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Abstract — Next generation networks with large bandwidth and 
long delay pose a major challenge to TCP performance, 
especially during the startup period. In this paper we evaluate the 
performance of TCP Reno/Newreno, Vegas and Hoe’s 
modification in large bandwidth delay networks. We propose a 
modified Slow-start mechanism, called Adaptive Start (Astart), to 
improve the startup performance in such networks. When a 
connection initially begins or re-starts after a coarse timeout, 
Astart adaptively and repeatedly resets the Slow-start Threshold 
(ssthresh) based on an eligible sending rate estimation mechanism 
proposed in TCP Westwood. By adapting to network conditions 
during the startup phase, a sender is able to grow the congestion 
window (cwnd) fast without incurring risk of buffer overflow and 
multiple losses. Simulation experiments show that Astart can 
significantly improve the link utilization under various 
bandwidth, buffer size and round-trip propagation times. The 
method avoids both under-utilization due to premature Slow-
start termination, as well as multiple losses due to initially setting 
ssthresh too high, or increasing cwnd too fast. Experiments also 
show that Astart achieves good fairness and friendliness toward 
TCP NewReno. Lab measurements using a FreeBSD Astart 
implementation are also reported in this paper, providing further 
evidence of the gains achievable via Astart. 

Keywords-congestion control; slow-start; rate estimation, large 
bandwidth delay networks 

 

I.  INTRODUCTION 
TCP is a reliable data transfer protocol [15] used widely 

over the Internet for numerous applications, from FTP to 
HTTP. The current implementation of TCP Reno/NewReno 
mainly includes two phases: Slow-start and Congestion-
avoidance. In the Slow-start phase, a sender opens the 
congestion window (cwnd) exponentially, doubling cwnd every 
Round-Trip Time (RTT) until it reaches the Slow-start 
Threshold (ssthresh). The connection switches then to 
Congestion-avoidance, where cwnd grows more conser-
vatively, by only 1 packet  every RTT (or linearly). The  initial 
ssthresh is set to an arbitrary default value, ranging from 4K to 
64K Bytes, depending on the operating system implementation.  

This research was supported by NSF under grant ANI-0221528. 

By setting the initial ssthresh to an arbitrary value, TCP 
performance may suffer from two potential problems: (a) if 
ssthresh is set too high relative to the network Bandwidth 
Delay Product (BDP), the exponential increase of cwnd 
generates too many packets too fast, causing multiple losses at 
the bottleneck router and coarse timeouts, with significant 
reduction of the connection throughput; (b) if the initial 
ssthresh is set low relative to BDP, the connection exits Slow-
start and switches to linear cwnd increase prematurely, 
resulting in poor startup utilization especially when BDP is 
large.   

Recent studies [10] reveal that a majority of the TCP 
connections are short-lived (mice), while a smaller number of 
long-lived connections carry most Internet traffic (elephants). 
A short-lived connection usually terminates even before it 
reaches “steady state”. That is, before cwnd grows to make 
good utilization of the path bandwidth. Thus, the startup stage 
can significantly affect the performance of the mice. In a large 
BDP network, with the current Slow-start scheme, it takes 
many RTTs for a TCP connection to reach the ideal window 
(equal to BDP). For example, in current Reno/NewReno 
implementation with initial ssthresh set to 32 Kbytes, a TCP 
connection takes about 100 sec to reach the ideal window over 
a path with a bottleneck bandwidth of 100 Mbps and RTT of 
100ms. The utilization in the first 10 sec is a meager 5.97%. 
With the rapid development of the Internet and ever-growing 
BDP, a more efficient Slow-start mechanism is required to 
achieve good link-utilization. 

In this paper, we evaluate the performance in large 
bandwidth delay networks of three current TCP Slow-start 
implementations: (1) Reno/NewReno, (2) New-Reno with 
Hoe’s modification [12] and (3) Vegas [3]. We then propose a 
sender-side only modification, called Adaptive Start (Astart), to 
improve TCP startup performance. Astart takes advantage of 
the Eligible Rate Estimation (ERE) mechanism proposed in 
TCP Westwood (TCPW) [20], adaptively and repeatedly 
resetting ssthresh during the slow-start phase. When ERE 
indicates that there is more available capacity, the connection 
opens its cwnd faster, enduring better utilization. On the other 
hand, when ERE indicates that the connection is close to steady 



 

state, it switches to Congestion-avoidance, limiting the risk of 
buffer overflow and multiple losses. Ns-2 simulation 
experiments show that Astart significantly enhances 
performance of TCP connections, and show that the 
enhancement increases as BDP increases. When BDP reaches 
around 750 packets, the throughput improvement is an order of 
magnitude higher than that of TCP Reno/NewReno for short-
lived connections. We also conduct experiments to compare 
Astart with the method using a large initial window of 64 
Kbytes [8] in commercial satellite works, and evaluate Astart 
fairness, friendliness and performance under dynamic loading. 
Lab measurements are also carried out using a FreeBSD 
implementation.  

