

TCP Startup Performance in Large Bandwidth Delay
Networks

Ren Wang, Giovanni Pau, Kenshin Yamada, M.Y. Sanadidi, and Mario Gerla
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095, USA

{renwang,gpau,kenshin,medy,gerla}@cs.ucla.edu

Abstract — Next generation networks with large bandwidth and
long delay pose a major challenge to TCP performance,
especially during the startup period. In this paper we evaluate the
performance of TCP Reno/Newreno, Vegas and Hoe’s
modification in large bandwidth delay networks. We propose a
modified Slow-start mechanism, called Adaptive Start (Astart), to
improve the startup performance in such networks. When a
connection initially begins or re-starts after a coarse timeout,
Astart adaptively and repeatedly resets the Slow-start Threshold
(ssthresh) based on an eligible sending rate estimation mechanism
proposed in TCP Westwood. By adapting to network conditions
during the startup phase, a sender is able to grow the congestion
window (cwnd) fast without incurring risk of buffer overflow and
multiple losses. Simulation experiments show that Astart can
significantly improve the link utilization under various
bandwidth, buffer size and round-trip propagation times. The
method avoids both under-utilization due to premature Slow-
start termination, as well as multiple losses due to initially setting
ssthresh too high, or increasing cwnd too fast. Experiments also
show that Astart achieves good fairness and friendliness toward
TCP NewReno. Lab measurements using a FreeBSD Astart
implementation are also reported in this paper, providing further
evidence of the gains achievable via Astart.

Keywords-congestion control; slow-start; rate estimation, large
bandwidth delay networks

I. INTRODUCTION
TCP is a reliable data transfer protocol [15] used widely

over the Internet for numerous applications, from FTP to
HTTP. The current implementation of TCP Reno/NewReno
mainly includes two phases: Slow-start and Congestion-
avoidance. In the Slow-start phase, a sender opens the
congestion window (cwnd) exponentially, doubling cwnd every
Round-Trip Time (RTT) until it reaches the Slow-start
Threshold (ssthresh). The connection switches then to
Congestion-avoidance, where cwnd grows more conser-
vatively, by only 1 packet every RTT (or linearly). The initial
ssthresh is set to an arbitrary default value, ranging from 4K to
64K Bytes, depending on the operating system implementation.

This research was supported by NSF under grant ANI-0221528.

By setting the initial ssthresh to an arbitrary value, TCP
performance may suffer from two potential problems: (a) if
ssthresh is set too high relative to the network Bandwidth
Delay Product (BDP), the exponential increase of cwnd
generates too many packets too fast, causing multiple losses at
the bottleneck router and coarse timeouts, with significant
reduction of the connection throughput; (b) if the initial
ssthresh is set low relative to BDP, the connection exits Slow-
start and switches to linear cwnd increase prematurely,
resulting in poor startup utilization especially when BDP is
large.

Recent studies [10] reveal that a majority of the TCP
connections are short-lived (mice), while a smaller number of
long-lived connections carry most Internet traffic (elephants).
A short-lived connection usually terminates even before it
reaches “steady state”. That is, before cwnd grows to make
good utilization of the path bandwidth. Thus, the startup stage
can significantly affect the performance of the mice. In a large
BDP network, with the current Slow-start scheme, it takes
many RTTs for a TCP connection to reach the ideal window
(equal to BDP). For example, in current Reno/NewReno
implementation with initial ssthresh set to 32 Kbytes, a TCP
connection takes about 100 sec to reach the ideal window over
a path with a bottleneck bandwidth of 100 Mbps and RTT of
100ms. The utilization in the first 10 sec is a meager 5.97%.
With the rapid development of the Internet and ever-growing
BDP, a more efficient Slow-start mechanism is required to
achieve good link-utilization.

In this paper, we evaluate the performance in large
bandwidth delay networks of three current TCP Slow-start
implementations: (1) Reno/NewReno, (2) New-Reno with
Hoe’s modification [12] and (3) Vegas [3]. We then propose a
sender-side only modification, called Adaptive Start (Astart), to
improve TCP startup performance. Astart takes advantage of
the Eligible Rate Estimation (ERE) mechanism proposed in
TCP Westwood (TCPW) [20], adaptively and repeatedly
resetting ssthresh during the slow-start phase. When ERE
indicates that there is more available capacity, the connection
opens its cwnd faster, enduring better utilization. On the other
hand, when ERE indicates that the connection is close to steady

state, it switches to Congestion-avoidance, limiting the risk of
buffer overflow and multiple losses. Ns-2 simulation
experiments show that Astart significantly enhances
performance of TCP connections, and show that the
enhancement increases as BDP increases. When BDP reaches
around 750 packets, the throughput improvement is an order of
magnitude higher than that of TCP Reno/NewReno for short-
lived connections. We also conduct experiments to compare
Astart with the method using a large initial window of 64
Kbytes [8] in commercial satellite works, and evaluate Astart
fairness, friendliness and performance under dynamic loading.
Lab measurements are also carried out using a FreeBSD
implementation.

