
1

Dual-resource TCP/AQM
for Processing-constrained Networks

Minsu Shin, Student Member, IEEE, Song Chong, Member, IEEE, and Injong Rhee, Member, IEEE

Abstract— This paper examines congestion control issues for
TCP flows that require in-network processing on the fly in
network elements such as gateways, proxies, firewalls and even
routers. Applications of these flows are increasingly abundant in
the future as the Internet evolves. Since these flows require use of
CPUs in network elements, both bandwidth and CPU resources
can be a bottleneck and thus congestion control must deal
with “congestion” on both of these resources. In this paper, we
show that conventional TCP/AQM schemes can significantly lose
throughput and suffer harmful unfairness in this environment,
particularly when CPU cycles become more scarce (which is likely
the trend given the recent explosive growth rate of bandwidth). As
a solution to this problem, we establish a notion of dual-resource
proportional fairness and propose an AQM scheme, called Dual-
Resource Queue (DRQ), that can closely approximate propor-
tional fairness for TCP Reno sources with in-network processing
requirements. DRQ is scalable because it does not maintain per-
flow states while minimizing communication among different
resource queues, and is also incrementally deployable because
of no required change in TCP stacks. The simulation study
shows that DRQ approximates proportional fairness without
much implementation cost and even an incremental deployment
of DRQ at the edge of the Internet improves the fairness and
throughput of these TCP flows. Our work is at its early stage and
might lead to an interesting development in congestion control
research.

Index Terms— TCP-AQM, transmission link capacity, CPU
capacity, fairness, efficiency, proportional fairness.

I. INTRODUCTION

ADVANCES in optical network technology enable fast
pace increase in physical bandwidth whose growth rate

has far surpassed that of other resources such as CPU and
memory bus. This phenomenon causes network bottlenecks
to shift from bandwidth to other resources. The rise of new
applications that require in-network processing hastens this
shift, too. For instance, a voice-over-IP call made from a cell
phone to a PSTN phone must go through a media gateway that
performs audio transcoding “on the fly” as the two end points
often use different audio compression standards. Examples
of in-network processing services are increasingly abundant
from security, performance-enhancing proxies (PEP), to media
translation [1] [2]. These services add additional loads to
processing capacity in the network components. New router

An early version of this paper was presented at the IEEE INFOCOM
2006, Barcelona, Spain, 2006. This work was supported by the Ministry
of Information and Communication, Korea, under the grant for BrOMA-
ITRC program supervised by IITA. Minsu Shin and Song Chong are with
the Department of Electrical Engineering and Computer Science, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 305-701,
Korea (email: msshin@netsys.kaist.ac.kr; song@ee.kaist.ac.kr). Injong Rhee
is with the Department of Computer Science, North Carolina State University,
Raleigh, NC 27695, USA (email: rhee@csc.ncsu.edu).

technologies such as extensible routers [3] or programmable
routers [4] also need to deal with scheduling of CPU usage
per packet as well as bandwidth usage per packet. Moreover,
the standardization activities to embrace various network ap-
plications especially at network edges are found in [5] [6] as
the name of Open Pluggable Edge Services.

In this paper, we examine congestion control issues for
an environment where both bandwidth and CPU resources
can be a bottleneck. We call this environment dual-resource
environment. In the dual-resource environment, different flows
could have different processing demands per byte.

Traditionally, congestion control research has focused on
managing only bandwidth. However, we envision (also it is
indeed happening now to some degree) that diverse network
services reside somewhere inside the network, most likely at
the edge of the Internet, processing, storing or forwarding
data packets on the fly. As the in-network processing is likely
to be popular in the future, our work that examines whether
the current congestion control theory can be applied without
modification, or if not, then what scalable solutions can be
applied to fix the problem, is highly timely.

In our earlier work [7], we extended proportional fairness
to the dual-resource environment and proposed a distributed
congestion control protocol for the same environment where
end-hosts are cooperative and explicit signaling is available
for congestion control. In this paper, we propose a scal-
able active queue management (AQM) strategy, called Dual-
Resource Queue (DRQ), that can be used by network routers
to approximate proportional fairness, without requiring any
change in end-host TCP stacks. Since it does not require any
change in TCP stacks, our solution is incrementally deployable
in the current Internet. Furthermore, DRQ is highly scalable in
the number of flows it can handle because it does not maintain
per-flow states or queues. DRQ maintains only one queue per
resource and works with classes of application flows whose
processing requirements are a priori known or measurable.

Resource scheduling and management of one resource
type in network environments where different flows could
have different demands are a well-studied area of research.
Weighted-fair queuing (WFQ) [8] and its variants such as
deficit round robin (DRR) [9] are well known techniques to
achieve fair and efficient resource allocation. However, the
solutions are not scalable and implementing them in a high-
speed router with many flows is difficult since they need to
maintain per-flow queues and states. Another extreme is to
have routers maintain simpler queue management schemes
such as RED [10], REM [11] or PI [12]. Our study finds that
these solutions may yield extremely unfair allocation of CPU



2

and bandwidth and sometimes lead to very inefficient resource
usages.

Some fair queueing algorithms such as Core-Stateless Fair
Queueing (CSFQ) [13] and Rainbow Fair Queueing (RFQ)
[14] have been proposed to eliminate the problem of main-
taining per-flow queues and states in routers. However, those
schemes are concerned about bandwidth sharing only and do
not consider joint allocation of bandwidth and CPU cycles.
Estimation-based Fair Queueing (EFQ) [15] and Prediction
Based Fair Queueing (PBFQ) [16] have been also proposed
for fair CPU sharing but they require per-flow queues and do
not consider joint allocation of bandwidth and CPU cycles
either.

Our study, to the best of our knowledge, is the first in
examining the issues of TCP and AQM under the dual-
resource environment and we show that by simulation DRQ
achieves fair and efficient resource allocation without imposing
much implementation cost. The remainder of this paper is
organized as follows. In Section II, we define the problem and
fairness in the dual-resource environment, in Sections III and
IV, we present DRQ and its simulation study, and in Section
V, we conclude our paper.

II. PRELIMINARIES: NETWORK MODEL AND

DUAL-RESOURCE PROPORTIONAL FAIRNESS

A. Network model

We consider a network that consists of a set of unidirectional
links, L = {1, · · · , L}, and a set of CPUs, K = {1, · · · ,K}.
The transmission capacity (or bandwidth) of link l is Bl

(bits/sec) and the processing capacity of CPU k is Ck (cy-
cles/sec). These network resources are shared by a set of flows
(or data sources), S = {1, · · · , S}. Each flow s is associated
with its data rate rs (bits/sec) and its end-to-end route (or
path) which is defined by a set of links, L(s) ⊂ L, and a
set of CPUs, K(s) ⊂ K, that flow s travels through. Let
S(l) = {s ∈ S|l ∈ L(s)} be the set of flows that travel
through link l and let S(k) = {s ∈ S|k ∈ K(s)} be the set
of flows that travel through CPU k. Note that this model is
general enough to include various types of router architecture
and network element with multiple CPUs and transmission
links.

