Ubs: © IRISA

Over-the-Air Firmware Update in LoRaWAN Networks:
A New Module-based Approach

Huy Dat Nguyen

PhD Student
at INZU team, IRISA

LPWAN days, 8-9 July 2024

Outline

> 1. Context and motivation

> 2. State of the art

> 3. Dynamic module-based FUOTA method in LoRaWAN

> 4. Experimental results

> 5. Conclusion and future works

1. Context and motivation

Motivation

Use case: Update 120KBytes of firmware in LoRaWAN BW125KHz, SF8 I
e) I::>U date time: 1h01m
LoRa device Class C, EU868, duty cycle 10% P

!

Idea: - To separate firmware to several modules
- Only modified modules need to be updated

Over-the-Air Firmware Update in LoRaWAN Networks:
A New Module-based Approach

!

Aims to improve the performance of update process for LoRa-based devices in LoRaWAN networks:
« Update size

* Update time
« Energy consumption
» Network efficiency

2. State of the art

Middleware supports firmware update in 10T devices:

* Femto-containers: secure deployment, execution and isolation of a tiny virtual machine on
low-power 10T devices
* End-to-End Mechanized Proof of an eBPF Virtual Machine for Micro-controllers

1D rawbacks

- Less lightweight: programming scope limited
- More complex: a verification process required

Research works of modular programming and dynamic linking techniques for 10T devices:

« Contiki: static symbol table
« Dynamic TinyOS: dynamic symbol table

1D rawbacks

Update restricted to application level

« GITAR: supports dynamic application and network level upgrades
« SOS: position independent code

1D rawbacks

Do not couple modular programming and dynamic linking techniques with an OTA update process

4

2. State of the art

Research works investigating the usage of LoRa in Firmware update Over the Air are very limited:

« FUOTA specifications in LoORaWAN by LoRa Alliance

* Block-chain
« Multiple gateways approach
» Adaptive data rate

@ Drawbacks
: E—
Full image
update

* FLoRa

Drawbacks

Incremental —
update

At least 3 partitions in flash required
Huge energy consumption, update time
Reboot required

At least 4 partitions in flash required
Reboot required

3. Dynamic module-based FUOTA method in LoRaWAN

Advantages of module-based architecture:
- Easy to add, delete, modify, replace and maintain modules
- Compared to container-based approach: more lightweight, less complex to implement

Advantages of dynamic module-based FUOTA method:

- Only modified sections need to be updated instead of entire firmware

- Compared to full-image replacement: less memory and energy consumption, more network
efficiency, reboot not required

Based on 2 pillars:

2.1. Module-based approach: the monolithic firmware is replaced by a module-based software
controlled by a micro-system

2.2. FUOTA method: takes benefit from the splitting of the firmware into modules, and has been
implemented in an usual LoRaWAN architecture

3. Dynamic module-based FUOTA method in LoRaWAN

3.1. Module-based approach
4 Monolithic)

Function
Function
Function

Function

Function

\ coe j

Advantages of modular design:

-

Modular)
Module 1 Module 2 Module 3
I Function I Function I Function
Function Function Function

_

- Functionalities are grouped into modules
- The same module can be replicated to several devices

- Module can be encapsulated and released into the market

so that other systems can reuse it

“Encryption”
‘toRa Market of poyting”
Configuration modules
“Bluetooth “Wifl

Configuration” Configuration”

Loadable module

- Be independently created, modified, replaced, or exchanged
- Contains not only code and data, but also names of referenced data
symbols that are dynamically loaded.
- Be stored in flash memory

- Be reusable and managed in a systematic manner symbol table

Module composition

metadata

.code

Update

Life cycle:

- Micro-system verifies if the module is active (being . Load
used by others) before updating

- Dependent modules are also notified to use the update Unload| |Load Stop

Installed E—————

Uninstalled Stopped

Property: Life cycle of module
- Metadata: name, version, checksum
- Be used for verification and be removed before the module is loaded

Side effect:
- Wrong data format
- Solution: delete data section when unloading module

3. Dynamic module-based FUOTA method in LoRaWAN

3.1. Module-based approach

Micro-system Module
Manager
functional modules
Bootstrapper Memory
Allocator
Dynamic Driversand | | [eressssesesseicirsesnrnnssansena,
Linker i i .
Libraries main module
I i B, .
micro-system
Module Module Module

General structure Memory layout

* Micro-system is installed directly on bare metal

* DL enables modules to be loaded at run-time in two different ways: in flash or in RAM
« MM controls the operation on modules

* MA optimizes the memory usage

3. Dynamic module-based FUOTA method in LoRaWAN

[

3.2. FUOTA method

D g =

P Update
Agent
LoRa RF
’—ﬁaé\:‘ _ Dynamic z
((())) (((’)) Linker
Gateway LoRaWAN Firmware Update
Server Server

=nd device End device

FUOTA architecture

* Dynamic update
* Low flash memory footprint
* Size and network efficiency

. . N Frag. 1/n Payload. 1/n

Frag. 2/n Payload. 2/n

e \ / bin , >

] Frag.3/n Payload. 3/n

g— | |

¢ Dynamic Linker -bin Frag.n/n_ Payload. n/n
o . Fragmentation Packaging End

phase phase device
Update Agent

Firmware update server (FUS)