The rest of the paper is organized as follows. In Section II
we review background work, and give a brief overview of
TCPW and the eligible rate estimation. In Section III we
evaluate startup performance of several TCP variants, including
Reno/NewReno, Hoe’s modification and Vegas. Section IV
presents Adaptive Start, our proposed modification of TCP
slow-start, and illustrates its basic behavior. In Section V, we
conduct simulation experiment to evaluate Astart throughput
performance, adaptivity against congestion and multiple
congestion, fairness and friendliness, performance under
dynamic load. We also compare Astart with the use of large
initial window method in this section. Lab experiments using
FreeBSD implementation are provided in Section VI. Finally,
Section VII discusses future work and concludes the paper.

II. BACKGROUND

A. Related Work on TCP Slow-start Mechanism
TCP congestion control consists mainly of two phases:

Slow Start and Congestion avoidance [15]. A new connection
begins in Slow-start, setting its initial cwnd to 1 packet, and
increasing it by 1 for every received Acknowledgement (ACK).
After cwnd reaches ssthresh, the connection switches to
congestion-avoidance where cwnd grows linearly.

A variety of methods have been suggested in the literature
recently aiming to avoid multiple losses and achieve higher
utilization during the startup phase. A larger initial cwnd,
roughly 4K bytes, is proposed in [1]. This could greatly speed
up transfers with only a few packets. However, the
improvement is still inadequate when BDP is very large, and
the file to transfer is bigger than just a few packets [22]. Fast
start [19] uses cached cwnd and ssthresh in recent connections
to reduce the transfer latency. The cached parameters may be
too aggressive or too conservative when network conditions
change.

Smooth start [21] has been proposed to slow down cwnd
increase when it is close to ssthresh. The assumption here is
that default value of ssthresh is often larger than the BDP,
which is no longer true in large bandwidth delay networks. [12]
proposes to set the initial ssthresh to the BDP estimated using
packet pair measurements. This method can be too aggressive,
as we will show in Section III. In [22], SPAND (Shared

Passive Network Discovery) has been proposed to derive
optimal TCP initial parameters. SPAND needs leaky bucket
pacing for outgoing packets, which can be costly and
problematic in practice [2].

TCP Vegas [3] detects congestion by comparing the
achieved throughput over a cycle of length equal to RTT, to the
expected throughput implied by cwnd and baseRTT (minimum
RTT) at the beginning of a cycle. This method is applied in
both Slow-start and Congestion-avoidance phases. During
Slow-start phase, a Vegas sender doubles its cwnd only every
other RTT, in contrast with Reno’s doubling every RTT. A
Vegas connection exits slow-start when the difference between
achieved and expected throughput exceeds a certain threshold.
However, Vegas is not able to achieve high utilization in large
bandwidth delay networks as we will show in Section 3, due to
its over-estimation of RTT.

We believe that estimating the eligible sending rate and
properly using such estimate are critical to improving
bandwidth utilization during Slow-start.

B. TCP Westwood and Eligilbe Rate Estimation Overview
In TCP Westwood (TCPW) [4], the sender continuously

monitors ACKs from the receiver and computes its current
Eligible Rate Estimate (ERE) [20]. ERE relies on an adaptive
estimation technique applied to ACK stream. The goal of ERE
is to estimate the connection eligible sending rate with the goal
of achieving high utilization, without starving other
connections. We emphasize that what a connection is eligible
for is not the residual bandwidth on the path. The connection is
often eligible more than that. For example, if a connection joins
two similar connections, already in progress and fully utilizing
the path capacity, then the new connection is eligible for a third
of the capacity.

Research on active network estimation [5] reveals that
samples obtained by “packet pair” is more likely to reflect link
capacity, while samples obtained by “packet train” give short-
time throughput. In TCPW, the sender adaptively computes Tk,
an interval over which the ERE sample is calculated. An ERE
sample is computed by the amount of data in bytes that were
successfully delivered in Tk. Tk depends on the congestion level,
the latter measured by the difference between ‘expected rate’
and ‘achieved rate’ as in TCP Vegas. That is Tk depends on the
network congestion level as follows:

min

min

RTTcwin
RERTTcwinRTTTk

−×= ,

where RTTmin is the minimum RTT value of all acknowledged
packets in a connection, and RTT is the smoothed RTT
measurement. The expected rate of the connection when there
is no congestion is given by cwnd/RTTmin, while RE is the
achieved rate computed based on the amount of data
acknowledged during the latest RTT, and exponentially
averaged over time using a low-pass filter. When there is no
congestion, and therefore no queuing time, cwnd/RTTmin is
almost the same as RE, producing small Tk. In this case, ERE

becomes close to a packet pair measurement. On the other hand,
under congestion conditions, RE will be much smaller than
cwnd/RTTmin due to longer queuing delays. As a result, Tk will
be larger and ERE closer to a packet train measurement. After
computing the ERE samples, a discrete version of a continuous
first order low-pass filter using the Tustin approximation [23]
is applied to obtain smoothed ERE.