Flows can have different CPU demands. We represent this
notion by processing density wk

s , k ∈ K, of each flow s, which
is defined to be the average number of CPU cycles required
per bit when flow s is processed by CPU k. wk

s depends on k
since different processing platforms (CPU, OS, and software)
would require a different number of CPU cycles to process
the same flow s. The processing demand of flow s at CPU k
is then wk

s rs (cycles/sec).
Since there are limits on CPU and bandwidth capacities,

the amount of processing and bandwidth usage by all
flows sharing these resources must be less than or equal
to the capacities at anytime. We represent this notion
by the following two constraints: for each CPU k ∈ K,∑

s∈S(k) w
k
s rs ≤ Ck (processing constraint) and for each

link l ∈ L,
∑

s∈S(l) rs ≤ Bl (bandwidth constraint).
These constraints are called dual-resource constraints and a

nonnegative rate vector r = [r1, · · · , rS ]T satisfying these
dual constraints for all CPUs k ∈ K and all links l ∈ L is
said to be feasible.

A1: We assume that each CPU k ∈ K knows the processing
densities wk

s ’s for all the flows s ∈ S(k).

This assumption is reasonable because a majority of Internet
applications are known and their processing requirements can
be measured either off-line or on-line as discussed below.
In practice, network flows could be readily classified into
a small number of application types [15], [17]–[19]. That
is, there is a finite set of application types, a flow is an
instance of an application type, and flows will have different
processing densities only if they belong to different appli-
cation types. In [17], applications have been divided into
two categories: header-processing applications and payload-
processing applications, and each category has been further
divided into a set of benchmark applications. In particular,
[15] proposes an empirical model for the per-packet processing
time of these benchmark applications for a given processing
platform, which is, interesting enough, a simple affine function
of packet size M , i.e., μk

a + νk
aM where μk

a and νk
a are

the parameters specific to each benchmark application a for
a given processing platform k. Thus, the processing density
(in cycles/bit) of a packet of size M from application a at
platform k can be modelled as μk

a

M +νk
a . Therefore, the average

processing density wk
a of application a at platform k can be

computed upon arrival of a packet using an exponentially
weighted moving average (EWMA) filter:

wk
a ← (1− λ)wk

a + λ(
μk

a

M
+ νk

a ), 0 < λ < 1. (1)

One could also directly measure the quantity μk
a

M +νk
a in Eq.

(1) as a whole instead of relying on the empirical model by
counting the number of CPU cycles actually consumed by a
packet while the packet is being processed. Lastly, determining
the application type an arriving packet belongs to is an easy
task in many commercial routers today since L3/L4 packet
classification is a default functionality.

B. Proportional fairness in the dual-resource environment

Fairness and efficiency are two main objectives in re-
source allocation. The notion of fairness and efficiency has
been extensively studied and well understood with respect
to bandwidth sharing. In particular, proportionally fair (PF)
rate allocation has been considered as the bandwidth sharing
strategy that can provide a good balance between fairness and
efficiency [20], [21].

In our recent work [7], we extended the notion of pro-
portional fairness to the dual-resource environment where
processing and bandwidth resources are jointly constrained.
In the following, we present this notion and its potential
advantages for the dual-resource environment to define our
goal for our main study of this paper on TCP/AQM.



3

CPU queue Link queue 

C (cycles/sec) (bits/sec)

w
CPU  Link

r  s

flows

s

Ss∈

B

(bits/sec)

(cycles/bit)

Fig. 1. Single-CPU and single-link network

Consider an aggregate log utility maximization problem (P)
with dual constraints:

P : max
r

∑
s∈S

αs log rs (2)

subject to
∑

s∈S(k) w
k
s rs ≤ Ck, ∀ k ∈ K (3)∑

s∈S(l) rs ≤ Bl, ∀ l ∈ L (4)

rs ≥ 0, ∀ s ∈ S (5)

where αs is the weight (or willingness to pay) of flow
s. The solution r∗ of this problem is unique since it is
a strictly concave maximization problem over a convex
set [22]. Furthermore, r∗ is weighted proportionally fair since∑

s∈S αs
rs−r∗

s

r∗
s
≤ 0 holds for all feasible rate vectors r

by the optimality condition of the problem. We define this
allocation to be (dual-resource) PF rate allocation. Note that
this allocation can be different from Kelly’s PF allocation [20]
since the set of feasible rate vectors can be different from that
of Kelly’s formulation due to the extra processing constraint
(3).

From the duality theory [22], r∗ satisfies that

r∗s =
αs∑

k∈K(s) w
k
s θ

∗
k +

∑
l∈L(s) π

∗
l

, ∀ s ∈ S, (6)

where θ∗=[θ∗1 , · · · , θ∗K ]T and π∗=[π∗
1 , · · · , π∗

L]T are Lagrange
multiplier vectors for Eqs. (3) and (4), respectively, and θ∗k
and π∗

l can be interpreted as congestion prices of CPU k
and link l, respectively. Eq. (6) reveals an interesting property
that the PF rate of each flow is inversely proportional to the
aggregate congestion price of its route with the contribution
of each θ∗k being weighted by wk

s . The congestion price θ∗k or
π∗

l is positive only when the corresponding resource becomes
a bottleneck, and is zero, otherwise.

To illustrate the characteristics of PF rate allocation in
the dual-resource environment, let us consider a limited case
where there are only one CPU and one link in the network, as
shown in Figure 1. For now, we drop k and l in the notation
for simplicity. Let w̄a and w̄h be the weighted arithmetic and
harmonic means of the processing densities of flows sharing
the CPU and link, respectively. So, w̄a =

∑
s∈S

wsαs∑
s∈S αs

and w̄h =
(∑

s∈S
αs

ws

∑
s∈S αs

)−1

. There exist three cases as
below.

• CPU-limited case (θ∗ > 0 and π∗ = 0): r∗s = αs

wsθ∗ ,
∀s ∈ S,

∑
s∈S wsr

∗
s = C and

∑
s∈S r

∗
s ≤ B. From

these, we know that this case occurs when C
B ≤ w̄h and

PF rate allocation becomes r∗s = αsC
ws

∑
s∈S αs

, ∀s ∈ S.
• Bandwidth(BW)-limited case (θ∗ = 0 and π∗ > 0): r∗s =

αs

π∗ , ∀s ∈ S,
∑

s∈S wsr
∗
s ≤ C and

∑
s∈S r

∗
s = B. From

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50 

0.25

0.50

0.75

1.00

1.25 

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t Processing-

limited 
Jointly-
limited 

Bandwidth-
limited

s Br∑

awhw
BC

Br1
Br2
Br3
Br4

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50 

0.25

0.50

0.75

1.00

1.25 

N
o

rm
a

liz
e

d
 C

P
U

 u
s
a

g
e Processing-

limited 
Jointly-
limited 

Bandwidth-
limited

s Cr∑

awhw
BC

Cr1
Cr2
Cr3
Cr4

w1

w2

w3
w4

ws

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50 

0.25

0.50

0.75

1.00

1.25 

awhw
BC

s Br∑

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t Processing-

limited 
Jointly-
limited 

Bandwidth-
limited

Br1
Br2
Br3
Br4

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50 

0.25

0.50

0.75

1.00

1.25 

N
o

rm
a

liz
e

d
 C

P
U

 u
s
a

g
e Processing-

limited 
Jointly-
limited 

Bandwidth-
limited

s Cr∑

awhw
BC

Cr1
Cr2

Cr3
Cr4

w1

w2

w3
w4

ws

(d)

Fig. 2. Fairness and efficiency in the dual-resource environment (single-
CPU and single-link network): (a) and (b) respectively show the normalized
bandwidth and CPU allocations enforced by PF rate allocation, and (c) and (d)
respectively show the normalized bandwidth and CPU allocations enforced by
TCP-like rate allocation. When C/B < w̄a, TCP-like rate allocation gives
lower bandwidth utilization than PF rate allocation (shown in (a) and (c)) and
has an unfair allocation of CPU cycles (shown in (d)).

these, we know that this case occurs when C
B ≥ w̄a and

PF rate allocation becomes r∗s = αsB∑
s∈S αs

, ∀s ∈ S.
• Jointly-limited case (θ∗ > 0 and π∗ > 0): This case

occurs when w̄h <
C
B < w̄a. By plugging r∗s = αs

wsθ∗+π∗ ,
∀s ∈ S, into

∑
s∈S wsr

∗
s = C and

∑
s∈S r

∗
s = B, we

can obtain θ∗, π∗ and consequently r∗s , ∀s ∈ S.

