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Abstract

This paperdiscussesseveral changesto TCP’s congestion
control,eitherproposedor in progress.Thechangesto TCP
includea Limited Transmitmechanismfor transmittingnew
packetson thereceiptof oneor two duplicateacknowledge-
ments,anda SACK-basedmechanismfor detectingandre-
spondingtounnecessaryFastRetransmitsorRetransmitTime-
outs. Thesechangesto TCParedesignedto avoid unneces-
saryRetransmitTimeouts,to correctunnecessaryFastRe-
transmitsor RetransmitTimeoutsresultingfrom reordered
or delayedpackets,andto assistthe developmentof viable
mechanismsfor CorruptionNotification. The changesin
thenetwork includeExplicit CongestionNotification(ECN),
which builds upon the addition of Active QueueManage-
ment.

1 Intr oduction

The basisof TCP congestioncontrol lies in Additive In-
creaseMultiplicativeDecrease(AIMD), halvingtheconges-
tion window for everywindow containinga packet loss,and
increasingthe congestionwindow by roughly onesegment
per RTT otherwise. A secondcomponentof TCP conges-
tion controlof fundamentalimportancein highly-congested
regimesis the RetransmitTimer, including the exponential
backoff of theretransmittimer whena retransmittedpacket
is itselfdropped.A third fundamentalcomponentis theSlow-
Startmechanismfor the initial probing for availableband-
width, insteadof initially sendingat a high rate that might
not be supportedby the network. The fourth TCP conges-
tion controlmechanismis ACK-clocking,wherethearrival
of acknowledgementsat the senderis usedto clock out the
transmissionof new data.

Within thisgeneralcongestioncontrolframeworkof Slow-
Start,AIMD, RetransmitTimers,andACK-clocking, there
is a wide rangeof possiblebehaviors. Theseincludethere-
sponsewhenmultiple packetsaredroppedwithin a round-
trip time; the precisealgorithm for setting the retransmit
timeout; the responseto reorderedor delayedpackets; the
sizeof the initial congestionwindow; andsoon. Thus,dif-
ferentTCPimplementationsdiffer somewhatin their ability
to competefor availablebandwidth,However, becausethey

all adhereto the sameunderlyingmechanisms,thereis no
bandwidthstarvationbetweencompetingTCPconnections.
That is, while bandwidthis not necessarilysharedequally
betweendifferentTCP implementations,it is unlikely that
one conformantTCP implementationwill prevent another
fromreceivingareasonableshareof theavailablebandwidth.

Thechangesto TCPdiscussedin thispaperall adhereto
thisunderlyingframework of Slow-Start,AIMD, Retransmit
Timers,andACK-clocking;thatis, noneof thesechangesal-
ter thefundamentalunderlyingdynamicsof TCPcongestion
control. Instead,theseproposalswouldhelpto avoid unnec-
essaryRetransmitTimeouts,correctunnecessaryFast Re-
transmitsandRetransmitTimeoutsresultingfrom reordered
or delayedpackets,andreduceunnecessarycosts(in delay
andunnecessaryretransmits)associatedwith themechanism
of congestionnotification. Theseproposalsare in various
stagesof theprocessesof research,standardization,andde-
ployment.

Otherchangesto TCP’s congestioncontrolmechanisms
in variousstagesof deploymentbut notdiscussedin thispa-
per include larger initial windows, and NewRenoTCP for
greaterrobustnesswith multiplepacket lossesin theabsence
of the SACK option. Changesto TCP’s congestioncontrol
mechanismslargely in the researchstagesincludeACK fil-
tering or ACK congestioncontrol for traffic on the return
path,a rangeof improvementsto theSlow-Startprocedure,
andrate-basedpacing.Pointersto theliteraturefor many of
theseproposalscan be found in RFC 2760 [3]. Proposals
for greaterrobustnessagainstmisbehaving end-hosts(asin
[13]) wouldgiveprotectionagainstasingleendnode(e.g.,at
thewebclient) attemptingto subvert end-to-endcongestion
control,while not changingthecongestioncontrolbehavior
in thecaseof conformantend-nodes.