The rest of the paper is organized as follows. In Section II 
we review background work, and give a brief overview of 
TCPW and the eligible rate estimation. In Section III we 
evaluate startup performance of several TCP variants, including 
Reno/NewReno, Hoe’s modification and Vegas. Section IV 
presents Adaptive Start, our proposed modification of TCP 
slow-start, and illustrates its basic behavior. In Section V, we 
conduct simulation experiment to evaluate Astart throughput 
performance, adaptivity against congestion and multiple 
congestion, fairness and friendliness, performance under 
dynamic load. We also compare Astart with the use of large 
initial window method in this section. Lab experiments using 
FreeBSD implementation are provided in Section VI. Finally, 
Section VII discusses future work and concludes the paper. 

II. BACKGROUND 

A. Related Work on TCP Slow-start Mechanism   
TCP congestion control consists mainly of two phases: 

Slow Start and Congestion avoidance [15]. A new connection 
begins in Slow-start, setting its initial cwnd to 1 packet, and 
increasing it by 1 for every received Acknowledgement (ACK). 
After cwnd reaches ssthresh, the connection switches to 
congestion-avoidance where cwnd grows linearly. 

A variety of methods have been suggested in the literature 
recently aiming to avoid multiple losses and achieve higher 
utilization during the startup phase. A larger initial cwnd, 
roughly 4K bytes, is proposed in [1]. This could greatly speed 
up transfers with only a few packets. However, the 
improvement is still inadequate when BDP is very large, and 
the file to transfer is bigger than just a few packets [22]. Fast 
start [19] uses cached cwnd and ssthresh in recent connections 
to reduce the transfer latency. The cached parameters may be 
too aggressive or too conservative when network conditions 
change.      

Smooth start [21] has been proposed to slow down cwnd 
increase when it is close to ssthresh. The assumption here is 
that default value of ssthresh is often larger than the BDP, 
which is no longer true in large bandwidth delay networks. [12] 
proposes to set the initial ssthresh to the BDP estimated using 
packet pair measurements. This method can be too aggressive, 
as we will show in Section III. In [22], SPAND (Shared 

Passive Network Discovery) has been proposed to derive 
optimal TCP initial parameters. SPAND needs leaky bucket 
pacing for outgoing packets, which can be costly and 
problematic in practice [2]. 

TCP Vegas [3] detects congestion by comparing the 
achieved throughput over a cycle of length equal to RTT, to the 
expected throughput implied by cwnd and baseRTT (minimum 
RTT) at the beginning of a cycle. This method is applied in 
both Slow-start and Congestion-avoidance phases. During 
Slow-start phase, a Vegas sender doubles its cwnd only every 
other RTT, in contrast with Reno’s doubling every RTT. A 
Vegas connection exits slow-start when the difference between 
achieved and expected throughput exceeds a certain threshold. 
However, Vegas is not able to achieve high utilization in large 
bandwidth delay networks as we will show in Section 3, due to 
its over-estimation of RTT.    

We believe that estimating the eligible sending rate and 
properly using such estimate are critical to improving 
bandwidth utilization during Slow-start. 

B. TCP Westwood and Eligilbe Rate Estimation Overview 
In TCP Westwood (TCPW) [4], the sender continuously 

monitors ACKs from the receiver and computes its current 
Eligible Rate Estimate (ERE) [20]. ERE relies on an adaptive 
estimation technique applied to ACK stream. The goal of ERE 
is to estimate the connection eligible sending rate with the goal 
of achieving high utilization, without starving other 
connections. We emphasize that what a connection is eligible 
for is not the residual bandwidth on the path. The connection is 
often eligible more than that. For example, if a connection joins 
two similar connections, already in progress and fully utilizing 
the path capacity, then the new connection is eligible for a third 
of the capacity.  