We can apply other increasing and concave utility func-
tions (including the one from TCP itself [23]) in the dual-
resource problem in Eqs. (2)-(5). The reason why we give
a special attention to proportional fairness by choosing log
utility function is that it automatically yields weighted fair
CPU sharing (wsr

∗
s = αsC∑

s∈S αs
, ∀s ∈ S) if CPU is limited,

and weighted fair bandwidth sharing (r∗s = αsB∑
s∈S αs

, ∀s ∈ S)
if bandwidth is limited, as illustrated in the example of Figure
1. This property is obviously what is desirable and a direct
consequence of the particular form of rate-price relationship
given in Eq. (6). Thus, this property is not achievable when
other utility functions are used.

Figures 2 (a) and (b) illustrate the bandwidth and CPU
allocations enforced by PF rate allocation in the single-CPU
and single-link case using an example of four flows with
identical weights (αs=1, ∀s) and different processing densities
(w1, w2, w3, w4) = (1, 2, 4, 8) where w̄h=2.13 and w̄a=3.75.
For comparison, we also consider a rate allocation in which
flows with an identical end-to-end path get an equal share of
the maximally achievable throughput of the path and call it
TCP-like rate allocation. That is, if TCP flows run on the
example network in Figure 1 with ordinary AQM schemes
such as RED on both CPU and link queues, they would have
the same long-term throughput. Thus, in our example, TCP-
like rate allocation is defined to be the maximum equal rate



4

vector satisfying the dual constraints, which is rs = B
S , ∀s,

if C
B ≥ w̄a, and rs = C

w̄aS , ∀s, otherwise. The bandwidth
and CPU allocations enforced by TCP-like rate allocation are
shown in Figures 2 (c) and (d).

From Figure 2, we observe that TCP-like rate allocation
yields far less aggregate throughput than PF rate allocation
when C/B < w̄a, i.e., in both CPU-limited and jointly-
limited cases. Intuitively, this is because TCP-like allocation
which finds an equal rate allocation yields unfair sharing
of CPU cycles as CPU becomes a bottleneck (see Figure 2
(d)), which causes the severe aggregate throughput drop. In
contrast, PF allocation yields equal sharing of CPU cycles,
i.e., wsrs become equal for all s ∈ S, as CPU becomes a
bottleneck (see Figure 2 (b)), which mitigates the aggregate
throughput drop. This problem in TCP-like allocation would
get more severe when the processing densities of flows have
a more skewed distribution.

In summary, in a single-CPU and single-link network,
PF rate allocation achieves equal bandwidth sharing when
bandwidth is a bottleneck, equal CPU sharing when CPU is
a bottleneck, and a good balance between equal bandwidth
sharing and equal CPU sharing when bandwidth and CPU
form a joint bottleneck. Moreover, in comparison to TCP-
like rate allocation, such consideration of CPU fairness in PF
rate allocation can increase aggregate throughput significantly
when CPU forms a bottleneck either alone or jointly with
bandwidth.

III. MAIN RESULT: SCALABLE TCP/AQM ALGORITHM

In this section, we present a scalable AQM scheme, called
Dual-Resource Queue (DRQ), that can approximately imple-
ment dual-resource PF rate allocation described in Section II
for TCP-Reno flows. DRQ modifies RED [10] to achieve PF
allocation without incurring per-flow operations (queueing or
state management). DRQ does not require any change in TCP
stacks.

A. DRQ objective and optimality

We describe a TCP/AQM network using the fluid model as
in the literature [23]-[28]. In the fluid model, the dynamics
whose timescale is shorter than several tens (or hundreds) of
round-trip times (RTTs) are neglected. Instead, it is convenient
to study the longer timescale dynamics and so adequate to
model the macroscopic dynamics of long-lived TCP flows that
we are concerning.

Let xs(t) (bits/sec) be the average data rate of TCP
source s at time t where the average is taken over the
time interval Δ (seconds) and Δ is assumed to be on the
order of tens (or hundreds) of RTTs, i.e., large enough to
average out the additive-increase and multiplicative decrease
(AIMD) oscillation of TCP. Define the RTT τs of source s
by τs = τsi + τis where τsi denotes forward-path delay from
source s to resource i and τis denotes backward-path delay
from resource i to source s.

A2: We assume that each TCP flow s has a constant RTT
τs, as customary in the fluid modeling of TCP dynamics

[23]–[28].

Let yl(t) be the average queue length at link l at time t,
measured in bits. Then,

ẏl(t) =

{ ∑
s∈S(l) xs(t− τsl)−Bl yl(t) > 0[∑

s∈S(l) xs(t− τsl)−Bl

]+

yl(t) = 0.
(7)

Similarly, let zk(t) be the average queue length at CPU k at
time t, measured in CPU cycles. Then,

żk(t) =

{ ∑
s∈S(k) w

k
sxs(t− τsk)− Ck zk(t) > 0[∑

s∈S(k) w
k
sxs(t− τsk)− Ck

]+

zk(t) = 0.
(8)

Let ps(t) be the end-to-end marking (or loss) probability
at time t to which TCP source s reacts. Then, the rate-
adaptation dynamics of TCP Reno or its variants, particularly
in the timescale of tens (or hundreds) of RTTs, can be readily
described by [23]

ẋs(t) =

⎧⎨
⎩

Ms(1−ps(t))
Nsτ2

s
− 2

3
x2

s(t)ps(t)
NsMs

xs(t) > 0[
Ms(1−ps(t))

Nsτ2
s

− 2
3

x2
s(t)ps(t)
NsMs

]+

xs(t) = 0
(9)

where Ms is the average packet size in bits of TCP flow
s and Ns is the number of consecutive data packets that
are acknowledged by an ACK packet in TCP flow s (Ns is
typically 2).

In DRQ, we employ one RED queue per one resource. Each
RED queue computes a probability (we refer to it as pre-
marking probability) in the same way as an ordinary RED
queue computes its marking probability.

That is, the RED queue at link l computes a pre-marking
probability ρl(t) at time t by

ρl(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ŷl(t) ≤ bl
ml

bl−bl

(ŷl(t)− bl) bl ≤ ŷl(t) ≤ bl
1−ml

bl
(ŷl(t)− bl) +ml bl ≤ ŷl(t) ≤ 2bl

1 ŷl(t) ≥ 2bl

(10)

˙̂yl(t) =
loge(1− λl)

ηl
ŷl(t)− loge(1− λl)

ηl
yl(t) (11)

where ml∈(0, 1], 0 ≤ bl < bl and Eq. (11) is the continuous-
time representation of the EWMA filter [25] used by the RED,
i.e.,

ŷl((k+1)ηl) = (1−λl)ŷl(kηl)+λlyl(kηl), λl ∈ (0, 1). (12)

Eq. (11) does not model the case where the averaging
timescale of the EWMA filter is smaller than the averaging
timescale Δ on which yl(t) is defined. In this case, Eq. (11)
must be replaced by ŷl(t) = yl(t).

