Dynamic Bandwidth Provisioning on the Internet

from

"New Internet and Networking Technologies and Their Application on Computational Sciences",

> invited talk given at Ho Chi Minh City, Vietnam March 3-5, 2004

and

"New Internet and Networking Technologies for Grids and High-Performance Computing",

tutorial given at HiPC 2004, Bangalore, India December 22nd, 2004

C. Pham

University of Pau, France

Limitations of the current Internet

- Bandwidth
 - Raw bandwidth is not a problem: DWDM
 - Provisioning bandwidth on demand is more problematic
- Latency
 - Mean latencies on Internet is about 80-160ms
 - Bounding latencies or ensuring lower latencies is a problem
- End-to-end performances
 - ☐ Links are getting faster and faster!
 - Why my FTP is still going so slow?
- Communication models
 - Only unicast communications are well-defined: UDP, TCP
 - Multi-parties communication models are slow to be deployed

N

Bandwidth provisioning

□ DWDM-based optical fibers have made bandwidth very cheap in the backbone

On the other hand, dynamic provisioning is difficult because of the complexity of the

network control plane:

- □ Distinct technologies
- Many protocols layers
- Many control software

Provider's view

Review of IP routing

Review of IP routing

Review of telephone network

First automatic Branch Exchange Almond B. Strowger, 1891...

Source J. Tiberghien, VUB

The telephone circuit view

Advantages of circuits

- □ Provides the same path for information of the same connection: less out-of-order delivery
- □ Easier provisioning/reservation of network's resources: planning and management features

Time Division Circuits

- ☐ Most trunks time division multiplex voice samples
- At a central office, trunk is demultiplexed and distributed to active circuits
- Synchronous multiplexor
 - N input lines
 - Output runs N times as fast as input

Simple, efficient, but low flexibility and wastes resources

1 sample every 125us gives a 64Kbits/s channel

Back to virtual circuits

□ Virtual circuit refers to a connection oriented network/link layer: e.g.

But IP is connectionless!

MPLS

Virtual

Circuit

Switching:

Virtual circuit principles

End-to-end operation (1)

End-to-end operation (2)

Why virtual circuit?

□Initially to speed up router's forwarding tasks: X.25, Frame Relay, ATM.

We're fast enough!

Now: Virtual circuits for traffic engineering!

Virtual circuits in IP networks

- Multi-Protocol Label Switching
 - □ Fast: use label switching → LSR
 - ■Multi-Protocol: above link layer, below

IP

MPLS

LINK

network layer

□ Facilitate traffic engineering

PPP Header (Packet over SONET/SDH)

Ethernet

Ethernet Hdr MPLS Header Layer 3 Header

Frame Relay

FR Hdr MPLS Header Layer 3 Header

Label structure

Label = 20 bits

Exp = Experimental, 3 bits

S = Bottom of stack, 1bit

TTL = Time to live, 8 bits

- ☐ More than one label is allowed -> Label Stack
- MPLS LSRs always forward packets based on the value of the label at the top of the stack

From multilayer networks...

... to IP/MPLS networks

MPLS operation

Label Distribution

Unsolicited downstream label distribution

Label Distribution (con't)

On-demand downstream label distribution

Forwarding Equivalent Class: high-level forwarding criteria

Forwarding Equivalent Class

Label & FEC

- ☐ Independent LSP control
 - □ An LSR binds a label to a FEC, whether or not the LSR has received a label from the next-hop for the FEC
 - ☐ The LSR then advertises the label to its neighbor
- Ordered LSP control
 - □ An LSR only binds and advertises a label for a particular FEC if:
 - it is the egress LSR for that FEC or
 - it has already received a label binding from its next-hop

Label Distribution Protocols

- □ LDP
 - Maps unicast IP destinations into labels
- □ RSVP, CR-LDP
 - Used in traffic engineering
- \Box BGP
 - External labels (VPN)
- ☐ PIM
 - · For multicast states label mapping

MPLS FastReroute

- □Intended to provide SONET/SDH-like healing capabilities
- Selects an alternate route in tenth of ms, provides path protection
- ☐ Traditional routing protocols need minutes to converge!
- ☐ FastReroute is performed by maintaining backup LSPs

Backup LSPs

- □ One-to-one
- Many-to-one: more efficient but needs more configurations

Recovery on failures

- □ Suppose E or link B-E is down...
- □B uses detour around E with backup LSP

Virtual Private Networks

□ Virtual Private Networks: build a secure, confidential communication on a public network infrastructure using routing, encryption technologies and controlled accesses

The traditional way of VPN

Uses leases lines, Frame Relay/ATM infrastructures...

IP/MPLS & VPN

- □ IP/MPLS replace dedicated networks
- MPLS reduces VPN complexity by reducing routing information needed at provider's

MPλS: MPLS+optical

Towards IP/MPLS/DWDM

Ex: MPLS circuits on grids

Ex: MPLS FEC for the grid