Proposalsfor EndpointCongestionManagement(ECM)
would not changethe congestioncontrol mechanismsfor a
singleflow, butwouldchangethenumberof individualtrans-
ferstreatedasasinglestreamin termsof end-to-endconges-
tion control. Otherproposalsfor moreexplicit communica-
tion betweenthe transportlayerandthe link layerbelow or
theapplicationlevelabove(e.g.,HTTP),or for performance-
enhancingproxies,would modify thecontext of congestion
control,but not its underlyingmechanisms.

Several themesarecarriedthroughoutthis paper. One
themeis thatproposedchangesto TCP’s congestioncontrol
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algorithmstendtowardsincreasedrobustnessacrossa wide
rangeof environments,ratherthanfine-tuningfor onepartic-
ularenvironmentor traffic typeat theexpenseof another.

A secondthemeof this paperis that many independent
changesarein progress,andevaluatingonechangerequires
taking into accountits interactionswith other changesin
progress.In additionto consideringthe impactof a partic-
ular changein TCPgiven thecurrentenvironment,with all
elseheldfixed,it is alsousefulto considerthepotentialim-
pactof a proposedchangesomeyearsdown theroad,when
otherchangesto TCPandto thenetwork arein place.

A third themeis that there is unavoidableheterogene-
ity in thecongestioncontrolbehaviorsof deployedTCPim-
plementations,in part due to the uneven progressof pro-
posedchangesto TCP from researchto standardizationto
actualdeployment. As an exampleof uneven deployment,
the SACK option to TCP in RFC 2018[11], which allows
morerobustoperationwhenmultiplepacketsarelost from a
singlewindow of data,wasstandardized(asProposedStan-
dard) in 1996,but is only now becomingwidely deployed.
(This deployment is documentedby the TBIT tool [10] as
well asby many otherresearchers.)

Section2 of the paperdiscussessomechangesto TCP
at theend-nodes,andSection3 discusseschangesin thenet-
work thatwouldaffectTCP’scongestioncontrolbehavior, as
follows. Section2.1 discussesthe Limited Transmitmech-
anism for reducingunnecessaryretransmittimeouts,Sec-
tion 2.2 discussesthepotentialof mechanismsbasedon D-
SACK informationto addrobustnessin the presenceof re-
orderedor delayedpackets,and Section2.3 discussesone
possiblepathof developmentfor CorruptionNotification.In
the sectionon network changes,Section3.1 first discusses
activequeuemanagementmechanismssuchasREDfor con-
trolling theaveragequeuesizeandreducingunnecessarypacket
drops.Section3.2thendiscussesECN,which,buildingupon
activequeuemanagement,allowsrouterstheoptionof mark-
ing ratherthandroppingpacketsasindicationsof congestion
to theend-nodes.

2 Small Changesin TCP’sCongestion
Control Mechanisms

This sectiondiscussesseveral small changesto TCP’s con-
gestioncontrol mechanismsintendedto avoid someof the
unnecessaryRetransmitTimeoutsfor smalltransfers,andto
improve performancein environmentswith reordered,de-
layed,or corruptedpackets.Insteadof involving fundamen-
tal changestoTCP’scongestioncontrol,thesechangeswould
bring TCP closerto its “pure” congestioncontrol behavior
describedearlier of ACK-clocking, Slow-Start for starting
up,AIMD for congestionwindows largerthanonesegment,
andtheexponentialbackoff of theretransmittimer for envi-
ronmentsof heavy congestion.

2.1 Avoiding UnnecessaryRetransmit
Timeouts

Retransmittimeoutsarea necessarymechanismof last re-
sort in TCPflow control,usedwhentheTCPsenderhasno
othermethodfor determiningthatasegmentmustberetrans-
mitted. In addition, the exponentialbackoff of retransmit
timersis a fundamentalcomponentof TCPcongestioncon-
trol, of particularimportancewhenthe congestionwindow
is atmostonesegment.However, whenthecongestionwin-
dow is largerthanonesegment,TCPis ableto usethebasic
AIMD congestioncontrol mechanisms,and in this caseit
would bepreferableto avoid unnecessaryRetransmitTime-
outsasmuchaspossible.
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Figure 1: TCP without Limited Transmit, with a single
packetdrop.
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Figure2: TCPwith Limited Transmit,with a singlepacket
drop.