In current TCPW implementation, upon packet loss
(indicated by 3 DUPACKs or a timeout) the sender sets cwnd
and ssthresh based on the current ERE. TCPW uses the
following algorithm to set cwnd and ssthresh. (We will
describe our proposed Adaptive Start in Section IV, which
applies to both initial start-up phase and Slow-start after coarse
timeouts.)

if (3 DUPACKS are received)
 ssthresh = (ERE*RTTmin)/seg_size;
 if (cwnd >ssthresh) /*congestion avoid*/
 cwnd=ssthresh;
 endif
endif

if (coarse timeout expires)
 cwnd = 1;
 ssthresh =(ERE *RTTmin)/seg_size;
 if(ssthresh < 2)
 ssthresh = 2;
 endif
endif

III. TCP SLOW START PERFORMANCE
In this section we state briefly the current TCP Slow-start

mechanisms, and evaluate their startup performance in large
bandwidth delay networks by simulation. We illustrate the
inadequacy of the current schemes when facing networks with
large BDP, and reveal the reason behind it.

A. Simulation Setup

S1

S2

Sn

 .
 .
 .

R1 R2

H1

H2

Hn

 .
 .
 .

Bottleneck Link
200Mbps,1ms

200Mbps,1ms

Figure 1. Network topology for simulations

All results in this paper are obtained using ns-2 [13]. The
network topology is shown in Figure 1, where Si represents a
TCP sender and Hi a TCP receiver. R1 and R2 are two routers
with finite buffer capacity, each set equal to the Bandwidth
Delay Product (BDP) unless otherwise specified. Results are
obtained for varying propagation time and bottleneck

bandwidth. FTP is the simulated application. The receiver
issues an ACK for every data packet received. We assume the
receiver’s advertised window is always large so that the actual
sending window is always equal to cwnd. For the convenience,
the window size is measured in number of packets, and the
packet size is 1000 bytes. The initial ssthresh for
Reno/Newreno is set to be 32 packets, equal to 32 Kbytes.

B. TCP Reno/NewReno
In TCP Reno/NewReno, a sender starts in Slow-start, cwnd

< ssthresh, and every ACK received results in an increase of
cwnd by 1 packet. Thus, the sender exponentially increases
cwnd. When cwnd hits ssthresh, the sender switches to
congestion avoidance phase, increasing cwnd linearly,
considerably slower than in slow start.

In this Subsection, we evaluate Reno/NewReno startup
performance in large BDP networks. If the initial ssthresh is
too low 1 , a connection exits Slow-start and switches to
Congestion-avoidance prematurely, resulting in poor
utilization. Figure 2 shows the Reno cwnd dynamics in the
startup stage. The results are obtained for a bottleneck
bandwidth of 40Mbps, and RTT values of 40, 100 and 200ms.
The bottleneck buffer size is set equal to BDP in each case.

Figure 2. cwnd dynamic during the start-up phase

From Figure 2, we see that when RTT=100ms, Reno stops
exponentially growing cwnd long before it reaches the ideal
value (BDP=500). After that, cwnd increases slowly, and has
not reach 500 by 20sec. As a result, the achieved throughput is
only 12.90 Mbps, much lower than the desired 40 Mbps.
Another observation concerns how RTT affects performance.
When RTT increases, the ideal window grows too. On the
other hand, because cwnd increases 1 packet per RTT during
Congestion-avoidance, longer RTT means slower cwnd
growth, resulting in even lower utilization. The results in Table
1 show the drastic reduction in utilization as RTT increases.

1 In a network with small BDP, the initial ssthresh might be set too
high. As a result, at some cycle in slow start, a Reno sender often
overshoots the BDP, causing multiple losses and a coarse timeout.
This is also a problem resulting from an inappropriate setting of
ssthresh.

TABLE 1. NEWRENO UTILIZATION DURING FIRTST 20 SEC (BANDWIDTH
=40MBPS)

RTT(ms) 20 50 100 150 200

Utilization(%) 95.6 71.8 23.2 11.9 7.2

Consider now the impact of bottleneck bandwidth on
utilization during startup stage. With the increase of bottleneck
bandwidth, the packet transmission speeds up. But the sender
still has to wait for ACKs to increase cwnd. Thus, after
prematurely exiting slow-start, cwnd grows with almost the
same rate (1 packet per RTT) regardless of bandwidth. With
larger bottleneck capacity, more bandwidth is left unused,
which leads to lower utilization. Table 2 shows the relation
between utilization and bottleneck bandwidth during the startup
stage. The utilization drops to 4.7% with 200 Mbps bottleneck
bandwidth.

TABLE 2. NEWRENO UTILIZATION DURING FIRTST 20 SEC (RTT =100MS)

Bandwidth(Mbps) 10 20 40 100 200

Utilization(%) 77.1 45.9 23.2 9.3 4.7

C. TCP Reno/NewReno with Hoe’s Slow Start Modification
In [12], Hoe proposes a method for setting the initial

ssthresh to the product of delay and estimated bandwidth. The
bandwidth estimation is calculated by applying the least
squares estimation on three closely-spaced ACKs (similar to
the concept of packet pair [17]). RTT is obtained by measuring
the round trip time of the first segment transmitted.

