Towards Service Differentiation on the Internet

from

"New Internet and Networking Technologies for Grids and High-Performance Computing", tutorial given at IEEE HOTI 2006, Stanford, California August 25th, 2006

C. Pham
University of Pau, France
LIUPPA laboratory

Revisiting the same service for all paradigm

No delivery guarantee

INTERNET

Enhancing the best-effort service

Introduce Service Differentiation

Service Differentiation

The real question is to choose which packets shall be dropped. The first definition of differential service is something like "not mine." -- Christian Huitema

- □ Differentiated services provide a way to specify the relative priority of packets
- □ Some data is more important than other
- People who pay for better service get it!

Divide traffic into classes

Design Goals/Challenges

- □ Ability to charge differently for different services
- ■No per flow state or per flow signaling
- ☐ All policy decisions made at network boundaries
 - Boundary routers implement policy decisions by tagging packets with appropriate priority tag
- □ Traffic policing at network boundaries
- Deploy incrementally: build simple system at first, expand if needed in future

IP implementation: DiffServ

Flow 1

Flow:

Flow 4

No per flow state in the core

IP packet

10Gbps=2.4Mpps with 512-byte packets

Stateful approaches scalable at gigabit rates

6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive RFC 2475

DiffServ building blocks

Traffic Conditioning

User declares traffic profile (eg, rate and burst size); traffic is metered and shaped if non-conforming

5Mbps

SLA 2Mbps

Service

Token Bucket for traffic characterization

□Given b=bucket size, C=link capacity and r=token generation rate

Differentiated Architecture

Marking:

per-flow traffic management marks packets as in-profile and outprofile

Per-Hop-Behavior (PHB):

per class traffic management Ingress buffering and scheduling based on marking at edge preference given to in-profile packets

scheduling

Pre-defined PHB

- □ Expedited Forwarding (EF, premium):
 - departure rate of packets from a class equals or exceeds a specified rate (logical link with a minimum guaranteed rate)
 - □ Emulates leased-line behavior

- □ Assured Forwarding (AF):
 - □ 4 classes, each guaranteed a minimum amount of bandwidth and buffering; each with three drop preference partitions
 - Emulates frame-relay behavior

Premium Service Example

Fixed Bandwidth

Assured Service Example

Border Router Functionality

Internal Router Functionality

A DSCP codes aggregates, not individual flows
No state in the core
Should scale to millions of flows

Scheduling

- □ DiffServ PHB relies mainly on scheduling
 - choose the next packet for transmission
 - □ FIFO: in order of arrival to the queue; packets that arrive to a full buffer are either discarded, or a discard policy is defined.
 - ☐ More complex policies: FCFS, PRIORITY, EDD...

DiffServ for grids

DiffServ for grids (con't)

Bandwidth provisioning

- □ DWDM-based optical fibers have made bandwidth very cheap in the backbone
- On the other hand, dynamic provisioning is difficult because of the complexity of the network control plane:
 - □ Distinct technologies
 - Many protocols layers
 - Many control software

The telephone circuit view

Advantages of circuits

- Provides the same path for information of the same connection: less out-of-order delivery
- □ Easier provisioning/reservation of network's resources: planning and management features

Back to virtual circuits

□Virtual circuit refers to a connection oriented network/link layer: e.g. X.25, Frame Relay, ATM

Virtual
Circuit
Switching:
a path is defined
for each connection

But IP is connectionless!

Why virtual circuit?

□Initially to speed up router's forwarding tasks: X.25, Frame Relay, ATM.

We're fast

enough!

Now: Virtual circuits for traffic engineering!

Virtual circuits in IP networks

- Multi-Protocol Label Switching
 - □ Fast: use label switching → LSR
 - Multi-Protocol: above link layer, below network layer
 - □ Facilitate traffic engineering

PPP Header(Packet over SONET/SDH)

Ethernet

Frame Relay

PPP Header MPLS Header

Ethernet Hdr MPLS Header

FR Hdr

MPLS Header

Layer 3 Header

IP

MPLS

LINK

Layer 3 Header

Layer 3 Header

44

Label structure

Label = 20 bits

Exp = Experimental, 3 bits

S = Bottom of stack, 1bit

TTL = Time to live, 8 bits

- More than one label is allowed -> Label Stack
- MPLS LSRs always forward packets based on the value of the label at the top of the stack

From multilayer networks...

