; ACK} + T_{\rm UPLINK}$

- IH (implicit header)= 1
- DE (data rate optimization enabled)= 0
- CR = 1 (coding rate of 4/5)
- Preamble Length = 12 symbols
- Duty Cycle = 1%

 $N_{\max} = \frac{DC \times T_{\max\text{chanel}}}{T_{\text{transmission}}}$

 $T_x =$ Preamble Time + Payload Time

$$egin{aligned} T_{ ext{payload}} &= \left(8 + \max\left(\left\lceil rac{8\cdot ext{PL}-4\cdot ext{SF}+28+16\cdot ext{CRC}-20\cdot ext{IH}}{4\cdot ext{(SF}-2\cdot ext{DE})}
ight
ceil \cdot (ext{CR}+4), 0
ight
ceil
ight)
ight
ceil \cdot rac{2^{ ext{SF}}}{ ext{BW}} \end{aligned}$$
 $T_{ ext{preamble}} &= (ext{Preamble Length}+4.25) \cdot rac{2^{ ext{SF}}}{ ext{BW}}$

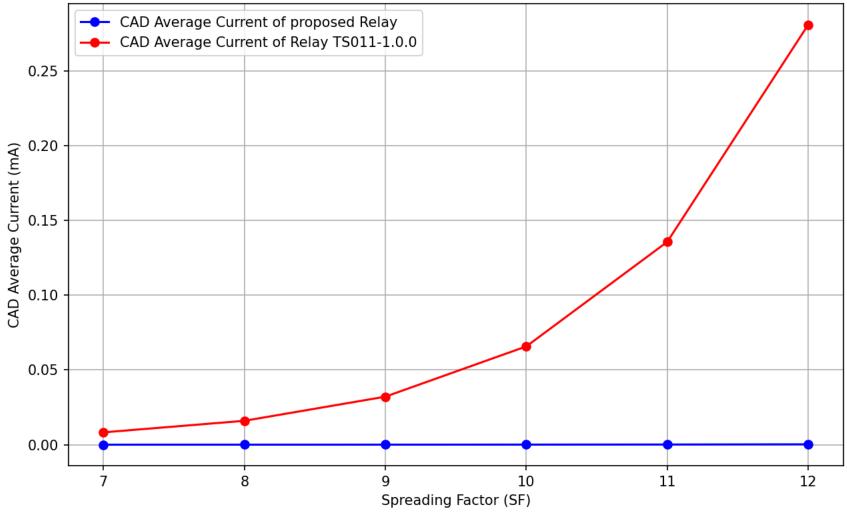
Average current of Relay

Item	Value	Unit	Description
Uplink periodicity	60	minutes	
Transmision current	25	mA	SX1261 datasheet [50]
Uplink transmision time	324.608	ms	SF9, BW125, 50 bytes PL
SYN Beacon transmision time	1053.248	ms	T _{preamble} =1s, SF9, BW125, 6 bytes PL
SYN ACK transmision time	1053.248	ms	T _{preamble} =1s, SF9, BW125, 5 bytes PL
Average transmision current	16.993	uA	-
RX current	4.6	mA	SX1261 datasheet [50]
RX time	1258.048	ms	Receiving UPLINK from end device
RX SYN time	1073.728	ms	Receiving SYN 8 bytes from end device
RX1 and RX2 current	0.11	uA	SX1261 datasheet [50]
Average receive current	29.7949	uA	
CAD period	60 minutes	ms	3 times before receiving time slot
CAD duration	6.985	ms	1 symbol, SF9, BW125, Formula 4.9
RX and CAD current	4.6	mA	SX1261 datasheet [50]
Average CAD current	26.776	nA	
Total average current	19.89	uA	per an end device

