

Experimental results on the coexistence of LoRa and Wi-Fi in the 2.4 GHz ISM band

LPWAN DAYS 2024 - PAU

July 08, 2024

Gwendoline Hochet Derévianckine

under the direction of Prof. Alexandre Guitton, Dr. Oana Iova, Davide Orifiamma and Prof. Fabrice Valois

gwendoline.hochet-derevianckine@inria.fr

1. CONTEXT

METHODOLOGY AND EXPERIMENT DESCRIPTION
COEXISTENCE EXPERIMENT RESULTS
PERSPECTIVES

 \triangleleft

Ζ

ш

C

 \triangleleft

PROBLEM STATEMENT

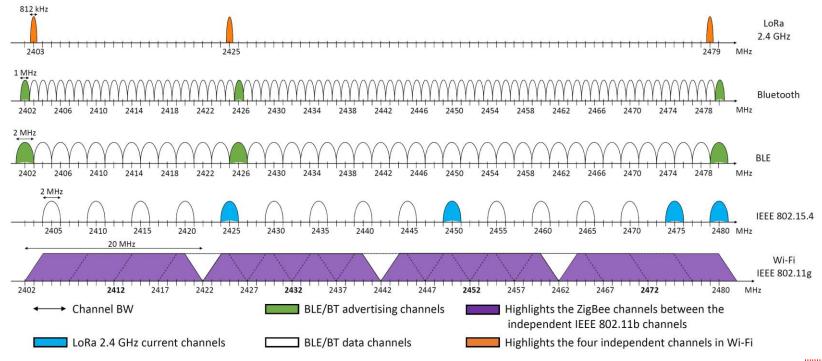


Figure 1 – Spectrum occupancy of LoRa and the main wireless technologies using the 2.4 GHz ISM band.

LORA IN THE 2.4 GHZ ISM BAND

→ no duty-cycle, worldwide available set of frequencies and common regional parameters

The 2.4 GHz ISM band is overcrowded (Wi-Fi, BT, microwave oven, etc)

→ How to manage interference between LoRa and other technologies working in the 2.4 GHz ISM band such as Wi-Fi?

Motivation for studying coexistence

- → Only few papers focus on the coexistence of LoRa with other technologies using the 2.4 GHz ISM band [1] [2]
- → Wi-Fi is the main wireless technologies of the 2.4 GHz ISM band and is deployed everywhere

METHODOLOGY FOR STUDYING THE COEXISTENCE BETWEEN LORA AND WI-FI

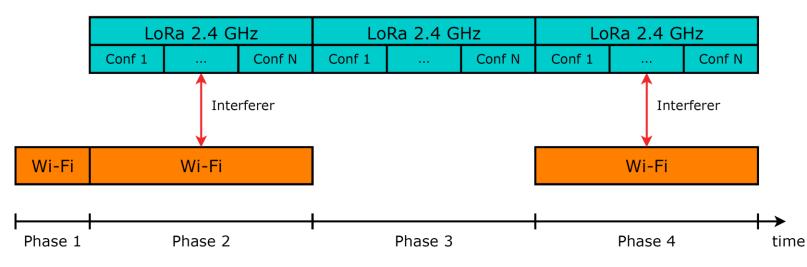


Figure 2 – Coexistence experiment timeline divided into four phases: (1) Wi-Fi only, (2) Wi-Fi + LoRa, (3) LoRa only, and (4) LoRa + Wi-Fi.