Research on active network estimation [5] reveals that 
samples obtained by “packet pair” is more likely to reflect link 
capacity, while samples obtained by “packet train” give short-
time throughput. In TCPW, the sender adaptively computes Tk, 
an interval over which the ERE sample is calculated. An ERE 
sample is computed by the amount of data in bytes that were 
successfully delivered in Tk. Tk depends on the congestion level, 
the latter measured by the difference between ‘expected rate’ 
and ‘achieved rate’ as in TCP Vegas. That is Tk depends on the 
network congestion level as follows: 

min

min

RTTcwin
RERTTcwinRTTTk

−×= , 

where RTTmin is the minimum RTT value of all acknowledged 
packets in a connection, and RTT is the smoothed RTT 
measurement. The expected rate of the connection when there 
is no congestion is given by cwnd/RTTmin, while RE is the 
achieved rate computed based on the amount of data 
acknowledged during the latest RTT, and exponentially 
averaged over time using a low-pass filter. When there is no 
congestion, and therefore no queuing time, cwnd/RTTmin is 
almost the same as RE, producing small Tk. In this case, ERE 



 

becomes close to a packet pair measurement. On the other hand, 
under congestion conditions, RE will be much smaller than 
cwnd/RTTmin due to longer queuing delays. As a result, Tk will 
be larger and ERE closer to a packet train measurement. After 
computing the ERE samples, a discrete version of a continuous 
first order low-pass filter using the Tustin approximation [23] 
is applied to obtain smoothed ERE.   

In current TCPW implementation, upon packet loss 
(indicated by 3 DUPACKs or a timeout) the sender sets cwnd 
and ssthresh based on the current ERE. TCPW uses the 
following algorithm to set cwnd and ssthresh. (We will 
describe our proposed Adaptive Start in Section IV, which 
applies to both initial start-up phase and Slow-start after coarse 
timeouts.)  

if (3 DUPACKS are received) 
    ssthresh = (ERE*RTTmin)/seg_size; 
    if (cwnd >ssthresh)  /*congestion avoid*/ 
        cwnd=ssthresh; 
    endif 
endif 

if (coarse timeout expires) 
    cwnd = 1; 
    ssthresh =(ERE *RTTmin)/seg_size; 
    if(ssthresh < 2) 
        ssthresh = 2; 
    endif 
endif 

III. TCP SLOW START PERFORMANCE 
In this section we state briefly the current TCP Slow-start 

mechanisms, and evaluate their startup performance in large 
bandwidth delay networks by simulation. We illustrate the 
inadequacy of the current schemes when facing networks with 
large BDP, and reveal the reason behind it.  

A. Simulation Setup 
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Figure 1. Network topology for simulations  

All results in this paper are obtained using ns-2 [13]. The 
network topology is shown in Figure 1, where Si represents a 
TCP sender and Hi a TCP receiver. R1 and R2 are two routers 
with finite buffer capacity, each set equal to the Bandwidth 
Delay Product (BDP) unless otherwise specified. Results are 
obtained for varying propagation time and bottleneck 

bandwidth. FTP is the simulated application. The receiver 
issues an ACK for every data packet received. We assume the 
receiver’s advertised window is always large so that the actual 
sending window is always equal to cwnd. For the convenience, 
the window size is measured in number of packets, and the 
packet size is 1000 bytes. The initial ssthresh for 
Reno/Newreno is set to be 32 packets, equal to 32 Kbytes.          

B. TCP Reno/NewReno 
In TCP Reno/NewReno, a sender starts in Slow-start, cwnd 

< ssthresh, and every ACK received results in an increase of 
cwnd by 1 packet. Thus, the sender exponentially increases 
cwnd. When cwnd hits ssthresh, the sender switches to 
congestion avoidance phase, increasing cwnd linearly, 
considerably slower than in slow start.  

In this Subsection, we evaluate Reno/NewReno startup 
performance in large BDP networks. If the initial ssthresh is 
too low 1 , a connection exits Slow-start and switches to 
Congestion-avoidance prematurely, resulting in poor 
utilization. Figure 2 shows the Reno cwnd dynamics in the 
startup stage. The results are obtained for a bottleneck 
bandwidth of 40Mbps, and RTT values of 40, 100 and 200ms. 
The bottleneck buffer size is set equal to BDP in each case.  

 

 

Figure 2. cwnd dynamic during the start-up phase 

From Figure 2, we see that when RTT=100ms, Reno stops 
exponentially growing cwnd long before it reaches the ideal 
value (BDP=500). After that, cwnd increases slowly, and has 
not reach 500 by 20sec. As a result, the achieved throughput is 
only 12.90 Mbps, much lower than the desired 40 Mbps. 
Another observation concerns how RTT affects performance. 
When RTT increases, the ideal window grows too. On the 
other hand, because cwnd increases 1 packet per RTT during 
Congestion-avoidance, longer RTT means slower cwnd 
growth, resulting in even lower utilization. The results in Table 
1 show the drastic reduction in utilization as RTT increases. 

                                                           
1 In a network with small BDP, the initial ssthresh might be set too 
high. As a result, at some cycle in slow start, a Reno sender often 
overshoots the BDP, causing multiple losses and a coarse timeout. 
This is also a problem resulting from an inappropriate setting of 
ssthresh. 