Similarly, the RED queue at CPU k computes a pre-marking
probability σk(t) at time t by

σk(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 v̂k(t) ≤ bk
mk

bk−bk

(v̂k(t)− bk) bk ≤ v̂k(t) ≤ bk
1−mk

bk
(v̂k(t)− bk) +mk bk ≤ v̂k(t) ≤ 2bk

1 v̂k(t) ≥ 2bk
(13)



5

˙̂vk(t) =
loge(1− λk)

ηk
v̂k(t)− loge(1− λk)

ηk
vk(t) (14)

where vk(t) is the translation of zk(t) in bits.
Given these pre-marking probabilities, the objective of DRQ

is to mark (or discard) packets in such a way that the end-to-
end marking (or loss) probability ps(t) seen by each TCP flow
s at time t becomes

ps(t) =

(∑
k∈K(s) w

k
sσk(t− τks) +

∑
l∈L(s) ρl(t− τls)

)2

1 +
(∑

k∈K(s) w
k
sσk(t− τks) +

∑
l∈L(s) ρl(t− τls)

)2 .

(15)
The actual marking scheme that can closely approximate this
objective function will be given in Section III-B.

The Reno/DRQ network model given by Eqs. (7)-(15) is
called average Reno/DRQ network as the model describes the
interaction between DRQ and Reno dynamics in long-term
average rates rather than explicitly capturing instantaneous
TCP rates in the AIMD form. This average network model
enables us to study fixed-valued equilibrium and consequently
establish in an average sense the equilibrium equivalence of a
Reno/DRQ network and a network with the same configuration
but under dual-resource PF congestion control.

Let x = [x1, · · · , xS ]T , σ = [σ1, · · · , σK ]T ,
ρ = [ρ1, · · · , ρL]T , p = [p1, · · · , pS ]T , y = [y1, · · · , yL]T ,
z = [z1, · · · , zK ]T , v = [v1, · · · , vK ]T , ŷ = [ŷ1, · · · , ŷL]T

and v̂ = [v̂1, · · · , v̂K ]T .

Proposition 1: Consider an average Reno/DRQ network
given by Eqs. (7)-(15) and formulate the corresponding ag-
gregate log utility maximization problem (Problem P) as in

Eqs. (2)-(5) with αs =
√

3/2Ms

τs
. If the Lagrange multiplier

vectors, θ∗ and π∗, of this corresponding Problem P satisfy
the following conditions:

C1 : θ∗k < 1, ∀k ∈ K(s), ∀s ∈ S, (16)

C2 : π∗
l < 1, ∀l ∈ L(s), ∀s ∈ S, (17)

then, the average Reno/DRQ network has a unique equilibrium
point (x∗, σ∗, ρ∗, p∗, y∗, z∗, v∗, ŷ∗, v̂∗) and (x∗, σ∗, ρ∗) is
the primal-dual optimal solution of the corresponding Problem
P. In addition, v∗k > bk if σ∗

k > 0 and 0 ≤ v∗k ≤ bk otherwise,
and y∗l > bl if ρ∗l > 0 and 0 ≤ y∗l ≤ bl otherwise, for all
k ∈ K and l ∈ L.

Proof: The proof is given in Appendix.
Proposition 1 implies that once the Reno/DRQ network

reaches its steady state (i.e., equilibrium), the average data
rates of Reno sources satisfy weighted proportional fairness

with weights αs =
√

3/2Ms

τs
. In addition, if a CPU k is a

bottleneck (i.e., σ∗
k > 0), its average equilibrium queue length

v∗k stays at a constant value greater than bk, and if not, it stays
at a constant value between 0 and bk. The same is true for
link congestion.

The existence and uniqueness of such an equilibrium point
in the Reno/DRQ network is guaranteed if conditions C1
and C2 hold in the corresponding Problem P. Otherwise, the
Reno/DRQ networks do not have an equilibrium point.

In the current Internet environment, however, these condi-
tions will hardly be violated particularly as the bandwidth-
delay products of flows increase. By applying C1 and C2 to
the Lagrangian optimality condition of Problem P in Eq. (6)

with αs =
√

3/2Ms

τs
, we have

r∗sτs
Ms

=

√
3/2∑

k∈K(s) w
k
s θ

∗
k +

∑
l∈L(s) π

∗
l

(18)

>

√
3/2∑

k∈K(s) w
k
s + |L(s)| (19)

where r∗
s τs

Ms
is the bandwidth-delay product (or window size) of

flow s, measured in packets. The maximum packet size in the
Internet is Ms = 1, 536 bytes (i.e., maximum Ethernet packet
size). Flows that have the minimum processing density are IP
forwarding applications with maximum packet size [17]. For
instance, a measurement study in [15] showed that per-packet
processing time required for NetBSD radix-tree routing table
lookup on a Pentium 167 MHz processor is 51 μs (for a
faster CPU, the processing time reduces; so as what matters
is the number of cycles per bit, this estimate applies to the
other CPUs). Thus, the processing density for this application
flow is about wk

s =51(μsec)x167(MHz)/1,536(bytes)=0.69
(cycles/bit). Therefore, from Eq. (19), the worst-case lower
bound on the window size becomes r∗

s τs

Ms
> 1.77 (packets),

which occurs when the flow traverses a CPU only in the
path (i.e., |K(s)| = 1 and |L(s)| = 0) . This concludes that
the conditions C1 and C2 will never be violated as long as
the steady-state average TCP window size is sustainable at a
value greater than or equal to 2 packets, even in the worst case.

B. DRQ implementation

In this section, we present a simple scalable packet marking
(or discarding) scheme that closely approximates the DRQ
objective function we laid out in Eq. (15).

A3: We assume that for all times⎛
⎝ ∑

k∈K(s)

wk
sσk(t− τks) +

∑
l∈L(s)

ρl(t− τls)
⎞
⎠

2

	 1, ∀ s ∈ S.

(20)

This assumption implies that (wk
sσk(t))2 	 1, ∀k ∈ K,

ρl(t)2 	 1, ∀l ∈ L, and any product of wk
sσk(t) and

ρl(t) is also much smaller than 1. Note that our analysis
is based on long-term average values of σk(t) and ρl(t).
The typical operating points of TCP in the Internet during
steady state where TCP shows a reasonable performance are
under low end-to-end loss probabilities (less than 1%) [29].
Since the end-to-end average probabilities are low, the marking
probabilities at individual links and CPUs can be much lower.

Let R be the set of all the resources (including CPUs and
links) in the network. Also, for each flow s, let R(s) =
{1, · · · , |R(s)|} ⊂ R be the set of all the resources that it
traverses along its path and let i ∈ R(s) denote the i-th



6

When a packet arrives at resource i at time t:
if (ECN 
= 11)

set ECN to 11 with probability δi(t);
if (ECN == 00)

set ECN to 10 with probability εi(t);
else if (ECN == 10)

set ECN to 11 with probability εi(t);

Fig. 3. DRQ’s ECN marking algorithm

resource along its path and indicate whether it is a CPU or a
link. Then, some manipulation after applying Assumption A3
to Eq. (15) gives

ps(t) ≈
⎛
⎝ ∑

k∈K(s)

wk
sσk(t− τks) +

∑
l∈L(s)

ρl(t− τls)
⎞
⎠

2

=
|R(s)|∑
i=1

δi(t− τis) +
|R(s)|∑
i=2

i−1∑
i′=1

εi(t− τis)εi′(t− τi′s)
(21)

where

δi(t) =
{

(wi
sσi(t))2 if i indicates CPU

ρi(t)2 if i indicates link (22)

and

εi(t) =
{ √

2wi
sσi(t) if i indicates CPU√

2ρi(t) if i indicates link.
(23)

Eq. (21) tells that each resource i ∈ R(s) (except the
first resource in R(s), i.e., i=1) contributes to ps(t) with
two quantities, δi(t − τis) and

∑i−1
i′=1 εi(t − τis)εi′(t − τi′s).