Hoe’s modification enables the sender to get an estimation
of the BDP at an early stage and set the ssthresh accordingly,
thus avoiding switching to congestion avoidance prematurely.
As illustrated in Figure 3 with large buffer space (buffer
size=BDP=500), Reno with Hoe’s modification increases cwnd
exponentially and exits properly.

However, Hoe’s modification may encounter multiple-loss
problems when the bottleneck buffer is not big enough
compared to the BDP, which could easily happen in large
bandwidth delay networks. In Figure 3 when the buffer size is
125 packets (1/4 BDP), the connection encounters multiple
losses and runs into a long recovery time (from 0.9 sec to 14.8
sec). The achieved throughput during the first 20 sec is only
3.61 Mbps, translating into 9% utilization.

The reason for the multiple losses is as follows. During
Slow-start, for every ACK received, the sender increases cwnd
by 1 and sends out 2 new packets. If the receiver acknowledges
every packet, then after n RTT, cwnd will be n2 . Suppose the
access link capacity is at least twice as large as the bottleneck
capacity, these n2 packets will arrive at the bottleneck back to
back at a speed twice that of the bottleneck link. Thus, to avoid
losses, at least a buffer of 12 −n packets is needed to hold off the

temporarily bursting packets. Hoe’s modification sets ssthresh
to the estimated BDP, thus, a buffer size of BDP/2 is required
to prevent multiple losses for single connection.

Figure 3. cwnd dynamics in NewReno with Hoe’s modification

More importantly, Hoe’s modification does not adjust to
changing path load. If there are multiple connections starting
up at approximately the same time, or other large volume
traffic (for example, video transferring) joins in when a
connection is in Slow-start, the Hoe’s modification will have
set the initial ssthresh too high, resulting in multiple losses and
coarse timeout.

D. TCP Vegas
Unlike TCP Reno/Newreno that uses packet loss as

congestion indication, TCP Vegas [3] detects incipient
congestion by comparing the achieved throughput to the
expected throughput at the beginning of a cycle (RTT). The
difference between these two values reflects the queue length
of the connection in the bottleneck router.

This Vegas method is applied to both Slow-start and
Congestion-avoidance phases. In congestion-avoidance, cwnd
increases by 1 per RTT if the difference is small, meaning that
there is enough network capacity. Vegas reduces cwnd in the
same fashion (by 1 packet) when the achieved throughput is
considerably lower than the expected throughput.

During Slow-start, Vegas doubles its congestion window
only every other RTT (compared to Reno’s every RTT). When
the difference between actual and expected throughput exceeds
a threshold, Vegas stops its window doubling and switches to
Congestion-avoidance (See Figure 4).

By growing cwnd slower and monitoring every RTT for
incipient congestion, Vegas avoids multiple losses and the
coarse timeout that would result [11]. However, when the BDP
is large, Vegas may under-utilize the available bandwidth by
switching to congestion avoidance too early [18]. The
premature slow-start termination is caused by RTT over-
estimation in the Vegas algorithm. In Vegas, the sender checks
the difference between expected and actual throughput:

nRTT
cwnd

baseRTT
cwnddiff −= only at the beginning of the RTT where

cwnd is doubled2.

Figure 4. Vegas cwnd dynamic and queue length during startup phase
(Bottleneck bandwidth =40 Mbps, baseRTT =100ms)

At this point, RTTn is over-estimated because of the
temporary queue buildup at the router during the previous cycle
(the last two RTTs). Figure 4 shows the instantaneous queue
length pattern. As a result of RTT over-estimation, diff is over-
estimated too, and Vegas exits Slow-start prematurely. A more
detailed analysis of this problem can be found in [18]. Figure 4
also shows Vegas cwnd dynamic over a path with BDP equal to
500 Packets. Vegas exits slow start at cwnd=96, while the ideal
window is 500 packets

The startup under-utilization of Vegas is aggravated as
BDP grows. Table 3 shows the ratio of the slow start
termination cwnd to the ideal window value for different
bottleneck bandwidth. The ratio is reduced to about 0.1 with a
bottleneck of 100 Mbps.