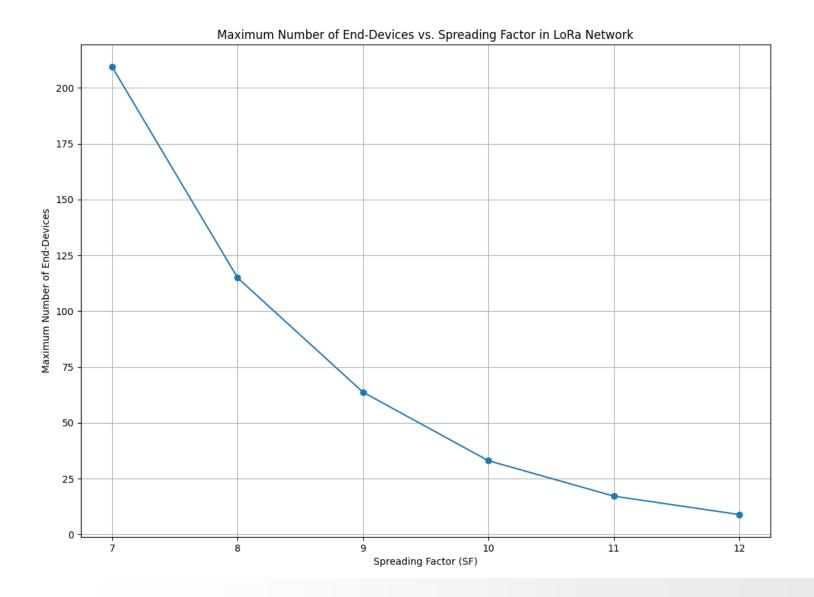
Average current of Relay

Pro	posed	Rel	av	me	echa	anis	m
	1						100

Item Value Unit Description				
Item	Value	Unit	Description	
Uplink periodicity	60	minutes		
Transmision current	25	mA	SX1261 datasheet [50]	
Uplink transmision time	324.608	ms	SF9, BW125, 50 bytes PL	
SYN Beacon transmision time	1053.248	ms	T _{preamble} =1s, SF9, BW125, 6 bytes PL	
SYN ACK transmision time	1053.248	ms	T _{preamble} =1s, SF9, BW125, 5 bytes PL	
Average transmision current	16.993	uA		
RX current	4.6	mA	SX1261 datasheet [50]	
RX time	1258.048	ms	Receiving UPLINK from end device	
RX SYN time	1073.728	ms	Receiving SYN 8 bytes from end device	
RX1 and RX2 current	0.11	uA	SX1261 datasheet [50]	
Average receive current	29.7949	uA		
CAD period	60 minutes	ms	3 times before receiving time slot	
CAD duration	6.985	ms	1 symbol, SF9, BW125, Formula 4.9	
RX and CAD current	4.6	mA	SX1261 datasheet [50]	
Average CAD current	26.776	nA		
Total average current	19.89	uA	per an end device	


Relay specification TS011-1.0.0

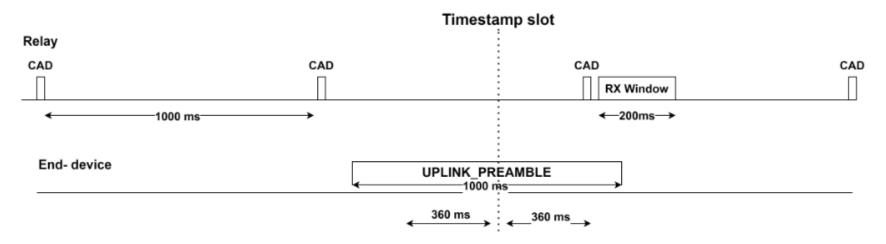
7 1				
Item	Value	Unit	Description	
Uplink periodicity	60	minutes		
Transmision current	25	mA	SX1261 datasheet [50]	
Uplink transmision time	324.608	ms	SF9, BW125, 50 bytes PL	
WOR ACK transmision time	140.29	ms	SF9, BW125, 7 bytes PL	
Average transmision current	16.993	uA		
RX current	4.6	mA	SX1261 datasheet [50]	
RX time	1258.048	ms	Receiving UPLINK from end device	
RX WOR time	1094.208	ms	Receiving WOR 15 bytes from end device	
RX1 and RX2 current	0.11	uA	SX1261 datasheet [50]	
Average receive current	29.7949	uA		
CAD period	1000	ms		
CAD duration	6.985	ms	1 symbol, SF9, BW125, Formula 4.9	
RX and CAD current	4.6	mA	SX1261 datasheet [50]	
Average CAD current	32.132	mA		
Total average current	0.3837	mA	per an end device	


10

CAD Average Current

CAD Average Current vs Spreading Factor

Relay – Maximum Number of end-devices



12

Possibility of Packet Loss

PDR was affected by SYNCHRONOUS Accuracy

- JGHC SMD3225 Crystal oscillator, 32.768 kHz, ±10 ppm
 - Over a hour, this could result in a time deviation of 3600 seconds * $0.00001 = \pm 0.36$ seconds per hours.

PDR can reach 100% if time error is well calibrated

CONCLUSION

LW Relay Spec. TS011-1.0.0

- Bidirectional
- 2 Chanel
- 10 16 end-devices
- Consume a lot of energy in continuously CAD
- Conflicts increase with the increasing number of end-devices.