Moreover, resource i can compute the former using its own
congestion information, i.e., σi(t) if it is a CPU or ρi(t)
if it is a link, whereas it cannot compute the latter without
knowing the congestion information of its upstream resources
on its path (∀ l′ < l). That is, the latter requires an inter-
resource signaling to exchange the congestion information.
For this reason, we refer to δi(t) as intra-resource marking
probability of resource i at time t and εi(t) as inter-resource
marking probability of resource i at time t. We solve this intra-
and inter-resource marking problem using two-bit ECN flags
without explicit communication between resources.

Consider the two-bit ECN field in the IP header [30].
Among the four possible values of ECN bits, we use three val-
ues to indicate three cases: initial state (ECN=00), signaling-
marked (ECN=10) and congestion-marked (ECN=11). When
a packet is congestion-marked (ECN=11), the packet is either
marked (if TCP supports ECN) or discarded (if not). DRQ sets
the ECN bits as shown in Figure 3.

Below, we verify that the ECN marking scheme in Figure 3
approximately implements the objective function in Eq. (21).
Consider a flow s with path R(s). For now, we drop the time
index t to simplify the notation. Let P i

00, P i
10, P i

11 respectively
denote the probabilities that packets of flow s will have
ECN=00, ECN=10, ECN=11, upon departure from resource

i in R(s). Then, the proposed ECN marking scheme can be
expressed by the following recursion. For i = 1, 2, · · · , |R(s)|,

P i
11 = P i−1

11 + (1− P i−1
11 )δi + P i−1

10 (1− δi)εi (24)

= 1− (1− δi)(1− P i−1
11 − P i−1

10 εi), (25)

P i
10 = P i−1

10 (1− δi)(1− εi) + P i−1
00 (1− δi)εi, (26)

P i
00 = pi−1

00 (1− δi)(1− εi) (27)

with the initial condition that P 0
00 = 1, P 0

10 = 0, P 0
11 = 0.

Evolving i from 0 to |R(s)|, we obtain

P
|R(s)|
11 = 1−

|R(s)|∏
i=1

(1− δi)
⎛
⎝1−

|R(s)|∑
i=2

i−1∑
i′=1

εiεi′ + Θ

⎞
⎠ (28)

where Θ is the higher-order terms (order ≥ 3) of εi’s. By
Assumption A3, we have

P
|R(s)|
11 ≈ 1−

|R(s)|∏
i=1

(1− δi)
⎛
⎝1−

|R(s)|∑
i=2

i−1∑
i′=1

εiεi′

⎞
⎠(29)

≈
|R(s)|∑
i=1

δi +
|R(s)|∑
i=2

i−1∑
i′=1

εiεi′ (30)

which concludes that the proposed ECN marking scheme
approximately implements the DRQ objective function in Eq.
(21) since P |R(s)|

11 = ps.
Disclaimer: DRQ requires alternative semantics for the

ECN field in the IP header, which are different from the default
semantics defined in RFC 3168 [31]. What we have shown
here is that DRQ can be implemented using two-bit signaling
such as ECN. The coexistence of the default semantics and the
alternative semantics required by DRQ needs further study.

C. DRQ stability

In this section, we explore the stability of Reno/DRQ
networks. Unfortunately, analyzing its global stability is an ex-
tremely difficult task since the dynamics involved are nonlinear
and retarded. Here, we present a partial result concerning local
stability, i.e., stability around the equilibrium point.

Define |R|x|S| matrix Γ(z) whose (i, s) element is given
by

Γis(z) =

⎧⎨
⎩

wi
se

−zτis if s ∈ S(i) and i indicates CPU
e−zτis if s ∈ S(i) and i indicates link
0 otherwise.

(31)
Proposition 2: An average Reno/DRQ network is locally

stable if we choose the RED parameters in DRQ such
that max{ mk

bk−bk

, 1−mk

bk
}Ck ∈ (0, ψ), ∀k ∈ K, and

max{ ml

bl−bl

, 1−ml

bl
}Bl ∈ (0, ψ), ∀l ∈ L, and

ψ ≤
√

3/2φ2
min[Γ(0)]

|R|Λ2
maxτ

3
maxwmax

(32)

where Λmax = max{ max{Ck}
min{wk

s}min{Ms} ,
max{Bl}
min{Ms}}, τmax =

max{τs}, wmax = max{wk
s , 1} and φmin[Γ(0)] denotes the

smallest singular values of the matrix Γ(z) evaluated at z = 0.
Proof: The proof is given in Appendix and it is a

straightforward application of the TCP/RED stability result in
[32].



7

IV. PERFORMANCE

A. Simulation setup

In this section, we use simulation to verify the performance
of DRQ in the dual-resource environment with TCP Reno
sources. We compare the performance of DRQ with that of the
two other AQM schemes that we discussed in the introduction.
One scheme is to use the simplest approach where both CPU
and link queues use RED and the other is to use DRR (a
variant of WFQ) to schedule CPU usage among competing
flows according to the processing density of each flow. DRR
maintains per flow queues, and equalizes the CPU usage in a
round robin fashion when the processing demand is higher
than the CPU capacity (i.e., CPU-limited). In some sense,
these choices of AQM are two extreme; one is simple, but
less fair in use of CPU as RED is oblivious to differing CPU
demands of flows and the other is complex, but fair in use
of CPU as DRR installs equal shares of CPU among these
flows. Our goal is to demonstrate through simulation that DRQ
using two FIFO queues always offers provable fairness and
efficiency, which is defined as the dual-resource PF allocation.
Note that all three schemes use RED for link queues, but DRQ
uses its own marking algorithm for link queues as shown in
Figure 3 which uses the marking probability obtained from the
underlying RED queue for link queues. We call the scheme
with DRR for CPU queues and RED for link queues, DRR-
RED, the scheme with RED for CPU queues and RED for
link queues, RED-RED.

The simulation is performed in the NS-2 [33] environment.
We modified NS-2 to emulate the CPU capacity by simply
holding a packet for its processing time duration. In the
simulation, TCP-NewReno sources are used at end hosts and
RED queues are implemented using its default setting for the
“gentle” RED mode [34] (mi = 0.1, bi = 50 pkts, bi = 550
pkts and λi = 10−4. The packet size is fixed at 500 Bytes).
The same RED setting is used for the link queues of DRR-
RED and RED-RED, and also for both CPU and link queues
of DRQ (DRQ uses a function of the marking probabilities
to mark or drop packets for both queues). In our analytical
model, we separate CPU and link. To simplify the simulation
setup and its description, when we refer to a “link” for the
simulation setup, we assume that each link l consists of one
CPU and one Tx link (i.e., bandwidth).