CurrentTCP implementationshave two possiblemech-
anismsfor detectinga packet loss,FastRetransmitor a Re-
transmitTimeout.A TCPconnectiongenerallyrecoversmore
promptlyfrom a packet losswith FastRetransmit,inferring
apacket lossafterthreeduplicateACKshavebeenreceived.
WhenFastRetransmitis invoked, the TCP senderretrans-
mits thesegmentinferredto belostandhalvesits congestion
window, continuingwith the datatransfer. If the TCP data
senderdoesn’t receive threeduplicateACKsaftera loss(for
example,becausethecongestionwindow waslessthanfour
segments),thenthe TCP sendergoesthroughthe possibly-
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considerabledelayof waitingfor thetransmittimertoexpire.
Experimental
�

studiessuchasthosein [4] show that the
performancecoststo small flows of unnecessarilywaiting
for a retransmittimer to expire can be considerable.Fig-
ure1 shows a shortTCPconnectionwith thesecondpacket
droppedin the network. The graphhas a mark for each
packet transmitted,with time on the � -axis andthe packet
numberon the � -axis. As shown in the graph, the TCP
senderhasto wait for a RetransmitTimeoutto recover from
thepacket loss.1

A numberof researchershadproposeda Limited Trans-
mit mechanismwherethesenderwould transmita new seg-
mentafter receiving oneor two duplicateACKs, if allowed
by thereceiver’sadvertisedwindow; severalof theproposals
weredescribedin RFC2760[3], andLimited Transmithas
now beenapprovedasaProposedStandard[2]. Becausethe
first or secondduplicateACK is evidencethat a packet has
beendeliveredto thereceiver, andthedatasenderhasnotyet
determinedthata packethasbeenlost, it is conformantwith
thespirit of thecongestionwindow to allow a new packet to
enterthepipeline.BecausetheLimited Transmitmechanism
transmitsanew packetonreceiving thefirst or seconddupli-
cateACK, ratherthanretransmittinganold packetsuspected
to have beendropped,the Limited Transmitmechanismis
robustto reorderedpackets.

In many casesthe Limited Transmitmechanismallows
TCP connectionswith small windows to recover from less
that a full window of packet losseswithout a Retransmit
Timeout. As anexample,Figure2 shows a simulationwith
Limited Transmit, with the secondpacket droppedin the
network. In this case,whenthe TCP senderreceivesa du-
plicateACK acknowledgingthe receiptof the third packet,
the senderis able to senda new packet, ultimately result-
ing in threeduplicateACKs followedby a FastRetransmit.
We would notethat in both the simulationswith andwith-
out Limited Transmit,theTCPsenderhalvesthecongestion
window in responseto thepacketdrop.However, with Lim-
ited Transmitthe TCP senderdoesnot have to wait for a
RetransmitTimeoutto learnof thelostpacket. As discussed
in Section3.2, the useof Explicit CongestionNotification
(ECN) would alsoavoid the unnecessaryRetransmitTime-
out in thiscase.

WehopethatLimited Transmitwill soonbecomeastan-
dardpart of TCP implementations.This shouldhelp in re-
ducingunnecessaryretransmittimeouts,whilepreservingthe
fundamentalrole of retransmittimersin congestioncontrol
for regimeswherethe available bandwidthis at most one
packetperround-triptime.

1Thesesimulationscanbe run in the NS simulatorwith the command
”./test-all-LimTransmit” in ”tcl/test”.

