DEPLOYING LOW-COST AND LONG-RANGE INTERNET OF THINGS IN DEVELOPING COUNTRIES

THE CHALLENGES OF THE (AAZU) H2020 PROJECT

"UNDERSTAND THE ISSUES AND CHALLENGES OF THE CONNECTED WORLD"

> SEPTEMBER 23RD, 2016 NEUCHÂTEL, SWITZERLAND

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

IOT DOMAIN (IN AFRICA)

Irrigation & Agriculture

Livestock farming

Fish farming & aquaculture

Storage & logistic

Health

Water quality

RURAL SENSING

Technology	2G	3G	LAN	
Range (I=Indoor, O=Outdoor)	N/A	N/A	O: 300m I: 30m	
Tx current consumption	200-500mA	500-1000mA	100-300mA	
Standby current	2.3mA	3.5mA	NC	
			4	

and the second	-
A A A A A A A A A A A A A A A A A A A	
	-

TX power: 500mA
P = I x V = 500 x 3.3 = 1650mW
E = P x t -> t = E/P
11345s or 3h9mins

Technology	2G	3G		
Range (I=Indoor, O=Outdoor)	N/A	N/A		
Tx current consumption	200mA- 500mA	500mA – 1000mA		
Standby current	2.3mA	3.5mA		

Haven't considered:

- Baseline power consumption of the sensor board
- RX consumption!
- Event capture consumption
- Event processing consumption

LOW-POWER AND LONG-RANGE?

Z QN 2020

- Generally, robustness and sensitivity can be increased when transmitting (much) slower
- A[Sigfox message is sent relatively slowly in a very narrow band of spectrum (hence ultranarrow-band) using Gaussian Frequency-Shift Keying modulation]. Max throughput=~100bps
- LoRa also increases time-on-air when maximum range is needed. But LoRa uses spread spectrum

instead of UNB. 300bps-37.5kbps

LORA MODULES FROM SEMTECH'S SX127X CHIP 2020

DORJI DRF1278DM is based on Semtech SX1278 LoRa 433MHz

HopeRF RFM series

Multi-Tech

MultiConnect mDot

LinkLabs Symphony module

habSupplies

AMIHO AM093

inAir9 based on SX1276

Embit LoRa

LoRa[™] Long-Range Sub-GHz Module (Part # RN2483)

SODAQ LoRaBee RN2483 7

Semtech SX1272 LoRa

863-870 MHz for Europe

ARM-Nano N8 LoRa module from ATIM

SODAQ LoRaBee Embit

Froggy Factory LoRa module (Arduino)

THE LONG-RANGE REVOLUTION

The lower the receiver sensitivity, the longer is the range!

THE LONG-RANGE REVOLUTION

The lower the receiver sensitivity, the longer is the range!

OW POWER WAN (LPWAN)

Autonomy GSM with 2000mAh - Autonomy LP WAN with 2000mAh -		Example for energy meter	
1 year	5 years	10 years	

Tables from Semtech

14

MATURATION OF THE IOT MARKET...

~,

16

CONTROL, OPTIMIZE & INSTRUMENT !

BIG DATA ANALYTICS

Graphics from http://www.vitria.com/iot-analytics/

Customer Engagement

IOT BECOMES REALITY!

19

- Africa's countries are still far from being ready to enjoy the smallest benefit of IoT
 - Iack of infrastructure
 - □ high cost of hardware
 - complexity in deployment
 - □ lack of technological eco-system and background

- Africa's countries are still far from being ready to enjoy the smallest benefit of IoT
 - Iack of infrastructure
 - high cost of hardware nwave SIGFOX LoRa LTE-M NB-LTE 🔲 lack d WEIGHTLE bund 🔆 DASH7 EC-Anything Any Device Bluetooth^{*}4.0 INTERNET

MATURATION OF THE IOT MARKET...

Wi Fi

.

9

TERNET

... but not adapted for rural africa context

Too expensive Too integrated Highly specialized Difficult to customize Difficult to upgrade

BIG DATA ANALYTICS

Graphics from http://www.vitria.com/iot-analytics/

Customer Engagement

to deploy IoT in Sub-Saharan Africa, it is necessary to target three major issues

- reduce cost of infrastructures, hardware and services
- Iimit dependancy to proprietary infrastructures and provide local interaction models
- target technology appropriation, push for local business models

OT FOR RURAL APPLICATIONS IN DEVELOPPING COUNTRIES

WAZIUP is an EU H2020 project (2016-2019)
 contributes to long-range networks for rural applications with WP2 and big data with WP3

LOW-COST HARDWARE

WHAT IS ARDUINO?