TABLE 3. THE RATIO OF SLOW START TERMUNATION WINDOW TO THE IDEAL
WINDOW (BDP) IN VEGAS (ROUND-TRIP TIME =100MS)

Bandwidth(Mbps) 10 20 40 80 150

Ratio 0.384 0.192 0.192 0.096 0.101

IV. MODIFIED TCP SLOW START FOR LARGE BANDWIDTH
DELAY NETWORKS

In this Section, we propose a simple sender-side only
modification, which we call Adaptive Start (Astart), to the
traditional Reno/NewReno slow start algorithm. We take
advantage of the TCPW eligible rate estimate, using it to
adaptively and repeatedly reset ssthresh during the startup
phase, both connection startup, and after every coarse timeout.
The pseudo code of the algorithm is as follows. When an ACK
arrives:

2 Provided that the difference indicates no congestion

if (3 DUPACKS are received)
 switch to congestion avoidance phase;
else (ACK is received)
 if (ssthresh < (ERE*RTTmin)/seg_size)
 ssthresh =(ERE*RTTmin)/seg_size;
 endif
 if (cwnd >=ssthresh) /*mini linear increase phase*/
 increase cwnd by 1/cwnd;
 else if cwnd <ssthresh) /*mini exponential increae phase*/
 increase cwnd by 1;
 endif
endif

In TCPW, an eligible rate estimate is determined after
every ACK reception. In Astart, when the current ssthresh is
much lower than ERE*RTTmin, the sender resets ssthresh
higher accordingly, and increases cwnd in slow-start fashion.
Otherwise, cwnd increases linearly to avoid overflow. In this
way, Astart probes the available network bandwidth for this
connection, and allows the connection to eventually exit Slow-
start close to the ideal window (See Figure 5). Compared to
Vegas, TCPW avoids premature exit of slow start since it relies
on both RTT and ACK intervals, while Vegas only relies on
RTT estimates.

(a) Buffer = 500 packets

(b) buffer = 125packets

Figure 5. Astart cwnd dynamic during startup phase (Bottleneck bandwidth
=40 Mbps, RTT=100ms, BDP =500 packets,)

Figure 5(b) illustrates the cwnd dynamic in the case of
small buffer (equal to BDP/4). By applying Astart, the sender
does not overflow the bottleneck buffer and thus multiple
losses are avoided. Figure 6 gives a closer look at the cwnd
dynamic. In effect, Astart consists of multiple mini-linear-
increase and mini-exponential-increase phases. Thus, cwnd
does not increase as fast as in Hoe’s method, especially as
cwnd approaches BDP. This prevents the temporary queue
from building up too fast, and thus, prevents a sender from

overflowing a small buffer. Comparing the cwnd evolution in
Figure 5 and Figure 6 to those in Figure 3, it is clear that cwnd
increase in Astart follows a smoother curve when it is close to
BDP.

Figure 6. a closer look at Astart cwnd dynamic during startup phase

V. SIMULATION RESULTS AND DISCUSSION
In this Section, we evaluate the performance of Astart,

comparing the throughput performance of the proposed Astart
algorithm to other mechanisms we described and evaluated in
the previous section. We also compare Astart with commercial
satellite transport protocol where very large initial window is
used. Finally we will evaluate how well Astart co-exists with
TCP NewReno, the de facto Internet data transport protocol.

A. Astart Behavior with Multiple Connections
We ran simulation with 5 connections starting at the same

time (the network parameter is the same as in Figure 5(a)). The
results in Figure 7 show that each connection is able to estimate
its share of bandwidth and switch to Congestion-avoidance at
the appropriate time.

We drew graph with 5 connections for the conve-nience of
presentation, simulations with more connec-tions show that
Astart can promptly pump up its cwnd and then switch to
Congestion-avoidance properly.

Figure 7. Astart cwnd Dynamic when 5 connections start at the same time
(Bottleneck Bandwidth=40Mbps, RTT =100ms, BDP =500 packets)

B. Startup in a Congested Network
To evaluate the adaptivity of Astart when the network

becomes congested, we also tested the startup behavior when
another high-volume UDP connection joins the TCP
connection during the slow start phase. We ran simulations
with one TCP connection starting at time 0 over a link with
capacity 40 Mbps. A UDP flow with intensity of 20 Mbps
starts at 0.5 sec. Figure 8 shows that Hoe’s method runs into
multiple losses and finally times out. The reason is the setting
of the initial ssthresh to 500 (BDP) at the very beginning of the
connection, and the lack of adjustment to the change in
network load later. In contrast, Astart has a more appropriate
(lower) slow-start exit cwnd, thanks to the continuous
estimation mechanism, which reacts to the new traffic and
determines an eligible sending rate that is no longer the entire
bottleneck link capacity.

Figure 8. cwnd Dynamic with UDP traffic joins in during srartup(Bottleneck
capacity=40 Mbps, RTT=100ms, BDP =500 packets)

C. Throughput Comparison
 The summary of this sub-section is that Astart significantly

improves TCP startup performance with regards to various
bottleneck bandwidth, buffer size and round-trip time. To focus
on the start-up performance of different schemes, we only
calculate the throughput during the first 20 seconds.