 

TABLE 1. NEWRENO UTILIZATION  DURING FIRTST 20 SEC ( BANDWIDTH 
=40MBPS) 

RTT(ms) 20 50 100 150 200 

Utilization(%) 95.6 71.8 23.2 11.9 7.2 

 

Consider now the impact of bottleneck bandwidth on 
utilization during startup stage. With the increase of bottleneck 
bandwidth, the packet transmission speeds up. But the sender 
still has to wait for ACKs to increase cwnd. Thus, after 
prematurely exiting slow-start, cwnd grows with almost the 
same rate (1 packet per RTT) regardless of bandwidth. With 
larger bottleneck capacity, more bandwidth is left unused, 
which leads to lower utilization. Table 2 shows the relation 
between utilization and bottleneck bandwidth during the startup 
stage. The utilization drops to 4.7% with 200 Mbps bottleneck 
bandwidth. 

TABLE 2. NEWRENO UTILIZATION  DURING FIRTST 20 SEC (RTT =100MS) 

Bandwidth(Mbps) 10 20 40 100 200 

Utilization(%) 77.1 45.9 23.2 9.3 4.7 

 

C. TCP Reno/NewReno with Hoe’s Slow Start Modification 
In [12], Hoe proposes a method for setting the initial 

ssthresh to the product of delay and estimated bandwidth. The 
bandwidth estimation is calculated by applying the least 
squares estimation on three closely-spaced ACKs (similar to 
the concept of packet pair [17]). RTT is obtained by measuring 
the round trip time of the first segment transmitted.    

Hoe’s modification enables the sender to get an estimation 
of the BDP at an early stage and set the ssthresh accordingly, 
thus avoiding switching to congestion avoidance prematurely. 
As illustrated in Figure 3 with large buffer space (buffer 
size=BDP=500), Reno with Hoe’s modification increases cwnd 
exponentially and exits properly.      

However, Hoe’s modification may encounter multiple-loss 
problems when the bottleneck buffer is not big enough 
compared to the BDP, which could easily happen in large 
bandwidth delay networks. In Figure 3 when the buffer size is 
125 packets (1/4 BDP), the connection encounters multiple 
losses and runs into a long recovery time (from 0.9 sec to 14.8 
sec). The achieved throughput during the first 20 sec is only 
3.61 Mbps, translating into 9% utilization.  

The reason for the multiple losses is as follows. During 
Slow-start, for every ACK received, the sender increases cwnd 
by 1 and sends out 2 new packets. If the receiver acknowledges 
every packet, then after n RTT, cwnd will be n2 . Suppose the 
access link capacity is at least twice as large as the bottleneck 
capacity, these n2  packets will arrive at the bottleneck back to 
back at a speed twice that of the bottleneck link. Thus, to avoid 
losses, at least a buffer of 12 −n  packets is needed to hold off the 

temporarily bursting packets. Hoe’s modification sets ssthresh 
to the estimated BDP, thus, a buffer size of BDP/2 is required 
to prevent multiple losses for single connection.   

 

 

Figure 3.   cwnd dynamics in NewReno with Hoe’s modification  

More importantly, Hoe’s modification does not adjust to 
changing path load. If there are multiple connections starting 
up at approximately the same time, or other large volume 
traffic (for example, video transferring) joins in when a 
connection is in Slow-start, the Hoe’s modification will have 
set the initial ssthresh too high, resulting in multiple losses and 
coarse timeout.  

 

D. TCP Vegas 
Unlike TCP Reno/Newreno that uses packet loss as 

congestion indication, TCP Vegas [3] detects incipient 
congestion by comparing the achieved throughput to the 
expected throughput at the beginning of a cycle (RTT). The 
difference between these two values reflects the queue length 
of the connection in the bottleneck router.  

This Vegas method is applied to both Slow-start and 
Congestion-avoidance phases. In congestion-avoidance, cwnd 
increases by 1 per RTT if the difference is small, meaning that 
there is enough network capacity. Vegas reduces cwnd in the 
same fashion (by 1 packet) when the achieved throughput is 
considerably lower than the expected throughput.  

During Slow-start, Vegas doubles its congestion window 
only every other RTT (compared to Reno’s every RTT). When 
the difference between actual and expected throughput exceeds 
a threshold, Vegas stops its window doubling and switches to 
Congestion-avoidance (See Figure 4).  