Arduino is an open-source electronics platform based on easy-to-use hardware and software. It's intended for anyone making interactive projects.

ARDUINO BOARD

Arduino senses the environment by receiving inputs from many sensors, and affects its surroundings by controlling lights, motors, and other actuators.

void	<pre>setup() {</pre>
}	
void	loop() {
1	
,	

ARDUINO SOFTWARE

You can tell your Arduino what to do by writing code in the Arduino programming language and using the Arduino development environment.

THE DIY ECOSYSTEM

 Many powerfull microcontroller boards available
 Do-It-Yourself approach with off-the-shelves components more adapted

Arduino Pro Mini

Teensy 3.2

STM32 Nucleo-32

Theairboard on kickstarter

28

WHY GO FOR ARDUINO?

	Avec la bootloader 1 pcs Pro Mini ATMEGA328 Pro Mini 328 Mini ATMEGA328 3.3 V / 8 MHz pour Arduino Air View original title in English ****** 4.9 (417 Votes) ~ 434 Commandes			
	Prix :	€ 1,49 / Kit Barrouvez plus de deals sur l'App ▼		
	Livraison :	€ 0,29 vers France via China Post Ordinary Small Packet Plus ⊡ Livraison : 15-34 jours (envoyé en 7 jours ouvrables)		
GREAT	Quantité :	- 1 + Kit (55350 Kits available)		
	Montant total :	€ 1,78		
	Ach	eter maintenant Ajouter au panier		

Cheap, open, and easy to use/program
 huge developer communities
 Hardware is not the main important issue
 Software is!

SW/HW BUILDING BLOCKS

Long-Range communication library

30

- Build low-cost, low-power, Long-range enabled generic platform
- Methodology for low-cost platform design
- Technology transfers to user communities, economic actors, stakeholders,...

Build low-cost, low-power, Long-range enabled generic platform

32

EASY INTEGRATION AND CUSTOMIZATION

Arduino Pro Mini

3.3v and 8MHz version

Avec la bootloader 1 pcs Pro Mini ATMEGA328 Pro Mini 3 MHz pour Arduino

★★★★★ 4.9 (417 Votes) ∨ | 434 Commandes

€ 1,49 / Kit

Trouvez plus de deals sur l'App 🔻

 Livraison :
 € 0,29 vers France via China Post Ordinary Small Pact

 Livraison :
 15-34 jours (envoyé en 7 jours ouvrables)

 Quantité :
 1
 +

 Kit (55350 Kits available)

Montant €1,78 total :

Prix:

Acheter maintenant

Ajouter au panier

RUNNING FOR 1 YEAR WITH

Low-Power library from RocketScream

Can run for 100 days with 1 measure/10min

Can run for 1 year with 1 measure/1h

Thanks to T. Mesplou and P. Plouraboué for their help

Wakes-up every 10min, take a measure (temp) and send to GW

146μA in deepsleep mode,93mA when activeand sending

LORA GATEWAYS (NON EXHAUSTIVE LIST)

RASPBERRY-BASED LORA

GATEWAY

We can use all model of Raspberry. The most important usefull feature is the Ethernet interface for easy Internet connection. Then WiFi and Bluetooth can be added with USB dongles. RPI3 provides built-in Ethernet, WiFi and Bluetooth!

Less than 50€

SIMPLICITY!

OUR LOW-COST GATEWAY


```
> sudo ./lora gateway
Power ON: state 0
LoRa mode: 4
Setting mode: state 0
Channel CH 10 868: state 0
Power M: state 0
Get Preamble Length: state 0
Preamble Length: 8
LoRa addr 1 : state 0
SX1272/76 configured as LR-BS. Waiting RF input for transparent RF-serial bridge
--- rxlora. dst=1 type=0x10 src=10 seq=0 len=5 SNR=9 RSSIpkt=-54
^p1,16,10,0,5,9,-54
T=23°
--- rxiora. dst=1 type=0x10 src=3 seq=0 len=5 SNR=8 RSSIpkt=-54
^p1,16,3,0,5,8,-54
H=85%
```


IOT CLOUD?