By adjusting CPU capacity Cl, link bandwidth Bl, and the
amount of background traffic, we can control the bottleneck
conditions. Our simulation topologies are chosen from a vari-
ous set of Internet topologies from simple dumbell topologies
to more complex WAN topologies. Below we discuss these se-
tups and simulation scenarios in detail and their corresponding
results for the three schemes we discussed above.

B. Dumbell with long-lived TCP flows

To confirm our analysis in Section II-B, we run a single link
bottleneck case. Figure 4 shows an instance of the dumbell
topology commonly used in congestion control research. We
fix the bandwidth of the bottleneck link to 40 Mbps and vary
its CPU capacity from 5 Mcycles/s to 55 Mcycles/s. This
variation allows the bottleneck to move from the CPU-limited

R1 R2
 40Mbps

1 1

4

2

3

4

w=0.25

w=0.50

w=1.00

w=2.00

:  10 TCP sources :  TCP sink

10ms

5ms 5ms

L1

Fig. 4. Single link scenario in dumbell topology

region to the BW-limited region. Four classes of long-lived
TCP flows are added for simulation whose processing densities
are 0.25, 0.5, 1.0 and 2.0 respectively. We simulate ten TCP
Reno flows for each class. All the flows have the same RTT
of 40 ms.

In presenting our results, we take the average throughput
of TCP flows that belong to the same class. Figure 5 plots
the average throughput of each class. To see whether DRQ
achieves PF allocation, we also plot the ideal proportional fair
rate for each class (which is shown in a dotted line). As shown
in Figure 5(a), where we use typical RED schemes at both
queues, all TCP flows achieve the same throughput regardless
of the CPU capacity of the link and their processing densities.
Figures 5(b) and (c) show that the average throughput curves
of DRR-RED and DRQ follow the ideal PF rates reasonably
well. When CPU is only a bottleneck resource, the PF rate of
each flow must be inversely proportional to its processing den-
sity ws, in order to share CPU equally. Under the BW-limited
region, the proportionally-fair rate of each flow is identical to
the equal share of the bandwidth. Under the jointly-limited
region, flows maintain the PF rates while fully utilizing both
resources. Although DRQ does not employ the per-flow queue
structure as DRR, its performance is comparable to that of
DRR-RED.

Figure 6 shows that the aggregate throughput achieved
by each scheme. It shows that RED-RED has much lower
bandwidth utilization than the two other schemes. This is be-
cause, as discussed in Section II-B, when CPU is a bottleneck
resource, the equilibrium operating points of TCP flows over
the RED CPU queue that achieve the equal bandwidth usage
while keeping the total CPU usage below the CPU capacity
are much lower than those of the other schemes that need to
ensure the equal sharing of CPU (not the bandwidth) under
the CPU-limited region.

C. Impact of flows with high processing demands

In the introduction, we indicated that RED-RED can cause
extreme unfairness in use of resources. To show this by
experiment, we construct a simulation run where we fix the
CPU capacity to 40 Mcycles/s and add an increasing number
of flows with a high CPU demand (ws = 10) in the same setup
as the dumbell sink bottleneck environment in Section IV-B.
We call these flows high processing flows. From Figure 5, at
40 Mcycles/s, when no high processing flows are added, CPU
is not a bottleneck. But as the number of high processing
flows increases, the network moves into the CPU-limited
region. Figure 7 shows the results of this simulation run. In
Figure 7 (a), as we increase the number of high processing
flows, the aggregate CPU share of high processing flows



8

 0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

 10  20  30  40  50

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

CPU capacity (Mcycles/sec) 

SG1, w = 0.25 
SG2, w = 0.50 
SG3, w = 1.00 
SG4, w = 2.00 

Bandwidth-limitedJointly-limitedProcessing-limited

(a) RED-RED

 0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

 10  20  30  40  50

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

CPU capacity (Mcycles/sec) 

SG1, w = 0.25 
SG2, w = 0.50 
SG3, w = 1.00 
SG4, w = 2.00 

Bandwidth-limitedJointly-limitedProcessing-limited

(b) DRR-RED

 0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

 10  20  30  40  50

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

CPU capacity (Mcycles/sec) 

SG1, w = 0.25 
SG2, w = 0.50 
SG3, w = 1.00 
SG4, w = 2.00 

Bandwidth-limitedJointly-limitedProcessing-limited

(c) DRQ

Fig. 5. Average throughput of four different classes of long-lived TCP flows
in the dumbell topology. Each class has a different CPU demand per bit (w).
No other background traffic is added. The Dotted lines indicate the ideal PF
rate allocation for each class. In the figure, we find that DRQ and DRR-RED
show good fairness under the CPU-limited region while RED-RED does not.
Vertical bars indicate 95% confidence intervals.

deviates significantly from the equal CPU share; under a larger
number of high processing flows (e.g., 10 flows), these flows
dominate the CPU usage over the other lower processing
density flows, driving them to starvation. In contrast, DRQ and
DRR approximately implement the equal CPU sharing policy.
Even though the number of high processing flows increases,
the bandwidth remains a bottleneck resource as before, so the
link is in the jointly-limited region which is the reason why
the CPU share of high-processing flows go beyond 20%.

D. Dumbell with background Internet traffic

No Internet links are without cross traffic. In order to emu-
late more realistic Internet environments, we add cross traffic
modelled from various observations on RTT distribution [35],
flow sizes [36] and flow arrival [37]. As modelling the Internet
traffic in itself is a topic of research, we do not dwell on which
model is more realistic. In this paper, we present one model
that contains the statistical characteristics that are commonly

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Ba
nd

w
id

th
 u

til
iz

at
io

n

DRQ
DRR-RED
RED-RED

 10  20  30  40  50

CPU capacity (Mcycles/sec) 

Fig. 6. Comparison of bandwidth utilization in the Dumbbell single
bottleneck topology. RED-RED achieves far less bandwidth utilization than
DRR-RED and DRQ when CPU becomes a bottleneck.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 C
PU

 s
ha

rin
g 

of
 

hi
gh

 p
ro

ce
ss

in
g 

flo
w

s

Number of high processing flows

DRQ
DRR-RED
RED-RED

(a) CPU sharing

 10

 15

 20

 25

 30

 35

 40

 1  2  3  4  5  6  7  8  9  10

To
ta

l t
hr

ou
gh

pu
t (

M
bp

s)

Number of high processing flows

DRQ
DRR-RED
RED-RED

(b) Total throughput

Fig. 7. Impact of high processing flows. As the number of high processing
flows increase, the network becomes more CPU-bound. Under RED-RED,
these flows can dominate the use of CPU, reaching about 80% CPU usage
with only 10 flows, starving 40 competing, but low processing flows.

assumed or confirmed by researchers. These characteristics
include that the distribution of flow sizes has a long-range
dependency [38], the RTTs of flows is rather exponentially
distributed [39] and the arrivals of flows are exponentially
distributed [37], [40]. Following these characteristics, our cross
traffic consists of a number of short-lived TCP flows that
follow a Poisson arrival process and send a random number of
packets derived from the Pareto distribution with an average
of 30 packets, and the shape parameter 1.2. The RTT of
each short-lived flow is randomly selected from a range of
20 to 60 ms. We fix the bottleneck bandwidth and CPU
capacities to 40 Mbps and 40 Mcycles/s, respectively and
generate the same number of long-lived TCP flows as in the
experiment for Figure 5. With these parameters, the cross
traffic consumes about 30% of the link bandwidth capacity. In
this experiment, we vary the CPU demand of short-lived flows
to create various bottleneck conditions. We make no claims
about how realistically our model characterizes the Internet