By growing cwnd slower and monitoring every RTT for 
incipient congestion, Vegas avoids multiple losses and the 
coarse timeout that would result [11]. However, when the BDP 
is large, Vegas may under-utilize the available bandwidth by 
switching to congestion avoidance too early [18]. The 
premature slow-start termination is caused by RTT over-
estimation in the Vegas algorithm. In Vegas, the sender checks 
the difference between expected and actual throughput: 



 

nRTT
cwnd

baseRTT
cwnddiff −=  only at the beginning of the RTT where 

cwnd is doubled2.  

 

Figure 4. Vegas cwnd dynamic and queue length during startup phase 
(Bottleneck bandwidth =40 Mbps, baseRTT =100ms)  

At this point, RTTn is over-estimated because of the 
temporary queue buildup at the router during the previous cycle 
(the last two RTTs). Figure 4 shows the instantaneous queue 
length pattern. As a result of RTT over-estimation, diff is over-
estimated too, and Vegas exits Slow-start prematurely. A more 
detailed analysis of this problem can be found in [18]. Figure 4 
also shows Vegas cwnd dynamic over a path with BDP equal to 
500 Packets. Vegas exits slow start at cwnd=96, while the ideal 
window is 500 packets 

The startup under-utilization of Vegas is aggravated as 
BDP grows. Table 3 shows the ratio of the slow start 
termination cwnd to the ideal window value for different 
bottleneck bandwidth. The ratio is reduced to about 0.1 with a 
bottleneck of 100 Mbps.  

TABLE 3. THE RATIO OF SLOW START TERMUNATION WINDOW TO THE IDEAL 
WINDOW (BDP) IN VEGAS (ROUND-TRIP TIME =100MS) 

Bandwidth(Mbps) 10 20 40 80 150 

Ratio 0.384 0.192 0.192 0.096 0.101 

 

IV. MODIFIED TCP SLOW START FOR LARGE BANDWIDTH 
DELAY NETWORKS 

In this Section, we propose a simple sender-side only 
modification, which we call Adaptive Start (Astart), to the 
traditional Reno/NewReno slow start algorithm. We take 
advantage of the TCPW eligible rate estimate, using it to 
adaptively and repeatedly reset ssthresh during the startup 
phase, both connection startup, and after every coarse timeout. 
The pseudo code of the algorithm is as follows. When an ACK 
arrives: 

                                                           
2 Provided that the difference indicates no congestion 

if ( 3 DUPACKS are received) 
    switch to congestion avoidance phase; 
else (ACK is received) 
    if (ssthresh < (ERE*RTTmin)/seg_size) 
            ssthresh =(ERE*RTTmin)/seg_size; 
    endif 
    if (cwnd >=ssthresh)  /*mini linear increase phase*/ 
        increase cwnd by 1/cwnd; 
   else if cwnd <ssthresh)  /*mini exponential increae phase*/   
        increase cwnd by 1; 
   endif 
endif 

In TCPW, an eligible rate estimate is determined after 
every ACK reception. In Astart, when the current ssthresh is 
much lower than ERE*RTTmin, the sender resets ssthresh 
higher accordingly, and increases cwnd in slow-start fashion. 
Otherwise, cwnd increases linearly to avoid overflow. In this 
way, Astart probes the available network bandwidth for this 
connection, and allows the connection to eventually exit Slow-
start close to the ideal window (See Figure 5). Compared to 
Vegas, TCPW avoids premature exit of slow start since it relies 
on both RTT and ACK intervals, while Vegas only relies on 
RTT estimates. 

 

(a) Buffer = 500 packets 

 

(b) buffer = 125packets 

Figure 5. Astart cwnd dynamic during startup phase (Bottleneck bandwidth 
=40 Mbps, RTT=100ms, BDP =500 packets,)  

Figure 5(b) illustrates the cwnd dynamic in the case of 
small buffer (equal to BDP/4). By applying Astart, the sender 
does not overflow the bottleneck buffer and thus multiple 
losses are avoided. Figure 6 gives a closer look at the cwnd 
dynamic. In effect, Astart consists of multiple mini-linear-
increase and mini-exponential-increase phases.  Thus, cwnd 
does not increase as fast as in Hoe’s method, especially as 
cwnd approaches BDP. This prevents the temporary queue 
from building up too fast, and thus, prevents a sender from 



 

overflowing a small buffer. Comparing the cwnd evolution in 
Figure 5 and Figure 6 to those in Figure 3, it is clear that cwnd 
increase in Astart follows a smoother curve when it is close to 
BDP.  

 

Figure 6. a closer look at Astart cwnd dynamic during startup phase   

V. SIMULATION RESULTS AND DISCUSSION 
In this Section, we evaluate the performance of Astart, 

comparing the throughput performance of the proposed Astart 
algorithm to other mechanisms we described and evaluated in 
the previous section. We also compare Astart with commercial 
satellite transport protocol where very large initial window is 
used. Finally we will evaluate how well Astart co-exists with 
TCP NewReno, the de facto Internet data transport protocol. 