2.2 ‘Undoing’ UnnecessaryCongestionCon-
tr ol Responsesto Reordered or Delayed
Packets

Thereare a numberof scenarioswherea TCP sendercan
infer a packet loss,andconsequentlyreduceits congestion
window, whenin fact therehasbeenno loss. Whenthe re-
transmittimer expiresunnecessarilyearly (that is, whenno
dataor ACK packethasbeenlost,andthesenderwouldhave
receivedacknowledgementsfor theoutstandingpacketsif it
hadwaitedalittle longer),thentheTCPsenderunnecessarily
retransmitsa segment. More importantly, anearlyRetrans-
mit Timeoutresultsin anunnecessaryreductionof thecon-
gestionwindow, astheflow hasnot experiencedany packet
losses.Similarly, whenFastRetransmitis invokedunneces-
sarily, afterthreeduplicateACKs have beenreceiveddueto
reorderingratherthanpacket loss,the TCPsenderalsoun-
necessarilyretransmitsa packet andreducesits congestion
window.
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Figure 3: TCP with delayedpackets at time 0.75, and an
unnecessaryFastRetransmit.

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5

P
ac

ke
t�

Time

TCP Without the Unnecessary Fast Retransmit

"packets"
"acks"

Figure4: TCPwith delayedpacketsattime0.75,but without
theunnecessaryFastRetransmit.

Figure3 shows a TCP connectionwith several packets
delayedat time 0.75,sothat theTCPconnectionundergoes
anunnecessaryFastRetransmitat time1.1,accompaniedby
theterminationof Slow-Start.Figure4 showsa similarsim-
ulationwith thepacketsdelayedslightly lesslong, to avoid
the unnecessaryFastRetransmit.The secondsimulationis
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simply to emphasizethe performancedamagedoneby the
unnecessaryFastRetransmitin thefirst simulation.

While it wouldbepossibleto fine-tuneTCP’sRetransmit
Timeoutalgorithmsto achieveanimprovedbalancebetween
unnecessaryRetransmitTimeoutsandunnecessarydelayin
detectingloss,it is not possibleto designRetransmitTime-
outalgorithmsthatneverresultin anunnecessaryRetransmit
Timeout. Similarly, while it would be possibleto fine-tune
TCP’sFastRetransmitalgorithmtoachieveanimprovedbal-
ancebetweenunnecessaryFastRetransmitsandunnecessary
delayin detectingloss,it is not possibleto devisea FastRe-
transmitalgorithmthatalwayscorrectlydetermines,afterthe
receiptof a duplicateACK, whetheror not a packet losshas
occurred. Thus, it would be desirablefor TCP congestion
control to performwell evenin thepresenceof unnecessary
RetransmitTimeoutsandFastRetransmits.

For a flow with a large congestionwindow � , an un-
necessaryhalvingof thecongestionwindow canbeasignif-
icant performancepenalty, as it takesat least ����� round-
trip timesfor theflow to recover its old congestionwindow.
Similarly, for an environmentwith persistentreorderingof
packetswithin a flow, or for anenvironmentwith anunreli-
ableestimatedupperboundon the round-triptime, this re-
peatedunnecessaryhalving of the congestionwindow can
haveasignificantperformancepenalty. A persistentreorder-
ing of packetsin a flow couldresultfrom changingroutesor
from thelink-level retransmissionof corruptedpacketsover
a wirelesslink.

An initial steptowardsaddingrobustnessin thepresence
of unnecessaryRetransmitTimeoutsandFastRetransmitsis
to give the TCP senderthe informationto determinewhen
an unnecessaryRetransmitTimeoutor FastRetransmithas
occurred.This first stephasbeenaccomplishedwith theD-
SACK (for duplicate-SACK) extension(RFC2883[9]) that
hasrecentlybeenaddedto the SACK TCP option. TheD-
SACK extensionallows the TCP data receiver to use the
SACK option to report the receiptof duplicatesegments.
With the useof D-SACK, theTCPsendercancorrectlyin-
fer thesegmentsthathavebeenreceivedby thedatareceiver,
includingduplicatesegments.

When the senderhasretransmitteda packet, D-SACK
doesnotallow TCPto distinguishbetweenthereceiptat the
receiver of both the original and retransmittedpacket, and
thereceiptof two copiesof theretransmittedpacket, oneof
which wasduplicatedin the network. If necessary, TCP’s
timestampoptioncouldbeusedto distinguishbetweenthese
two cases.However, in anenvironmentwith minimalpacket
replicationin thenetwork, D-SACK allows theTCPsender
to make reasonableinferences,one round-trip time after a
packethasbeenretransmitted,aboutwhethertheretransmis-
sionwasnecessaryor unnecessary.