9

 0

0.2

 0.4

 0.6

 0.8

1.0

1.2

1.4

1.6

   

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

0  0.5 1  1.5 2
Processing density of background traffic (cycles/bit) 

SG1, w = 0.25 
SG2, w = 0.50 
SG3, w = 1.00 
SG4, w = 2.00 

(a) RED-RED

 0

0.2

 0.4

 0.6

 0.8

1.0

1.2

1.4

1.6

   

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

SG1, w = 0.25 
SG2, w = 0.50 
SG3, w = 1.00 
SG4, w = 2.00 

0  0.5 1  1.5 2
Processing density of background traffic (cycles/bit) 

(b) DRQ

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.5  1  1.5  2

Ba
nd

w
id

th
 u

til
iz

at
io

n

Processing density of background traffic (cycles/bit) 

DRQ
DRR-RED
RED-RED

(c) Bandwidth utilization

Fig. 8. Simulation result in dumbell topology with short-lived (web-like)
background traffic. Dashed line implies proportional fair rate for each source
group. Even with cross traffic, the result is similar to that from the simple
model without background traffic. Vertical bars indicate 95% confidence
intervals.

cross traffic, but we believe that the simulation in this model
more realistically reflects real network situations than the one
with no background traffic.

Figure 8 plots the average throughput of long-lived TCP
flows, and the total bandwidth utilization of the bottleneck
link as we increase the processing densities of short-lived
TCP flows used to generate cross traffic. The results are very
similar to those from the simulation without cross traffic; in
all situations, RED-RED ensures the equal bandwidth sharing
while DRQ and DRR-RED ensure equal sharing of CPU
usages under the CPU-limited region and equal sharing of
bandwidth under the BW-limited region. In this experiment,
we can also find severe under-utilization of bandwidth by
RED-RED under the CPU-limited region. As cross traffic
helps increase the utilization of bandwidth, we find DRQ and
DRR-RED to encourage higher utilization of the bottleneck
bandwidth.

R1 R2
L1 L2 L3

5

6

7

1 1

4

2

3

4
5

6

7

R3 R4

w=0.25

w=0.50

w=1.00

w=2.00

w=0.25

w=2.00

:  10 TCP sources

:  TCP sink

:  40Mcycles/sec,  50Mbps link

:  40Mcycles/sec,  20 ~ 90Mbps link

10ms10ms 10ms

8 9 10

w=0.25, 0.5, 1.0, 2.0

10

5ms 5ms

Fig. 9. Multiple link simulation scenario in parking lot topology.

E. Parking lot simulation with multiple dual-resource bottle-
neck links

To increase realism in our simulation, we simulate the
environment where multiple links can be dual-resource con-
strained. Figure 9 shows a parking lot topology with following
link capacities B1 = B2 = 50 Mbps, C1 = C2 = C3 = 40
Mcycles/s. We vary the bandwidth capacity of link L3 from
20 to 90 Mbps to create varying bottleneck conditions. Four
class of long-lived TCP flows (denoted as SG1 to SG4)
traverse links L1, L2 and L3 from sources 1-4 to sinks 1-4,
respectively. One class of long-lived TCP flows from source 5
to sink 5 (denoted as SG5) traverses link L1 only and another
class from source 6 to sink 6 (denoted as SG6) traverses
link L2 only. Additional four sets of long-lived TCP flows
traverse link L3 only (denoted as SG7 to SG10). We report
the average throughput of long-lived flows (SG1 to SG4, and
SG7 to SG10) that pass through link L3 as we vary the link
bandwidth of L3. On each path that long-lived TCP flows pass
through, we add a small amount of short-lived background
traffic to increase dynamics in the network traffic patterns.
In this setup, each link runs one of the AQM schemes being
evaluated.

Figures 10 (a) and (b) show the average throughput of the
long-lived TCP flows that go through link L3. The average
throughput values are shown with their corresponding 95%
confidence intervals. We also plot with a dotted line the ideal
PF rate for each class. The average throughput values closely
follow the analytical PF rates.

Figure 11 shows the total throughput of all flows from SG1
to SG10 including those that traverse links L1 and L2. In
this figure, we find that DRQ achieves a much higher total
throughput than DRR-RED and RED-RED. Although we have
consistently seen that DRR-RED and DRQ achieve higher uti-
lization of bandwidth than RED-RED, this is the first time we
find DRQ gets more throughput than DRR-RED. This happens
because though DRR-RED performs similar to DRQ when
a single resource is congested in the network, in principle,
DRR-RED and DRQ have different fairness notions especially
when multiple resources are simultaneously congested and
flows have different number of hops. DRR has a goal to
equally share the resource irrespective of path routes (which
is the same goal as max-min fairness), but DRQ follows the
proportional fairness criteria. In this topology, SG1-SG4 have
a longer route and use more network resources than SG5,
SG6, and SG7-SG10. So the total throughput difference comes
from DRQ’s use of proportional fairness that discriminates



10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 20  30  40  50  60  70  80  90

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

L3 link bandwidth (Mbps)

SG 1, w=0.25
SG 2, w=0.50
SG 3, w=1.0
SG 4, w=2.0
PF rate - SG1
PF rate - SG2
PF rate - SG3
PF rate - SG4

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20  30  40  50  60  70  80  90
L3 link bandwidth (Mbps)

SG 7, w=0.25
SG 8, w=0.50
SG 9, w=1.0
SG10, w=2.0
PF rate - SG7
PF rate - SG8
PF rate - SG9
PF rate - SG10

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

(b)

Fig. 10. Throughput of TCP/DRQ in multiple link simulations: (a) SG1-
SG4, (b) SG7-SG10. Even in cases where multiple links are dual-resource
constrained, DRQ achieves proportional fairness. Vertical bars indicate 95%
confidence intervals.

 70

 75

 80

 85

 90

 95

 100

 105

 110

 115

 20  30  40  50  60  70  80  90

To
ta

l t
hr

ou
gh

pu
t (

M
bp

s)

L3 link bandwidth (Mbps)

DRQ
DRR-RED
RED-RED

Fig. 11. Total throughput comparison between DRQ, DRR-RED, and RED-
RED. It shows the sum of throughput for all flows from SG1 to SG10. In
this setup, DRQ achieves the best throughput over the other schemes. This
is because the PF rate allocation of DRQ installs fairness among flows that
traverse different numbers of hops. RED-RED still consistently shows lower
throughput.

SG1-SG4 over the other flows because it uses more hops.
The comparison of L3 link utilization shows that DRQ and
DRR-RED use nearly the same amount, in Figure 12. This is
because L3 lies in the CPU-limited region so the bandwidth
usage of the flows is governed by the fair usage of CPU. This
means that the bandwidth usage difference between SG1-SG4,
and the other flows occur because of SG5 and SG6 flows that
traverse only one link creating a bandwidth bottleneck on their
corresponding link. However, it is incorrect to say that the
fairness notion of DRQ always guarantees higher throughput
than the fairness notion that DRR-RED follows as it is quite
possible that there are other unique situations where DRR-
RED gets more throughput (which is indeed shown in the
next simulation). We leave as future study, studying the exact
conditions where DRR-RED can have better throughput than
DRQ and vice versa.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10  20  30  40  50  60  70

L3
 b

an
dw

id
th

 u
til

iz
at

io
n 

L3 link bandwidth (Mbps)

DRQ
DRR-RED
RED-RED

Fig. 12. L3 link bandwidth utilization comparison between DRQ, DRR-RED,
and RED-RED.