OG RECEIVED MESSAGES


```
> sudo ./lora gateway | python ./post processing gw.py
Power ON: state 0
LoRa mode: 4
Setting mode: state 0
Channel CH 10 868: state 0
                                                  \$ or \& before the data indicates that the
Power M: state 0
                                                  data should be logged on a file or server. It is
Get Preamble Length: state 0
                                                  up to the end-device to decide which option
Preamble Length: 8
LoRa addr 1 : state 0
SX1272/76 configured as LR-BS. Waiting RF input for transparent RF-serial bridge
--- rxlora. dst=1 type=0x10 src=10 seq=0 len=5 SNR=9 RSSIpkt=-54
Rcv ctrl packet info 1,16,10,0,5,9,-54
(dst=1 type=0x10 src=10 seg=0 len=5 SNR=9 RSSI=-54)
rcv msg to log (\$) on dropbox : T=23°
--- rxlora. dst=1 type=0x10 src=3 seq=0 len=5 SNR=8 RSSIpkt=-54
Rcv ctrl packet info 1,16,3,0,5,8,-54
(dst=1 type=0x10 src=3 seq=0 len=5 SNR=8 RSSI=-54)
rcv msg to log (\&) on firebase : H=85%
```

TEMPLATES FOR VARIOUS

INTERNET

CLOUDS

DO IT YOURSELF!

https://github.com/CongducPham/LowCostLoRaGw

STANDALONE GATEWAY

💻 node 1 📃 node 8

C

6

range F 🖃 * N 🖎 🎯 😚 📶 🖬 10:39 Bluetooth_raspi Creating .csv file with the data received File 17-05-2016_10h39m36s.csv created and saved in the folder /storage/emulated/0/Raspberry_local_data

Retrieve data in a

csv file

Display data

08:30 08:35 08:40 08:45 08:50 08:55

LOCAL DATA ANALYTICS

HORIZ N 2020

USE CASE: FISH POND MONITORING

Farmerline in Ghana

Water temperature and dissolved oxygen for monitoring fish ponds

OUT-OF-THE-BOX!

THINGS WE ARE DOING FOR RESEARCH

To leverage the « single » connection gateway approach

Smarter radio channel access mechanism

Image sensor

Transfer low-resolution images for context-awareness applications

To handle larger amount of data (image)

Quality of Service mechanism

Activity sharing mechanism

The proposed framework can be used to set-up your own LoRa test-bed for implementing advanced mechanisms

ADDED-VALUE

INVOLVING INNOVATION HUBS/STAKEHOLDERS

- Close to dev & entrepreneurs communities
- Have their **own community and com channels** (community builders & catalysts)
- Used to organizing disruptive events
- On the field (know the targets personaly & the market)
- Used to empowering startups & businesses

(coaching, business dev, incubation, acceleration...)

• Affiliated to **international networks** that could be involved in dissemination or Business dev (Afrilabs)

Credit: C. Vavasseur, CTIC Dakar

COMMUNITY ENGAGEMENT

	Hackathons	Innovation Lab Weeks	Startup weekends	Webinars	Conferences	Workshop	Participation to international events	Presentation events	Publications
Scientific researchers									
Developers									
Entrepreneurs									
End-users									
Standardisatio n and policy makers									
Application industries									
Investors									

Credit: C. Vavasseur, CTIC Dakar

BUILDING WAZIUP COMMUNITY

Workshop at the European Conference on Networks & Cmmunications (Greece, CNET)

Launch event (Ghana, iSpace)

Launch event (Senegal, CTIC Dakar)

IoTWeek2016 (Belgrade, EGM)

loTBigData2016 (Italy, EGM)

IoTCareConference (Budapest, CNET)

Credit: C. Vavasseur, CTIC Dakar Workshop at the RESSACS 2016 (France, UPPA) 59

TUTORIALS/RESOURCES

Than keep in touch

Carine VAVASSEUR

<5

Communication & Event Manager Carine.vavasseur@cticdakar.com

> www.cticdakar.com contact@cticdakar.com

facebook.com/waziuploT

BIG DAT

WAZ

twitter.com/waziuploT

linkedin.com/groups/8156933

github.com/waziup