A. Astart Behavior with Multiple Connections  
We ran simulation with 5 connections starting at the same 

time (the network parameter is the same as in Figure 5(a)). The 
results in Figure 7 show that each connection is able to estimate 
its share of bandwidth and switch to Congestion-avoidance at 
the appropriate time.   

We drew graph with 5 connections for the conve-nience of 
presentation, simulations with more connec-tions show that 
Astart can promptly pump up its cwnd and then switch to 
Congestion-avoidance properly.   

 

Figure 7. Astart cwnd Dynamic when 5 connections start at the same time 
(Bottleneck Bandwidth=40Mbps, RTT =100ms, BDP =500 packets) 

B.  Startup in a Congested Network 
To evaluate the adaptivity of Astart when the network 

becomes congested, we also tested the startup behavior when 
another high-volume UDP connection joins the TCP 
connection during the slow start phase. We ran simulations 
with one TCP connection starting at time 0 over a link with 
capacity 40 Mbps. A UDP flow with intensity of 20 Mbps 
starts at 0.5 sec. Figure 8 shows that Hoe’s method runs into 
multiple losses and finally times out. The reason is the setting 
of the initial ssthresh to 500 (BDP) at the very beginning of the 
connection, and the lack of adjustment to the change in 
network load later. In contrast, Astart has a more appropriate 
(lower) slow-start exit cwnd, thanks to the continuous 
estimation mechanism, which reacts to the new traffic and 
determines an eligible sending rate that is no longer the entire 
bottleneck link capacity.      

   

Figure 8.  cwnd Dynamic with UDP traffic joins in during srartup(Bottleneck 
capacity=40 Mbps, RTT=100ms, BDP =500 packets)   

C. Throughput Comparison 
 The summary of this sub-section is that Astart significantly 

improves TCP startup performance with regards to various 
bottleneck bandwidth, buffer size and round-trip time. To focus 
on the start-up performance of different schemes, we only 
calculate the throughput during the first 20 seconds.  

 

 

Figure 9. Throughput vs. bottleneck capacity (first 20 seconds) 



 

The throughput of Astart, NewReno, NewReno with Hoe’s 
modification and Vegas are examined under bottleneck 
bandwidth varying from 10 to 150 Mbps (while fixing the 
round-trip time at 100ms). The results in Figure 9 show that 
Astart and Hoe’s modification achieve higher throughput, and 
scale with bandwidth. NewReno and Vegas performance lags 
in this scenario. Another observation is that Newreno with 
Hoe’s modification slightly outperforms Astart. In Hoe’s 
method, the initial ssthresh is immediately set to the bandwidth 
after 3 closely spaced ACKs returned, so cwnd increases by 
one for every ACK received. On the other hand, Astart 
gradually probes for bandwidth and slows down when the 
estimate is closer to the connection bandwidth share. We 
believe that the slightly lower throughput achieved by Astart 
above is more than compensated for by its avoidance of buffer 
overflow and multiple losses in other cases. 

To assess the robustness of the different schemes to buffer 
size, we ran simulations with bottleneck buffer size varying 
from 100 (BDP/5) to 250 (BDP/2) packets. The bandwidth is 
40 Mbps and RTT is 100 msec. The results in Figure 10 show 
that Astart is robust to buffer size reductions, while NewReno 
with Hoe’s modification suffers when the buffer size is smaller 
than BDP/2. The reduction in buffer size has no meaningful 
impact on NewReno and Vegas. They still exit Slow-start 
prematurely as explained in Section III.     

 

Figure 10. Throughput vs. bottleneck buffer size (first 20 seconds) 

 

Figure 11. Throughput vs. two-way propagation time (first 20 seconds) 

RTT can considerably affect the startup performance. 
Figure 11 shows the throughput of Astart, NewReno, Hoe’s 
modification and Vegas with RTT varying from 20 to 200 
msec. The Bottleneck bandwidth is fixed here at 40 Mbps and 
buffer size is set equal to BDP. Figure 11 shows that Astart and 
Hoe’s method both scale well with RTT with Hoe’s 
modification slightly better for the same reason previous stated 
(Hoe’s method set the ssthresh immediately to the BDP where 
Astart probes and slows down when cwnd is close to the BDP). 
The performance of NewReno and Vegas deteriorate signi-
ficantly as RTT increases.      

The studies in the last two Sections focused on the 
performance a TCP connection during its initial startup phase. 
But Asart can also be used after any coarse timeout. This is of 
particular value to TCPW since after a timeout, ERE is small 
relative to the connection actual bandwidth share. This is 
because during a coarse timeout, the sender transmits so few 
packets, and therefore the share estimate is very low. Astart 
helps in this case by gradually probing for bandwidth share and 
switching to congestion avoidance at a more appropriate time. 