Figure 9. Throughput vs. bottleneck capacity (first 20 seconds)

The throughput of Astart, NewReno, NewReno with Hoe’s
modification and Vegas are examined under bottleneck
bandwidth varying from 10 to 150 Mbps (while fixing the
round-trip time at 100ms). The results in Figure 9 show that
Astart and Hoe’s modification achieve higher throughput, and
scale with bandwidth. NewReno and Vegas performance lags
in this scenario. Another observation is that Newreno with
Hoe’s modification slightly outperforms Astart. In Hoe’s
method, the initial ssthresh is immediately set to the bandwidth
after 3 closely spaced ACKs returned, so cwnd increases by
one for every ACK received. On the other hand, Astart
gradually probes for bandwidth and slows down when the
estimate is closer to the connection bandwidth share. We
believe that the slightly lower throughput achieved by Astart
above is more than compensated for by its avoidance of buffer
overflow and multiple losses in other cases.

To assess the robustness of the different schemes to buffer
size, we ran simulations with bottleneck buffer size varying
from 100 (BDP/5) to 250 (BDP/2) packets. The bandwidth is
40 Mbps and RTT is 100 msec. The results in Figure 10 show
that Astart is robust to buffer size reductions, while NewReno
with Hoe’s modification suffers when the buffer size is smaller
than BDP/2. The reduction in buffer size has no meaningful
impact on NewReno and Vegas. They still exit Slow-start
prematurely as explained in Section III.

Figure 10. Throughput vs. bottleneck buffer size (first 20 seconds)

Figure 11. Throughput vs. two-way propagation time (first 20 seconds)

RTT can considerably affect the startup performance.
Figure 11 shows the throughput of Astart, NewReno, Hoe’s
modification and Vegas with RTT varying from 20 to 200
msec. The Bottleneck bandwidth is fixed here at 40 Mbps and
buffer size is set equal to BDP. Figure 11 shows that Astart and
Hoe’s method both scale well with RTT with Hoe’s
modification slightly better for the same reason previous stated
(Hoe’s method set the ssthresh immediately to the BDP where
Astart probes and slows down when cwnd is close to the BDP).
The performance of NewReno and Vegas deteriorate signi-
ficantly as RTT increases.

The studies in the last two Sections focused on the
performance a TCP connection during its initial startup phase.
But Asart can also be used after any coarse timeout. This is of
particular value to TCPW since after a timeout, ERE is small
relative to the connection actual bandwidth share. This is
because during a coarse timeout, the sender transmits so few
packets, and therefore the share estimate is very low. Astart
helps in this case by gradually probing for bandwidth share and
switching to congestion avoidance at a more appropriate time.

D. Comparing Astart to the Use of Large Initial Window
(LIW) over satellite links
In a connection that incorporates a satellite link, the main

bottleneck in TCP performance is due to the large delay-
bandwidth product nature of the satellite link. As we mentioned
in Section II, a larger initial cwnd, roughly 4K bytes, is
proposed in [1]. This could greatly speed up transfers with only
a few packets. However, the improvement is still inadequate
when BDP is very large, and the file to transfer is bigger than
just a few packets.

More aggressively, commercial satellite data communi-
cation providers typically use a very large initial window
(LIW) over satellite links, e.g., 64 Kbytes, and thus bypass the
slow start stage of the normal TCP evolution [8]. This method
effectively increases the utilization during the startup.
However, it cannot single-handedly solve the problem of poor
startup utilization over satellite links. Below we will show the
reason and also compare the performance of Astart with LIW
method.

A commercial satellite system using a geo-stationary
(GEO) could have bandwidth up to 24 Mbps. Which results in
a BDP of about 3000 with one-way propagation delay of 500
ms. Under this situation, even with an initial window of 64
Kbytes, it would take a very long time for TCP to fully utilize
the link.

Figure 12 compares the startup behavior of Astart and LIW
method. The bottleneck capacity is 10 Mbps and one-way
propagation delay is 250 ms. The graph shows that although
LIW method comes up strong at the very beginning, it fades
quickly comparing to Astart due to bypassing the slow-start
stage. As a result, the throughput of LIW method during this
period is only 2.80 Mbps comparing to Astart’s 9.33 Mbps.

Figure 12. Congestion window dynamics of Asart and LIW method.

(bottleneck=10Mbps, RTT=500ms, BDP =600)

Another challenge LIW method faces is caused by its
inability to adapt to different network conditions. By setting the
initial congestion to a large value, if the network is highly
congested or many connections simultaneously join in, it is
possible that using LIW overflows the buffers and causes
multiple losses.

Moreover, a connection using a satellite link may also has a
terrestrial part, thus using LIW end-to-end could affect the
performance and fairness of the terrestrial part of the
connection.

E. Fairness and Friendliness to TCP NewReno
Fairness relates to the relative performance of a set of

connections of the same TCP variant. Friendliness relates to
how sets of connections running different TCP flavors affect
the performance of each other. The simulation topology
consists of a single bottleneck link with a capacity of 50 Mbps,
and one-way propagation delay of 35ms. The buffer size at the
bottleneck router is equal to the pipe size. The link is loss free
except where otherwise stated.

A set of simulations with 10 simultaneous flows was run to
investigate fairness of Astart. To provide a single numerical
measure reflecting the fair share distribution across the various
connections we use the Jain’s Fairness Index defined as [16]:

2
1

2
1)(

 Index Fairness
i

n
i

i
n
i

bn
b

=

=

∑
∑

= ,

where ib is the throughput of the ith flow and n is the total
number of flows. The fairness index always lies between 0 and
1. A value of 1 indicates that all flows got exactly the same
throughput.