End device FUS
__ Request to update
Port 101

Ready to update

Fragment 1/n

Fragment 2/n

Fragment n/n

Assemble fragments

Unload old module

Load updated module

|
FUOTA working principle

10

3. Dynamic module-based FUOTA method in LoRaWAN

3.3. Implementation

eul.cloud.thethings.network

MQTT
Broker
éoé

((’)) loraRE (@) , S
- Ee

End Device Gateway

LoRaWAN
Server

o

THE THINGS

NETWORK

Firmware Update
Server

STM32WLESJC Sx1302 868MHz
end-device LoRaWAN Gateway

Flash memory address Size Name
™
0x0803 F800 - 0x0803 FFFF | 2 kbytes | Page 127
0x0803 FOOO - 0x0803 F7FF | 2 kbytes | Page 126
> Modules
0x0801 9000 - 0x0801 97FF | 2 kbytes | page 50
<
0x0801 8800 - 0x0801 8FFF | 2 kbytes | Page 49
Micro
e system
0x0800 0800 - 0x0800 OFFF | 2 kbytes Page 1
0x0800 0000 - 0x0800 07FF | 2 kbytes Page O

Flash memory of the STM32WLE5JC MCU

11

3. Dynamic module-based FUOTA method in LoRaWAN

3.4. Multicast approach

« Multicast means sending a single downlink frame to several end-devices at the same time
« End-device needs to be part of a multicast group that the server wants to send a unique frame for
» Group definition can be done before deployment or remotely after deployment (add/delete/modify)

Device B ((())) =
Device A , A
Multicast frame to E
Group 1
Network Server
+
Multicast Application
Group 1

Multicast implementation*

Advantages:

« When a large number of devices performs the same behaviors, firmware update should be propagated to a
specific set of devices

« Easy to scale FUOTA application

*Image source: Book LoRaWAN Advanced
12

3. Dynamic module-based FUOTA method in LoRaWAN

3.4. Multicast approach

—3Sleep mode
—=Active mode

- Multicast frame
Unicast frame

Node 1 FUS Node 2 Node 3
’ RqTS RqTS R RqTS R
Estimate At
RdTS Estimate At
RATS
At least 1 RATS received,
start to multicast firmware
N Frag 1/n Frag l/n . Frag l/n
Frag 2/n Frag 2/n N Frag 2/n
< Frag 3/n Frag 3/n Frag 3/n
!‘ Ll
Estimate At
At reached,
ACK verify fragments At reached,
At reached, ACK verify fragments
verify fragments ACK

Propagate required missing fragments
until receiving ACK SUCCESSFUL

13

4. Experimental results

Objective: to compare the approach with existing monolithic architecture in terms of:

- Memory consumption

- Update size and network load

Parameters Value - Monolithic: is composed of ten function blocks (encryption,
wireless configuration, sensor data collection, etc).

LoRa frequency band ~ 868 MHz - Module-based: a set of 10 modules whose size varies from 0.71

LoRa spreading factor 7 to 1.36 kB

LoRa bandwidth I125kHz _various modifications were randomly applied on this code during

LoRa coding rate 4/5

our experiments.

Fragment size 200 bytes

Section Flash required (kB) RAM required (kB)
Bootloader 17.96 2.16

Monolithic Active firmware 18.6 1.54
Downloaded firmware 20 0
Total 56.56 3.7
Micro-system 14.46 2.13

Modular Modules 11.27 2.78
Total 25.73 4.9]1

Memory consumption between monolith and modular design
14

4. Experimental results

== Monolith
L
== Modular
S |
100% | I -5
) 102.63
3
=
£ ~ Efa
S 50% -| . -
3 [101.74
8
S
S o | 1285 .
2 2% — e
8
)
a
1 | 676 i
: I 101 2
0 5 10 15 20 0 5 10 15 20 25 30 0 20 40 60 80 100 120
Update size (KBytes) LoRa physical load (KBytes) IP load: LoRaWAN & MOTT (KBytes)

* Modular denotes a higher performance in terms of the update size with a gain ratio up to 17, with
1% of code changes.

« Obtaining a small load in the LoRa network is particularly beneficial: it passes from 27 kB for the
monolithic approach to 1.6 kB when using dynamic modules, with 1% of code changes.

15

5. Conclusion and future works

Contributions

* Module-based architecture for IoT devices’ firmware

« Dynamic FUOTA method

« Memory and network efficiency

« Experimental results obtained on a small testbed show that the solution we propose optimizes the update
size and the network traffic up to 17 times compared to the traditional monolithic-based method

Future works

Experiments to evaluate the update time and energy efficiency in multicast context
Feasibility of a dynamic modular FUOTA in opportunistic networks

THANKS FOR
YOUR ATTENTION!

	Slide 1
	Slide 2: Outline
	Slide 3: 1. Context and motivation
	Slide 4: 2. State of the art
	Slide 5: 2. State of the art
	Slide 6: 3. Dynamic module-based FUOTA method in LoRaWAN
	Slide 7: 3. Dynamic module-based FUOTA method in LoRaWAN
	Slide 8
	Slide 9: 3. Dynamic module-based FUOTA method in LoRaWAN
	Slide 10: 3. Dynamic module-based FUOTA method in LoRaWAN
	Slide 11: 3. Dynamic module-based FUOTA method in LoRaWAN
	Slide 12: 3. Dynamic module-based FUOTA method in LoRaWAN
	Slide 13: 3. Dynamic module-based FUOTA method in LoRaWAN
	Slide 14: 4. Experimental results
	Slide 15: 4. Experimental results
	Slide 16: 5. Conclusion and future works
	Slide 17: THANKS FOR YOUR ATTENTION!