5

EXPERIMENTAL SETUP AND METRICS

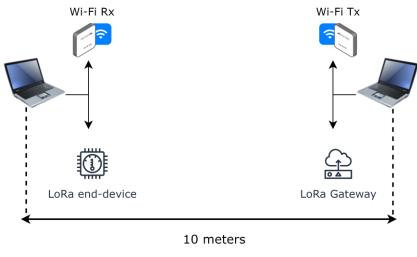
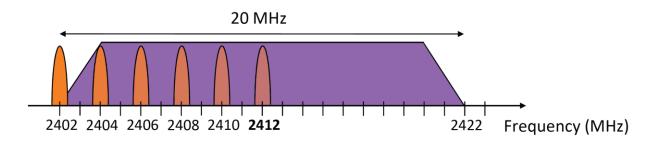
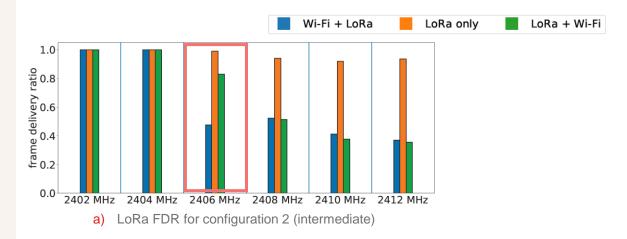


Figure 3 – Experimental setup.

- Variable experiments parameters: LoRa configurations, LoRa occupancy channel rate, IEEE 802.11 standard, experiment topology
- → Metrics: frame delivery ratio (FDR), RSSI, SNR

EXPERIMENT SCENARIO AND CONFIGURATIONS

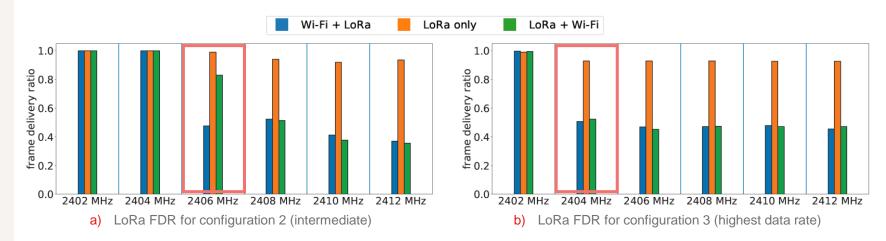



Figure 4 – Evaluated LoRa channels and Wi-Fi channel.

Technology	Configuration number	PHY Configuration	Center frequency (in MHz)	Payload size (in bytes)	Time on Air (in ms)
Wi-Fi	/	802.11g, BW 20 MHz	2412 (channel 1)	1400	1
LoRa	1 (highest reliability)	SF12, BW203, CR4/8	2402, 2404,		1054
	2 (intermediate)	SF9, BW812, CR4/8	2406,2408,	20	38
	3 (highest data rate)	SF6, BW1625, CR4/5	2410, 2412		3

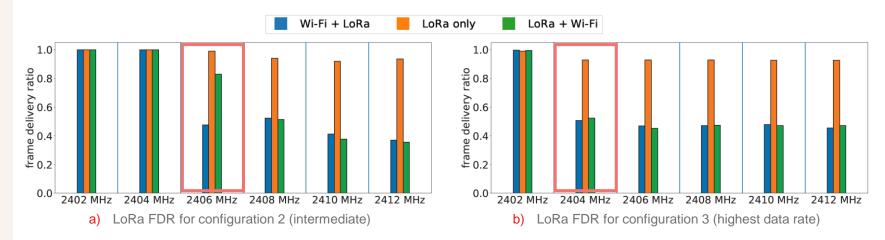
Table 1 – Parameters of the coexistence experiments.

IMPACT OF THE LORA CHANNEL (1/2)


How does LoRa channel impacts LoRa communication reliability in term of FDR?

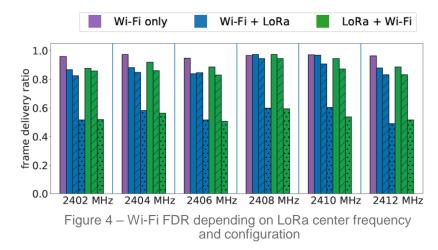
→ The LoRa FDR increases by decreasing the frequency offset between LoRa and Wi-Fi center frequency channels.

IMPACT OF THE LORA CHANNEL (1/2)


How does LoRa channel impacts LoRa communication reliability in term of FDR?

- → The LoRa FDR increases by decreasing the frequency offset between LoRa and Wi-Fi center frequency channels.
- → LoRa center frequency channel impacts more LoRa less robust configurations.