We calculate the fairness index for both Reno and TCPW.
The Jain’s fairness index of Astart reached 0.9949, and that of
NewReno is 0.9944. Therefore, fairness of Astart is
comparable to that of NewReno.

Since Astart invokes faster probing during startup, the
evaluation of Astart friendliness toward NewReno is important.
Thanks to good friendliness characteristics of TCPW, Astart
connections can effectively coexist with NewReno connections
over the same path. Figure 13 shows cwnd dynamics for Astart
and NewReno connections.

The bottleneck link bandwidth is 50Mbps and a two way
propagation delay is 70msec. In Figure 13(a), one Atart and
one NewReno connection start running at the same time. The
Astart connection benefits initially by quickly reaching cruising
speed. Astart and NewReno connections both reach the same
cwnd after a few congestion episodes. In Figure 13 (b), five
Astart and five NewReno connections start simultaneously.
The first started Atart connection gets more bandwidth initially,
but again all connections, regardless of Astart or NewReno,
reach fair share rate after a few congestion episodes.

(a) One Astart and one NewReno connection

(b) Five Astart and five NewReno connections

Figure 13. cwnd dynamics between Astart and NewReno
(Bottlneck band width is 50Mbps, and RTT is 70msec)

F. Astart Performance under dynamic load
We evaluated the performance of Astart under highly

dynamic load conditions. In 20 minutes simulation time, we ran
100 connections. Connections starting times are uniformly
distributed over the simulation time. The lifetime of a
connection is fixed at 30 seconds. We compare the results
among NewReno with Astart.

Figure 14 shows Total throughput vs bottleneck bandwidth.
The total throughput is computed as the sum of throughputs of
all connections. Propagation delays are 70ms, and the
bottleneck buffer size is set equal to the pipe size (BDP). In

10Mbps, Astart does not get much benefit, because NewReno
does not have any difficulty filling the smaller pipe. As the
bottleneck link capacity increases, the difference between
Astart and NewReno becomes more obvious. At 200 Mbps,
Astart achieves about 60% more throughput than NewReno.

Figure 14. Throughput vs. bottleneckcapacity of Astart and NewReno under

dynamic load (RTT = 70msec)

Figure 15. Throughput vs. RTT of Astart and NewReno under dynamic load
(Bottleneck capacity = 100 Mbps)

To assess the relation of the efficiency to the E2E

propagation time under dynamic load, we ran simulations with
a bottleneck capacity of 100 Mbps and two-way propagation
ranging from 20 to 300 msec. The results in Figure 15 show a
significant gain for Astart up to 1016% over NewReno. When
the RTT increases, the performance of NewReno degrades
severely, while Astart is able to maintain respectable
utilization.

VI. FREEBSD IMPLEMENTATION
To evaluate Astart performance in actual systems, we have

implemented Astart algorithms on FreeBSD systems. Lab
measurements confirmed our simulation results, showing that
Astart behaves quite well in actual systems.

A. Measurement setup
Figure 16 shows the measurement configuration in our

experiments. All PCs are running on FreeBSD [9] Release 4.5.
CPU clock tick is 10msec (default). We use Dummynet [6][7]
to emulate the bottleneck router. The bottleneck link (from PC
router to TCP receiver) speed is set to 10Mbps. The
propagation time is 400msec, and the router buffer is set equal
to BDP (500Kbytes). Active Queue Management is not used,
that is tail-drop is adopted to simplify the experiments. Further,
no random packet loss was induced at this time. We use Iperf
[14] as a traffic generator. The receiver’s advertised window is
set large enough at 4 Mbytes. We fixed the initial ssthresh for
NewReno equal to 32 Kbytes in our measurements.

Figure 16. Measurement topology and configuration

B. Astart Behavior
Figure 17 shows measured cwnd dynamics in Astart and

NewReno connections at Slow Start. NewReno enters
Congestion Avoidance phase after cwnd reaches the initial
ssthresh (32k), and cwnd increases linearly by one packet per
RTT. cwnd reaches only 2Mbps, 20 % of the link capacity, for
the first 25 seconds. On the other hand, in the Astart connection,
cwnd quickly converges to the link capacity due to the adaptive
ssthresh resetting. We can also confirm that cwnd growth is not
exponential throughout startup. Initially cwnd increases rapidly
for the first 3 seconds, and then increases more slowly as the
connection approaches the link capacity.