   

D. Comparing Astart to the Use of Large Initial Window 
(LIW) over satellite links 
In a connection that incorporates a satellite link, the main 

bottleneck in TCP performance is due to the large delay-
bandwidth product nature of the satellite link. As we mentioned 
in Section II, a larger initial cwnd, roughly 4K bytes, is 
proposed in [1]. This could greatly speed up transfers with only 
a few packets. However, the improvement is still inadequate 
when BDP is very large, and the file to transfer is bigger than 
just a few packets.  

More aggressively, commercial satellite data communi-
cation providers typically use a very large initial window 
(LIW) over satellite links, e.g., 64 Kbytes, and thus bypass the 
slow start stage of the normal TCP evolution [8]. This method 
effectively increases the utilization during the startup. 
However, it cannot single-handedly solve the problem of poor 
startup utilization over satellite links. Below we will show the 
reason and also compare the performance of Astart with LIW 
method. 

A commercial satellite system using a geo-stationary 
(GEO) could have bandwidth up to 24 Mbps. Which results in 
a BDP of about 3000 with one-way propagation delay of 500 
ms. Under this situation, even with an initial window of 64 
Kbytes, it would take a very long time for TCP to fully utilize 
the link.  

Figure 12 compares the startup behavior of Astart and LIW 
method. The bottleneck capacity is 10 Mbps and one-way 
propagation delay is 250 ms. The graph shows that although 
LIW method comes up strong at the very beginning, it fades 
quickly comparing to Astart due to bypassing the slow-start 
stage. As a result, the throughput of LIW method during this 
period is only 2.80 Mbps comparing to Astart’s 9.33 Mbps.    



 

 

 
Figure 12. Congestion window dynamics of Asart and LIW method. 

(bottleneck=10Mbps, RTT=500ms, BDP =600)  
 

Another challenge LIW method faces is caused by its 
inability to adapt to different network conditions. By setting the 
initial congestion to a large value, if the network is highly 
congested or many connections simultaneously join in, it is 
possible that using LIW overflows the buffers and causes 
multiple losses. 

Moreover, a connection using a satellite link may also has a 
terrestrial part, thus using LIW end-to-end could affect the 
performance and fairness of the terrestrial part of the 
connection.  

 

E. Fairness and Friendliness to TCP NewReno 
Fairness relates to the relative performance of a set of 

connections of the same TCP variant. Friendliness relates to 
how sets of connections running different TCP flavors affect 
the performance of each other.  The simulation topology 
consists of a single bottleneck link with a capacity of 50 Mbps, 
and one-way propagation delay of 35ms. The buffer size at the 
bottleneck router is equal to the pipe size. The link is loss free 
except where otherwise stated.  

A set of simulations with 10 simultaneous flows was run to 
investigate fairness of Astart. To provide a single numerical 
measure reflecting the fair share distribution across the various 
connections we use the Jain’s Fairness Index defined as [16]: 
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where ib  is the throughput of the ith flow and n is the total 
number of flows. The fairness index always lies between 0 and 
1. A value of 1 indicates that all flows got exactly the same 
throughput. 

We calculate the fairness index for both Reno and TCPW. 
The Jain’s fairness index of Astart reached 0.9949, and that of 
NewReno is 0.9944. Therefore, fairness of Astart is 
comparable to that of NewReno. 

Since Astart invokes faster probing during startup, the 
evaluation of Astart friendliness toward NewReno is important. 
Thanks to good friendliness characteristics of TCPW, Astart 
connections can effectively coexist with NewReno connections 
over the same path. Figure 13 shows cwnd dynamics for Astart 
and NewReno connections.  

The bottleneck link bandwidth is 50Mbps and a two way 
propagation delay is 70msec. In Figure 13(a), one Atart and 
one NewReno connection start running at the same time. The 
Astart connection benefits initially by quickly reaching cruising 
speed. Astart and NewReno connections both reach the same 
cwnd after a few congestion episodes. In Figure 13 (b), five 
Astart and five NewReno connections start simultaneously. 
The first started Atart connection gets more bandwidth initially, 
but again all connections, regardless of Astart or NewReno, 
reach fair share rate after a few congestion episodes. 

 

 
(a) One Astart and one NewReno connection 

 
(b) Five Astart and five NewReno connections 

Figure 13.  cwnd dynamics between Astart and NewReno 
(Bottlneck band width is 50Mbps, and RTT is 70msec) 

 

F. Astart Performance under dynamic load 
We evaluated the performance of Astart under highly 

dynamic load conditions. In 20 minutes simulation time, we ran 
100 connections. Connections starting times are uniformly 
distributed over the simulation time. The lifetime of a 
connection is fixed at 30 seconds. We compare the results 
among NewReno with Astart. 