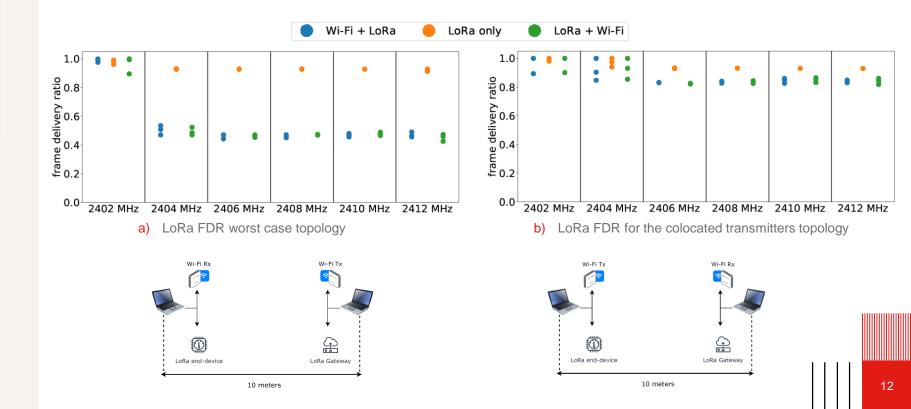
IMPACT OF THE LORA CHANNEL (1/2)


How does LoRa channel impacts LoRa communication reliability in term of FDR?

- → The LoRa FDR increases by decreasing the frequency offset between LoRa and Wi-Fi center frequency channels.
- → LoRa center frequency channel impacts more LoRa less robust configuration.
- → LoRa configuration 1 always provides a FDR of 100% independently of the channel. (not presented here)
- → LoRa channels have to be taken into account for future LoRa networks deployment in order to ensure a good coexistence with Wi-Fi.

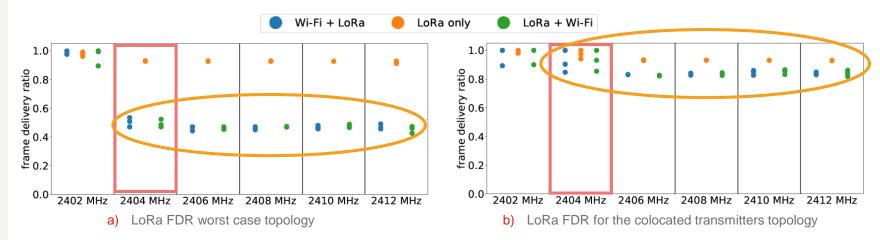
IMPACT OF THE LORA CHANNEL (2/2)

How does LoRa channel impacts Wi-Fi communication reliability in term of FDR?

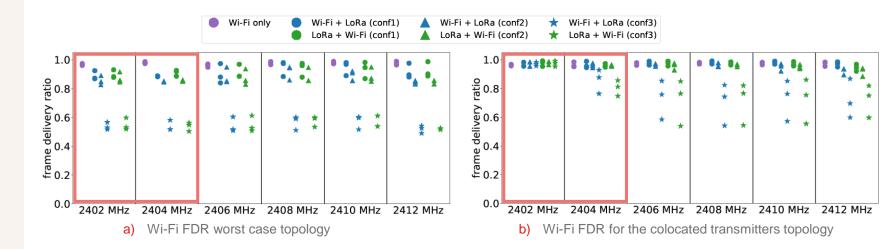


→ The Wi-Fi FDR is on average:

- → 91% when LoRa configuration 1 (highest reliability) is interfering.
- \rightarrow 87% when LoRa configuration 2 (intermediate) is interfering.
- \rightarrow 55% when LoRa configuration 3 (highest date rate) is interfering.
- → LoRa frames with short time-on-air interfere more frequently with Wi-Fi traffic.
- → The center frequency of the LoRa channel has no significant impact on Wi-Fi performance.


IMPACT OF EXPERIMENT TOPOLOGY (1/2)

How does the distance between LoRa and Wi-Fi equipments impacts LoRa FDR?