If theTCPdatasenderdetermines,around-triptimeafter
retransmittingapacket,thatthereceiverreceivedtwo copies
of thatsegmentandthereforethat thepacket retransmission
wasmostlikely unnecessary, thenonepossibilitywould be

for thesenderto “undo” thehalving in thecongestionwin-
dow. Thesendercould“undo” arecenthalvingby settingthe
Slow-Startthresholdssthreshto thepreviousvalueof theold
congestionwindow, effectively re-enteringSlow-Startuntil
thecongestionwindow hasreachedits old value.If thecon-
nectionhadbeenin Slow-Startwhenthe unnecessaryFast
Retransmitwastriggered,thenssthreshcouldberesetto its
old value,restoringSlow-Start.Thiswouldallow thesender
to recover its old congestionwindow in oneround-triptime,
insteadof the ����� round-triptimesthatit takesnow. In ad-
dition to restoringthe congestionwindow, the TCP sender
would adjust the duplicateacknowledgementthresholdor
theretransmittimeoutparametersto avoid thewastedband-
width andothercostsof persistentunnecessaryretransmits.

Thefirst partof this work, providing the informationto
thesenderaboutduplicatepacketsreceivedat thereceiver, is
donewith theD-SACK extension.Thenext stepis to evalu-
atespecificmechanismsfor identifyinganunnecessaryhalv-
ing of thecongestionwindow, andfor adjustingtheduplicate
acknowledgementthresholdor retransmittimeout parame-
ters. Oncethis is done,thereis no fundamentalreasonwhy
TCPcongestioncontrolcannotperformeffectively in anen-
vironmentwith persistentreordering.

2.3 Implications for Corruption Notification

Oneof thefundamentalcomponentsof TCPcongestioncon-
trol is that packet lossesareusedasindicationsof conges-
tion. TCPhalvesits congestionwindow afterany window of
datain which oneor morepacketshave beenlost. With the
additionof ECNto theIP architecture,routerswouldalsobe
abletosetabit in theECNfield of theIP headerasanindica-
tion of congestion.However, theadditionof ECN to the IP
architecturewould not eliminatecongestion-relatedpacket
lossesdueto buffer overflow, andthereforewouldnot allow
endnodesto ignorepacket lossesasindicationsof conges-
tion.

For wired links, packet lossesdueto packet corruption
insteadof congestionareinfrequent,at leastin termsof their
effect of congestioncontrol [14]; this is not alwaysthecase
for wirelesslinks [6]. While many wirelesslinks useFor-
ward Error Correction(FEC) and link-level retransmission
to repairpacketcorruption,it is not alwayspossibleto elim-
inateall packetcorruptionin a timely fashion.

Onepossibleresponseto packetcorruptionwouldbefor
theTCPsenderto “undo” thecongestionwindow reduction
if the TCP senderfound out, after the fact, that a single
packet losshadbeendueto corruptionratherthanconges-
tion. This late“undoing” of a congestionwindow reduction
couldusea delayednotificationof packet corruption,where
theTCPsenderreceivesthenotificationof corruptionsome
time after it hasalreadyretransmittedthepacketandhalved
thecongestionwindow.

Sucha mechanismfor the late “undoing” of a conges-
tion window reductionwould allow a link-level protocolto
develop a methodfor the delayedsendingof a corruption
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notificationmessageto the TCP datareceiver. That is, the
link-level protocolcoulddeterminewhenthelink level is no
longerattemptingto retransmita packet hasbeenlost at the
link level dueto corruption.In thiscase,thelink-levelproto-
col couldarrangethatthelink-level sendersendacorruption
notificationmessageto the IP destinationof the corrupted
packet. Of course,thisshortcorruptionnotificationmessage
could itself becorruptedor lost, in which casethetransport
end nodeswould be left to their earlier inferencethat the
packethadbeenlostdueto congestion.