Figure 14 shows Total throughput vs bottleneck bandwidth. 
The total throughput is computed as the sum of throughputs of 
all connections. Propagation delays are 70ms, and the 
bottleneck buffer size is set equal to the pipe size (BDP). In 



 

10Mbps, Astart does not get much benefit, because NewReno 
does not have any difficulty filling the smaller pipe. As the 
bottleneck link capacity increases, the difference between 
Astart and NewReno becomes more obvious. At 200 Mbps, 
Astart achieves about 60% more throughput than NewReno.  

 
Figure 14.  Throughput vs. bottleneckcapacity of Astart and NewReno under 

dynamic load ( RTT = 70msec) 
 
 

 
 

Figure 15.  Throughput vs. RTT of Astart and NewReno under dynamic load 
( Bottleneck capacity = 100 Mbps) 

 
To assess the relation of the efficiency to the E2E 

propagation time under dynamic load, we ran simulations with 
a bottleneck capacity of 100 Mbps and two-way propagation 
ranging from 20 to 300 msec. The results in Figure 15 show a 
significant gain for Astart up to 1016% over NewReno. When 
the RTT increases, the performance of NewReno degrades 
severely, while Astart is able to maintain respectable 
utilization. 

 

VI. FREEBSD IMPLEMENTATION  
To evaluate Astart performance in actual systems, we have 

implemented Astart algorithms on FreeBSD systems. Lab 
measurements confirmed our simulation results, showing that 
Astart behaves quite well in actual systems.  

A. Measurement setup 
Figure 16 shows the measurement configuration in our 

experiments. All PCs are running on FreeBSD [9] Release 4.5. 
CPU clock tick is 10msec (default). We use Dummynet [6][7] 
to emulate the bottleneck router. The bottleneck link (from PC 
router to TCP receiver) speed is set to 10Mbps. The 
propagation time is 400msec, and the router buffer is set equal 
to BDP (500Kbytes).  Active Queue Management is not used, 
that is tail-drop is adopted to simplify the experiments. Further, 
no random packet loss was induced at this time. We use Iperf 
[14] as a traffic generator. The receiver’s advertised window is 
set large enough at 4 Mbytes. We fixed the initial ssthresh for 
NewReno equal to 32 Kbytes in our measurements. 

 
Figure 16. Measurement topology and configuration 

 

B. Astart Behavior 
Figure 17 shows measured cwnd dynamics in Astart and 

NewReno connections at Slow Start. NewReno enters 
Congestion Avoidance phase after cwnd reaches the initial 
ssthresh (32k), and cwnd increases linearly by one packet per 
RTT. cwnd reaches only 2Mbps, 20 % of the link capacity, for 
the first 25 seconds. On the other hand, in the Astart connection, 
cwnd quickly converges to the link capacity due to the adaptive 
ssthresh resetting. We can also confirm that cwnd growth is not 
exponential throughout startup. Initially cwnd increases rapidly 
for the first 3 seconds, and then increases more slowly as the 
connection approaches the link capacity. 

 
Figure 17. cwnd dynamics in Astart and NewReno at Start-up  

(Lab Measurements Results) 



 

VII. CONCLUSIONS AND FUTURE WORK  
In this paper, we evaluated the startup performance of TCP 

Reno/Newreno, Vegas and Hoe’s modification in large 
bandwidth delay networks. We proposed a modified Slow-start 
mechanism, called Adaptive Start (Astart), to improve the 
startup performance in such networks. Astart adaptively and 
repeatedly resets the Slow-start threshold (ssthresh), based on 
the eligible rate estimation mechanism proposed in TCP 
Westwood. By adapting to network conditions in the startup 
phase, a sender is able to grow the congestion window (cwnd) 
efficiently without overflowing the bottleneck buffer. 
Simulations and lab measurement experiments have shown that 
Astart can significantly improve the link utilization especially 
for large BDP. Compared to previous proposals, Astart is more 
robust to small buffer sizes, avoiding both premature 
termination of Slow-start, as well as multiple losses and the 
resultant coarse timeout. Experiments also have shown that 
Astart achieves good fairness and friendliness toward 
NewReno.  

Work in progress includes considering environments where 
random loss is also possible in the very initial phase of a 
connection (when using wireless links) or when the round trip 
time is extremely large (beyond 0.5 sec). Extensive 
measurement experiments on wired/wireless and satellite 
networks are also planned.  
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