IMPACT OF EXPERIMENT TOPOLOGY (1/2)

How does the distance between LoRa and Wi-Fi equipments impacts LoRa FDR?

- → Changing the topology reduces the interference between LoRa and Wi-Fi:
 - → Configuration 3 (highest data rate): LoRa FDR increases from 47% to 84%.
- → LoRa configuration 1 always provides a FDR of 100% independently of the experiment topology. (not presented here)
- \rightarrow LoRa FDR configuration 2 increases from 36% to 90%.

How does the distance between LoRa and Wi-Fi equipments impacts Wi-Fi FDR?

- → The FDR improvement of changing the experiment topology is only noticeable for LoRa traffic centered at 2402 MHz and 2404 MHz.
- → The topology of the experiments has more impact on the Wi-Fi FDR than the center frequency of the LoRa channel.

COEXISTENCE EXPERIMENT TAKEAWAY

What is the impact when there are LoRa and Wi-Fi concurrent transmissions on both technologies' communication reliability, in terms of FDR?

LoRa:

- LoRa configuration 1 always provides a FDR of 100% regardless of the parameter that varies.
- LoRa channels centered at 2402 and 2404 MHz provide a FDR of 100% at least for configurations 1 and 2.
 - → The Semtech proposal of a LoRa channel centered at 2403 MHz is a good option.
- Maximising the distance between LoRa gateways and Wi-Fi Aps increases LoRa FDR.

Wi-Fi:

COEXISTENCE EXPERIMENT TAKEAWAY

What is the impact when there are LoRa and Wi-Fi concurrent transmissions on both technologies' communication reliability, in terms of FDR?

LoRa:

- LoRa configuration 1 always provides a FDR of 100% regardless of the parameter that varies.
- LoRa channels centered at 2402 and 2404 MHz provide a FDR of 100% at least for configurations 1 and 2.
 - → The Semtech proposal of a LoRa channel centered at 2403 MHz is a good option.
- Maximising the distance between LoRa gateways and Wi-Fi Aps increases LoRa FDR.

Wi-Fi:

- Wi-Fi FDR decreases according to the time-on-air of LoRa frames.
- The center frequency of the LoRa channel has no significant impact on Wi-Fi performance.
- For a fixed LoRa occupancy channel rate the Wi-Fi FDR depends on (1) the LoRa configuration, (2) the LoRa topology deployment, and (3) the LoRa center frequency channel.
- The higher the LoRa occupancy channel rate, the lower the Wi-Fi FDR. (**not presented here**)

+ +

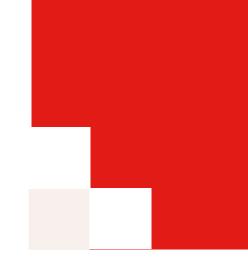
WHAT'S NEXT?

Coexistence experiments extension:

- Evaluate other IEEE 802.11 standards
 - IEEE 802.11b which uses the same type of modulation as LoRa (spread spectrum)
 - IEEE 802.11ax which is the most recent IEEE 802.11 standard and uses an OFDM modulation
- Evaluate other wireless technologies of the 2.4 GHz ISM band such as Bluetooth

How to improve the coexistence of LoRa and Wi-Fi in the 2.4 GHz ISM band?

 Implementing interference mitigation mechanisms such as frequency hopping


REFERENCES

[1] L. Polak and J. Milos, "Performance analysis of LoRa in the 2.4 GHz ISM band: coexistence issues with Wi-Fi," Telecommunication Systems, vol. 74, no. 3, pp. 299–309, Jul. 2020.

[2] L. Polak, F. Paul, M. Simka, R. Zedka, J. Kufa, and R. Sotner, "On the Interference between LoRa and Bluetooth in the 2.4 GHz Unlicensed Band," in 2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA), Apr. 2022, pp. 1–4.

[*] **G. Hochet Derévianckine**, A. Guitton, O. Iova, B. Ning, and F. Valois, "Hate or Love in the 2.4 GHz ISM band: The Story of LoRa and IEEE 802.11g," Nov. 2023. (under review)

+

Thanks for your attention **Questions?**