With this form of CongestionNotification,aTCPsender
that hashalved its congestionwindow asa resultof a sin-
glepacket losscouldreceiveinformationfrom thelink level,
sometime later, that this packet waslost dueto corruption
ratherthandueto congestion.If suchmechanismsfor cor-
ruptionnotificationaredeveloped,anecessarynext stepwill
beto determinetheappropriateresponseof theendnodesto
this corruption. For packet corruptionthat is not an indica-
tion of congestionfrom competingtraffic, halving the con-
gestionwindow in responseto a singlecorruptedpacket is
clearlyunnecessarilysevere.At thesametime,maintaining
apersistenthighsendingratein thepresenceof ahighpacket
corruptionrateis alsoclearlyunacceptable;eachcorrupted
packet couldrepresentwastedbandwidthon thepathto the
pointof corruption.

Thedevelopmentof corruptionnotificationwill alsore-
quirethedevelopmentof accompanyingmechanismsfor pro-
tectionagainstmisbehaving routersor receivers,so that re-
ceiverscannotmisleadthesenderinto treatinga congestion-
relatedpacket lossasa corruption-relatedloss.

3 Changesin the Network

TCP’s congestioncontrolbehavior is affectedby changesin
thenetwork aswell asby changesto theTCP implementa-
tionsat theendhosts.In this sectionwe discussthe impact
of ECN on TCPcongestioncontrol. BecauseECN depends
on the deploymentof Active QueueManagement,we first
considerthe impactof Active QueueManagementby itself
onTCPcongestioncontrolbehavior.

Theschedulingmechanismsusedin theroutersalsohave
a significantimpacton TCP’s congestioncontroldynamics.
However, in this paperwe limit our discussionto the envi-
ronmentof FIFOschedulingtypicalof thecurrentInternet.

3.1 ActiveQueueManagement

It haslong beenknown that Drop-Tail queuemanagement
canresult in pathologicalpacket-droppingpatterns,partic-
ularly in simple simulationscenarioswith long-lived con-
nections,one-way traffic, andfixedpacket sizes;this is dis-
cussedin detail in [7]. A morerelevantissuefor actualnet-
worksis thatwith small-scalestatisticalmultiplexing, Drop-
Tail queuemanagementcanresultin globalsynchronization
amongmultiple TCP connections,with underutilizationof

the congestedlink resultingfrom several connectionshalv-
ing their congestionwindow at the sametime. This global
synchronizationis less likely to be a problemwith large-
scalestatisticalmultiplexing.

However, thereis a fundamentaltradeoff betweenhigh
throughputandlow delaywith any queuemanagement,whether
it is ActiveQueueManagementsuchasRED(RandomEarly
Detection)[8] or simplequeuemanagementsuchasDrop-
Tail. Maintaininga low averagedelaywith Drop-Tail queue
managementmeansthat the queuewill have little capac-
ity to accommodatetransientbursts, and can result in an
unnecessarily-highpacketdroprate.At thesametime,Drop-
Tail queuemanagementis perfectlycapableof deliveringac-
ceptableperformancein many circumstances.For example,
experimentalstudiessuchas [5] have confirmedthat with
higherlevelsof statisticalmultiplexing andtheheterogene-
ity of sessionstarttimes,round-triptimes,transfersizes,and
packet sizestypical of thecurrentInternet,Drop-Tail queue
managementis quitecapableof deliveringbothhighlink uti-
lizationandlow overall responsetimesfor webtraffic.

The main motivation for Active QueueManagementis
to controltheaveragequeueingdelaywhile at thesametime
preventingtransientfluctuationsin thequeuesizefrom caus-
ing unnecessarypacket drops.For environmentswherelow
per-packetdelayandhighaggregatethroughputarebothim-
portantperformancemetrics,active queuemanagementcan
allow a queueto be tunedfor low averageper-packet de-
lay while reducingthe penaltyin unnecessarypacket drops
that might be necessarywith Drop-Tail queuemanagement
with the sameaveragequeueingdelay. However, for envi-
ronmentswith thesameworst-case queueingdelayfor Drop-
Tail as for Active QueueManagement,the lower average
queuesize maintainedby Active QueueManagementcan
sometimescomeat thecostof ahigherpacketdroprate.