Proposed SYN Mechanism for Relay

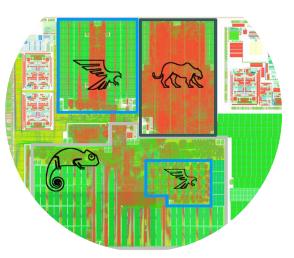
- Bidirectional
- Multiple Chanel
- Max 200 end-devices
- Optimize power consumption of Relay by CAD for initialization
- No conflict arises from increasing number of end-devices
- The proposed mechanism for Relay suitable for the application requiring large number of end device and have data sent periodically
- Can work for multiple channel
- Optimize power consumption of Relay
- No conflict arises from increasing number of end-devices

Smart Vision IoT for Wild fire detection

Vincent Huard, Manh Thao Nguyen, Fabien Ferrero

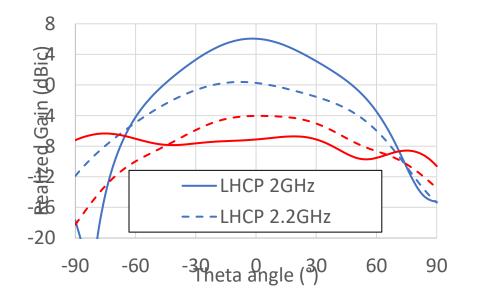
07/2024

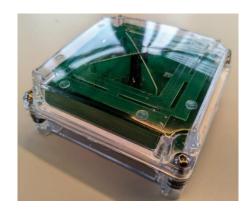
ELLIOT Project


- Dolphin Test chip with CNN acceleration units
 - High AI performance (10-100 GOPS)
 - Record-breaking Energy Efficiency >2 TOPS/W

✓ Space IoT communication

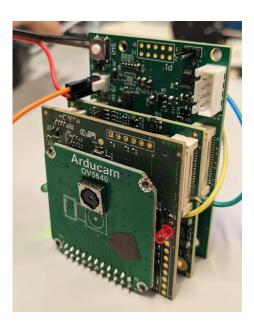
- Integration of Echostar EM2050 module
- CP S-band antenna
- ✓ Applications :
 - Fire detection
 - Cattle tracking
 - Meteo Station

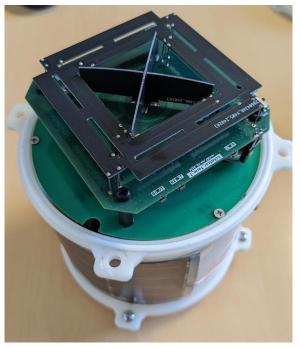




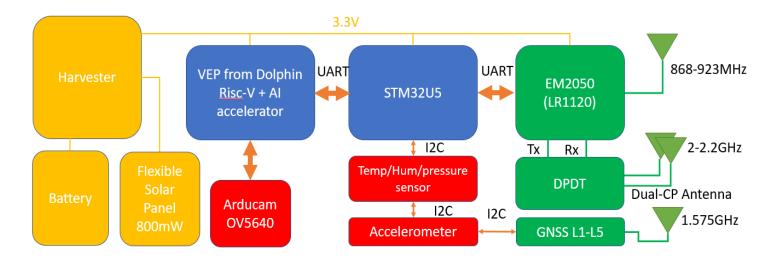
Compact terminal

- ✓ UHF and S-band antenna included
- ✓ GNSS L1 & L5 antenna and receive
- ✓ Sensors (accelerometer, Temp/hum)





Solar terminal


- ✓ Low Power Camera
- ✓ Al accelerator
- Echostar Modem
- ✓ Solar harvester
- ✓ Lithium Battery

Solar terminal

- ✓ Low Power Camera
- ✓ Al accelerator
- Echostar Modem
- ✓ Solar harvester
- ✓ Lithium Battery

POC in Montpellier Area for wild Fire detection

- 10 terminals deploy this summer to test wild fire detection
- In collaboration with Montpellier Firemans
- Transmission to terrestrial LoRaWan and Satellite

Sponsor: IEEE Antennas and Propagation Society (<u>https://ieeeaps.org</u>) Technical Co-Sponsor: Antenna Measurement Techniques Association (<u>https://www.amta.org/</u>)

The scope of 2024 IEEE CAMA includes but is not limited to

- Antenna Measurements in Controlled and Non-Controlled Environments
- Electromagnetic Measurement Methods and Techniques
- Scattering and Diffraction Measurements
- Near-Field and Far-Field Measurements
- Radar and RCS Measurements, Processing, Quantum Radar
- Microwave, Millimeter-Wave, and THz Systems
- Sensors, Quantum Sensing
- Modeling, Simulations, and Predictions of Measurements in Realistic Environments
- Inverse & Imaging Methods and Techniques
- Applications: Electromagnetic Metrology and Compatibility, Radar, Terrestrial and Spaced-Based Communications including Wireless Communications, Sensing, Electronic Warfare, UAVs, UAS and Drones, Remote Sensing, Non-Destructive and Evaluation Testing, Industry, Medicine, and E-Health, etc.

Abstract (1 page) Submission Deadline: 15 July 2024 Notification of Acceptance: 15 July 2024 Final Paper (2-6 pages) Submission Deadline: 1 September 2024

2024 IEEE AP-S Industrial Engineering Paper Award on Antenna Measurements Applications 2024 IEEE AP-S Ulrich L. Rohde Innovative Conference Paper Awards on Antenna Measurements Applications 2024 IEEE AP-S T. K. Sarkar Best Conference on Antenna Measurements and Applications Student Paper Award