Figure 17. cwnd dynamics in Astart and NewReno at Start-up

(Lab Measurements Results)

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we evaluated the startup performance of TCP

Reno/Newreno, Vegas and Hoe’s modification in large
bandwidth delay networks. We proposed a modified Slow-start
mechanism, called Adaptive Start (Astart), to improve the
startup performance in such networks. Astart adaptively and
repeatedly resets the Slow-start threshold (ssthresh), based on
the eligible rate estimation mechanism proposed in TCP
Westwood. By adapting to network conditions in the startup
phase, a sender is able to grow the congestion window (cwnd)
efficiently without overflowing the bottleneck buffer.
Simulations and lab measurement experiments have shown that
Astart can significantly improve the link utilization especially
for large BDP. Compared to previous proposals, Astart is more
robust to small buffer sizes, avoiding both premature
termination of Slow-start, as well as multiple losses and the
resultant coarse timeout. Experiments also have shown that
Astart achieves good fairness and friendliness toward
NewReno.

Work in progress includes considering environments where
random loss is also possible in the very initial phase of a
connection (when using wireless links) or when the round trip
time is extremely large (beyond 0.5 sec). Extensive
measurement experiments on wired/wireless and satellite
networks are also planned.

ACKNOWLEDGMENT
 We would like to thank Anders Persson for conducting

the lab measurement experiments, and Hideyuki Shimonishi
for helpful discussions.

REFERENCES
[1] M. Allman, S. Floyd and C. Patridge, “Increasing TCP’s initial

Window”, INTERNET DRAFT, April 1998.
[2] A. Aggarwal, S. Savage, T.E. Anderson, “Understanding the Perfor-

mance of TCP Pacing,” In Proceedings IEEE INFOCOM 2000, Tel
Aviv, Israel, March 2000.

[3] L.S. Brakmo and L.L. Perterson. TCP Vegas: End-to-End Congestion
Avoidance on a Global Internet. IEEE Journal on Selected Areas in
Communication, Vol. 13, Nov. 8, October 1995.

[4] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP
Westwood: bandwidth estimation for enhanced transport over wireless
links,” In Proceedings of Mobicom 2001, Rome, Italy, Jul. 2001.

[5] C. Dovrolis, P.Ramanathan and D. Moore, “What Do Packet Dispersion
Techniques Measure?,” In Proceedings of Infocom 2001, Anchorage
AK, April 2001.

[6] Luigi Rizzo, “Dummynet: a simple approach to the evaluation of
network protocols”, ACM Computer Communication Review, 1997.

[7] IP Dummynet URL: http://info.iet.unipi.it/~luigi/ip_ dummynet/
[8] N. Ehsan, M. Liu and R. Ragland, "Measurement Based Performance

Analysis of Internet over Satellite", 2002 International Symposium on
Performance Evaluation of Computer and Telecommunication Systems
(SPECTS 2002), July 2002, San Diego.

[9] FreeBSD Project, URL: http:://www.freebsd.org/
[10] L. Guo and I. Matta. The War between Mice and Elephants. In

Proceedings of ICNP'2001: The 9th IEEE International Conference on
Network Protocols, Riverside, CA, November 2001.

[11] G. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas revisited,” In
Proc. of IEEE Infocom 2000, March 2000, pp. 1546-1555

[12] J. C. Hoe, Improving the Start-up Behavior of A Congestion Control
Scheme for TCP”, Proc. ACM SIGCOMM ’96, pp. 270-280.

[13] NS-2 Network Simularor (ver.2.) LBL, URL:
http://www.mash.cs.berkley.edu/ns/.

[14] Iperf Version 1.7.0, URL: http://dast.nlanr.net/Projects/Iperf/
[15] V. Jacobson, “Congestion avoidance and control,” ACM Computer

Communications Review, 18(4) : 314 - 329, Aug. 1988.
[16] R. Jain, “The art of computer systems performance analysis,” John

Wiley and sons, QA76.9.E94J32, 1991.
[17] S. Keshav A Control-Theoretic Approach to Flow Control. In

Proceeding of ACM SIGCOMM’ 1991, Pages 3-15, Sept. 1991.
[18] Soo-hyeong Lee, Byung G. Kim, and Yanghee Choi, "Improving the

Fairness and the Response Time of TCP-Vegas," In Lecture Notes in
Computer Science, Springer Verlag.

[19] V.N. Padmamabhan and R.H. Katz, “TCP Fast Start: A Technique for
Speeding Up Web Transfers”, Proceedings of IEEE globecom’98,
Sydney, Australia, Nov. 1998.

[20] R. Wang, M. Valla, M.Y. Sanadidi and M. Gerla, “Using Adaptive
Bandwidth Estimation to provide enhanced and robust transport over
heterogeneous networks”, 10th IEEE International Conference on
Network Protocols (ICNP 2002), Paris, France, Nov. 2002.

[21] H. Wang, H. Xin, D.S. Reeves and K.G. Shin "A Simple Refinement of
Slow Start of TCP Congestion Control", In proceedings of ISCC’00,
Antibes, France, 2000

[22] Y. Zhang, L. Qiu and S. Keshav, “Optimizing TCP Start-up
Performance”, Cornell CSD Technical Report, February, 1999.

[23] K. J. Astrom, and B. Wittenmark, “Computer controlled systems,”
Prentice Hall, Englewood Cliffs, N. J., 1997.