In environmentswith highly bursty packet arrivals (as
would beencouragedby a scenariowith ACK compression
andACK losseson the returnpath),Drop-Tail queueman-
agementcanresultin anunnecessarilylargenumberof packet
drops,ascomparedto Active QueueManagement,particu-
larly with similar averagequeueingdelays.Evenif thereis
full link utilization, a higherpacket drop ratecanhave two
consequences,wastedbandwidthon congestedlinks before
thepoint of loss,anda highervariancein transfertimesfor
theindividualflows.

Onemight ask if unnecessarypacket dropsreally mat-
ter, if full link utilization canbe maintained.Unnecessary
packet lossesresultin wastedbandwidthto thepoint of loss
only if therearemultiplecongestedlinks, whereothertraffic
could have mademoreeffective useof the availableband-
width upstreamof thepoint of congestion.Pathswith mul-
tiple congestedlinks might seemunlikely, giventhelack of
congestionreportedwithin many backbonenetworks. How-
ever, evenwith uncongestedbackbonenetworks,apathwith
a congestedlink to the home,a congestedlink at an Inter-
netexchangepoint,andacongestedtransoceaniclink would
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still becharacterizedby multiplecongestedlinks.
The
	

secondpossibleconsequenceof unnecessarypacket
lossesevenwith full link utilizationcanbeahighervariance
in transfertimes. For example,smallflows with an‘unnec-
essary’packet dropof the lastpacket in a transferwill have
a longwait for a retransmittimeout,while otheractiveflows
might have their total transfertime shortenedby onepacket
transmissiontime.

We would alsonotethat the bursty packet losspatterns
typical of Drop-Tail queuemanagementhave hada partic-
ularly unfortunateinteractionwith RenoTCP, but asReno
implementationsin theInternetaregraduallybeingreplaced
by NewRenoandSackTCP, this interactionis becomingless
of aproblem.RenoTCPhaswell-known performanceprob-
lemswith multiplepacketsdroppedfrom asinglewindow of
data,andthesemultipledropsaremorelikely with Drop-Tail
thanwith Active QueueManagement.Thegradualreplace-
ment of Renoby NewRenoand SackTCP doesnot mean
that Active QueueManagementis no longerneeded,how-
ever; it just meansthat this particularperformanceproblem
of multiple packetsdroppedfrom a window of datais now
of lesspressingconcern.

3.2 Explicit CongestionNotification

ECN allows routersto settheCongestionExperienced(CE)
bit in the IP packet headerasan indicationof congestionto
theendnodesasanalternative to droppingthepacket. ECN
is specifiedin RFC 2481[12], andasthis is beingwritten
is an Experimentaladdition to the IP architecture. ECN-
capablepacketsin TCPconnectionsadvertisetheir capabil-
ity for ECN in the IP header. In termsof congestioncon-
trol, TCPconnectionsrespondto a singleECNmarkasthey
would to a singlepacket loss. Oneof thekey advantagesof
ECN will not be for TCPtraffic, but insteadfor traffic such
as real-timeor interactive traffic, wherethe costof an un-
necessarypacket dropis eithertheunnecessarydelayof re-
transmittingthepacket, or possiblymaking-dowithout that
packetaltogether.

To first order, TCP congestioncontrol dynamicswith
ECNaresimilar to thosewithoutECN.Themaindifference
is thattheTCPsenderdoesnothaveto retransmitthemarked
packet (asit would if thepackethadbeendropped).For ex-
ample,ECNwouldmeanshortertransfertimesfor thesmall
numberof short flows that might otherwisehave the final
packet of a transferdropped.Experimentalstudiessuchas
[1] haveshown theperformanceadvantagesof ECNfor TCP
shorttransfers.