... to IP/MPLS networks

MPLS operation

4. LSR at egress 1a. Routing protocols (e.g. OSPF-TE, IS-IS-TE) removes label and exchange reachability to destination networks delivers packet 1b. Label Distribution Protocol (LDP) Label Switch Router establishes label mappings to destination network dest out src 134.15.8.9 134.15/16 1/10 140.134/16 1/26 2. Ingress LSR receives packet and "label"s packets 3. LSR forwards Source Yi Lin, modified C. Pham packets using label switching

MPLS

Label Distribution

Label Distribution (con't)

Dynamic circuits for grids

Forwarding Equivalent Class: high-level forwarding criteria

Forwarding Equivalent Class

A FEC aggregates a number of individual flows with the same characteristics: IP prefix, router ID, delay or bandwidth constraints...

B, L3 F, pop

One possible utilization of FEC Table A L6: (FEC F) **FEC A** (FEC X) (FEC Y) **L34** (FEC Z) **FTP** FEC B **Application FEC** L45 **Traffic** Classification E-mail FEC C Web **L07 Browsing Ingress Voice** LSR

53

C, L22

C, L23

C, L25

L24

pop

L17

L18

Label & FEC

- ☐ Independent LSP control
 - ☐ An LSR binds a label to a FEC, whether or not the LSR has received a label from the next-hop for the FEC
 - ☐ The LSR then advertises the label to its neighbor
- Ordered LSP control
 - ☐ An LSR only binds and advertises a label for a particular FEC if:
 - it is the egress LSR for that FEC or
 - · it has already received a label binding from its next-hop

Label Distribution Protocols

- **ULDP**
 - · Maps unicast IP destinations into labels
- RSVP-TE, CR-LDP
 - · Used in traffic engineering
- □ BGP
 - · External labels (VPN)
- ☐ PIM
 - · For multicast states label mapping

MPLS for resiliency

MPLS FastReroute

- □Intended to provide SONET/SDH-like healing capabilities
- Selects an alternate route in tenth of ms, provides path protection
- □ Traditional routing protocols need minutes to converge!
- □ FastReroute is performed by maintaining backup LSPs

MPLS for resiliency, con't Backup LSPs

- ☐ One-to-one
- Many-to-one: more efficient but needs more configurations

MPLS for resiliency, con't Recovery on failures

- □ Suppose E or link B-E is down...
- □B uses detour around E with backup LSP

MPLS for VPN

(Virtual Private Networks)

□ Virtual Private Networks: build a secure, confidential communication on a public network infrastructure using routing, encryption technologies and controlled accesses

MPLS for VPN, con't

The traditional way of VPN

□Uses leases lines, Frame Relay/ATM infrastructures...

MPLS for VPN, con't

VPN over IP/MPLS

□ IP/MPLS replace dedicated networks

MPLS reduces VPN complexity by reducing routing information needed at provider's

MPLS for optical networks Before MPLS

Source J. Wang, B. Mukherjee, B. Yoo

MPLS for ON, con't

MPλS=MPLS+λ lightpath

MPLS for ON, con't GMPLS

- □ GMPLS stands for "Generalized Multi-Protocol Label Switching"
- Extends the concept of MPLS beyond data networks to address legacy transport networks
- □ Reduce OPEX cost for operators
- ☐ A suite of protocols that provides a common set of control functions for disparate transport technologies (IP, ATM, SONET/SDH, DWDM)
- ☐ Hot issue at IETF!

MPLS for ON, con't

GMPLS control plane

LINK MANAGEMENT: Link Management Protocol (LMP)	-Neighbor discovery -Maintain control channel connectivity -Verify data link connectivity -Correlate link property information -Suppress downstream alarms -Localize link failures
ROUTING: Open Shortest Path First-Traffic Engineering (OSPF- TE)	-Distribute TE link information -Advertise nodes in the network and create topology -Calculate constrained shorted path (CSPF) -Routing information for control and data plane
SIGNALING: Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)	-Signals setup/teardown/refresh of paths with QoS requirements (e.g., circuit size) -Uses control channel to setup an optical LSP -Supports refresh reduction -Supports Explicit Route Object (ERO) and Record Route Object (RRO)

Ex: Service Provisioning

DiffServ over (G)MPLS map DiffServ class on MPLS FEC

Some words on inter-domain

From cisco

Summary Towards IP/(G)MPLS/DWDM

Summary Technology scope

Want to know more?

- □ GMPLS: IEEE Comm. Mag., Vol. 43(7), July 2005
- □ Optical Control Plane for the Grid Community: IEEE Comm. Mag., Vol. 44(3), March 2006.
- "Optical Transport Systems/Networks" by S. Kinoshita & R. Rabbat, APNOMS 2005. http:// www.apnoms.org/2005/tutorial/Tutorial%202.pdf
- « Inter-domain Traffic Engineering for QoSguaranteed DiffServ Provisioning », Young-Tak Kim, APNOMS 2005.
 - http://www.apnoms.org/2005/tutorial/Tutorial %203.pdf
- □ See Tutorial IV of HOTI 2006: Dynamic Optimal Networks for Grid Computing