One of the advantagesof ECN is that, by replacinga
packetdropby apacketmark,aTCPconnectionwith asmall
congestionwindow canavoid a retransmittimeout.Figure6
shows a simulationwith ECN-CapableTCP, with the third
packetmarkedratherthandroppedin thenetwork. TheTCP
senderreceivesthe congestionnotificationwith the receipt
of theACK packet, andhalvesits congestionwindow. Fig-
ure5 shows thesamesimulationwith no packetsmarkedor
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Figure5: TCPwith nopacketsdroppedor marked.
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Figure6: TCPwith ECN,with a singlepacketmarked.

dropped,to emphasizethe halving of the congestionwin-
dow in thesimulationwith ECN.Figure1 showedthesame
scenariowith the third packet droppedratherthanmarked,
resultingin aRetransmitTimeout.

Figure2showsthatLimitedTransmitwithoutECNcould
alsohaveavoidedaRetransmitTimeoutin thisscenario.Be-
causeLimited Transmitcouldsometimesavoid aRetransmit
Timeout in this caseeven in the absenceof ECN, the de-
ploymentof Limited Transmitcoulddiminishsomewhatthe
performancebenefitsof ECN for smallflows (by improving
TCPperformanceevenin theabsenceof ECN,notby wors-
eningTCPperformancewith ECN). Thus,someof theper-
formanceadvantagesreportedfor ECN for TCPshorttrans-
ferswould diminishwith theintroductionof Limited Trans-
mit. At the sametime, therearemany scenarios(e.g., for
a transferof only a few packets)whereECN avoids a Re-
transmitTimeoutwhile Limited Transmitdoesnot,andalso
scenarios(with forceddropsdueto buffer overflow) where
theoppositeis thecase.

Experimentalstudiessuchas [1] have also shown that
ECN hassomeperformanceadvantageseven for long TCP
transfers. One performanceadvantageis that ECN elimi-
natesthedelaysof theFastRetransmitandRetransmitTime-
outprocedures,allowing theTCPsenderto immediatelybe-
gin transmittingat the reducedrate. ECN givesan explicit
notification of congestionthat is robust in the presenceof
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reorderedor delayedpackets,anddoesnot rely on the im-
precise
 duplicateacknowledgementthresholdsor retransmit
timeoutintervalsusedby TCPto detectlostpackets.

As notedearlier, ECN cannotbe relied upon to com-
pletelyeliminatepacket lossesasindicationsof congestion,
and thereforewould not allow the end nodesto interpret
packet lossesasindicationsof corruptioninsteadof conges-
tion. BecauseECNcannoteliminatepacket losscompletely,
it doesnot eliminatethe needfor Limited Transmit. Sim-
ilarly, ECN doesnot eliminatethe needfor Fast Retrans-
mit andRetransmitTimeoutmechanismsto detectdropped
packets, and thereforedoesnot eliminatethe needfor the
D-SACK proceduresdiscussedin Section2.2 for undoing
unnecessarycongestioncontrolresponsesto reorderedor de-
layedpackets.

4 Conclusions

To summarize,changesto TCP are in progressthat would
continueto bring TCP’s congestioncontrolbehavior closer
to the goal of AIMD for larger congestionwindows, and
exponentialbackoff of the retransmittimer for regimesof
highercongestion.ThesechangesincludetheLimitedTrans-
mit mechanismto avoid unnecessaryRetransmitTimeouts,
andD-SACK-basedmechanismsto identify andreverseun-
necessarycongestioncontrol responsesto reorderedor de-
layedpackets.Morespeculativepossibilitiesincludecorrup-
tion notificationmessagesfor the link level to inform trans-
port end-nodesaboutpackets lost to corruptionratherthan
congestion.

At thesametime,changesin thenetwork areeitherpro-
posedor in progressto reduceunnecessarypacketlosses,and
to replacesomecongestion-relatedlossesby packetmarking
instead.Like thepossiblechangesto TCP, changessuchas
ECN would bring TCP’s congestioncontrolbehavior closer
to its desiredidealbehavior, aswell asbeingof greatpoten-
tial valueto newer unreliableunicast,unreliablemulticast,
andreliablemulticasttransportprotocols.
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