C1 C2 C3

IE4

EE1

EE2IE2

IE1

IE3

EE4
EE3

L1 L2100Mbps

5ms

100Mbps
[5~10]ms

40Mbps

10ms
60Mbps

10ms

SG1 

High processing flows 

SG2

Low 

processing 

flows 

SG3

No

processing 

flows 
Core network

Access network
SG4 SG5

Fig. 13. Simulation topology for edge deployment

F. Impact of incremental deployment

In this section, we examine the performance impact of
incrementally deploying DRQ in the current Internet. The
natural places where DRQ can be initially deployed are likely
to be edges. This is because the current Internet trend is to keep
the “middle” slim by pushing complicated tasks to the edges of
the Internet. Thus, while core routers focus on moving packets
as fast as possible, routers, proxies and gateways located at
edges of the Internet perform various in-network processing
on packets.

We consider an ISP environment where core routers and
most edge routers are free from processing constraint but a
small number of designated edge gateways handle TCP flows
with in-network processing requirement. Figure 13 models one
example of such environments. Our goal is to assess whether a
small incremental deployment of DRQ gives any performance
advantage while keeping the rest of the network intact. In
the figure, SG’s denote TCP source groups, each with ten
TCP sources, and C1 to C3 denote core routers, IE1 to IE4
denote ingress edge routers and EE1 to EE4 denote egress edge
routers, respectively. Flows from IE1 are routed through the
shortest path to EE1 and etc. In this setup, all the routers except
IE1 and EE1 are conventional packet routers with no CPU
constraint and IE1 and EE1 are the media gateways/routers
that may run in the CPU-limited region.

In this simulation, we consider two different source groups,
SG1 and SG2, that traverse the same end-to-end path from
IE1 to EE1. SG1 consists of flows with a high processing
density (w1 = 2.5) while SG2 consists of flows with a low
processing density (w2 = 0.5). Flows from SG3 to SG5 do
not require any CPU processing. Note also that in this setup,
SG1, SG2 and SG3 share the same bottleneck links (L1 and



11

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

 10  20  30  40  50  60  70

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

IE1 Processing capacity (Mcycles/sec) 

SG1 - high processing
SG2 - low processing
SG3 - no processing

(a) RED-RED

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 10  20  30  40  50  60  70

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

IE1 Processing capacity (Mcycles/sec) 

SG1 - high processing
SG2 - low processing
SG3 - no processing

(b) DRR-RED

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 10  20  30  40  50  60  70

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

IE1 Processing capacity (Mcycles/sec) 

SG1 - high processing
SG2 - low processing
SG3 - no processing

(c) DRQ

 2

 4

 6

 8

 10

 12

 14

 16

 10  20  30  40  50  60  70

DRQ
DRR-RED
RED-RED

A
gg

re
ga

te
 th

ro
ug

hp
ut

: 
SG

1 
an

d 
SG

2 
(M

bp
s)

IE1 Processing capacity (Mcycles/sec)

(d) Aggregate throughput of flows using IE1

Fig. 14. Average and aggregate throughput of different schemes when some
of the edge routers are under the CPU constraint. Even with a small number
of edge routers employing DRQ, DRQ can provide higher throughput for the
TCP flows with in-network processing requirements.

L2).

In Figure 14 we compare the average throughput of three
source groups SG1, SG2 and SG3, and the aggregate through-
put of SG1 and SG2 while varying the CPU capacity of
IE1. As expected, with RED-RED, SG1 and SG2 achieve
the equal bandwidth sharing irrespective of the CPU capacity,
which give lower aggregate throughput. We can see that
employing the DRQ (or DRR-RED) only at IE1 and EE1
serves more packets than RED-RED by preventing flows with
high processing demands from starving those flows with lower
processing demands. The aggregate throughput of DRR-RED
is slightly higher than that of DRQ.

In the next simulation, we increase the processing density
(w1) of SG1 from 2 to 20 to see the impact of flows with

high processing demands while fixing the processing density
of SG2 to a relatively low value (w2 = 1.0) in the same setup
as the above and examine whether the fairness achieved by
DRQ in a small number of routers contributes to increasing
the total throughput of flows that pass through those routers.
The CPU capacity of IE1 is fixed to 30 Mcycles/s.

In Figure 15 (a)-(c), we can verify that with DRQ or DRR-
RED, the throughput of the high processing flows (SG1)
is kept lower than that of the low processing flows (SG2)
to balance its CPU usage with the low processing flows in
IE1 and EE1 as we increase the processing density of the
high processing flows. That results in much higher aggregate
throughput for SG1 and SG2 than with RED-RED. In RED-
RED, because the average throughput of both SG1 and SG2
flows is maintained to follow equal sharing, the CPU usage
(not shown due to the space limitation) of SG1 is highly
unfair to that of SG2 because SG1 will be using much CPU
than SG2 when they have the same number of packets on the
network. This phenomenon has a security implication where a
malicious flow with a high processing density can easily starve
out other competing flows from consuming CPU resources.

Next, we consider another scenario where SG1 and SG2
are going through DRQ deployed router IE1 but SG3 now
consists of flows identical to aggregation of SG1 and SG2
and is going through RED-RED deployed IE2 router. Figure
16 shows that the flows going through IE1 get much more
throughput in total than those going through IE2, particularly
when the processing densities of high processing flows (SG1
and SG1 portion of SG3) increase. This also confirms that even
an incremental deployment of DRQ at the edge is beneficial.

V. CONCLUSION

We have shown that under DRQ the average equilibrium
throughput for TCP Reno sources becomes proportionally fair
in the dual-resource environment. Moreover, such an equilib-
rium is unique and almost always exists, more specifically,
as long as the per-flow steady-state average TCP window size
(or per-flow bandwidth-delay product) is sustainable at a value
greater than or equal to 2 packets.

DRQ significantly outperforms RED-RED scheme while
maintaining a certain level of fairness. DRQ is scalable to
a large number of flows and incrementally deployable since
it does not require any change in end-host TCP stacks and
builds on an ordinary RED queue.

The throughput gain achieved by DRQ over RED-RED
comes mostly from two features of its marking scheme. The
weighted marking at a CPU queue (in proportion to processing
densities of flows) yields fair sharing of CPU cycles whenever
this resource is scarce, which consequently, results in over-
all throughput increase. Second, the inter-resource marking,
which is a unique feature of DRQ, gives extra penalty to flows
that traverses more number of resources, which also results in
overall throughput increase.

We show by simulation that even a partial deployment
of DRQ is beneficial to increasing performance when it is
implemented on a few selected locations where special in-
network processing services (e.g., media translation, protocol
conversion, security and PEP) are enabled.



12

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 2  4  6  8  10  12  14  16  18  20

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

Processing density of SG1 (cycles/bit) 

SG1 - high processing
SG2 - low processing
SG3 - no processing

(a) RED-RED

 
0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 2  4  6  8  10  12  14  16  18  20

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

Processing density of SG1 (cycles/bit) 

SG1 - high processing
SG2 - low processing
SG3 - no processing

(b) DRR-RED

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 2  4  6  8  10  12  14  16  18  20

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

Processing density of SG1 (cycles/bit) 

SG1 - high processing
SG2 - low processing
SG3 - no processing

(c) DRQ

 2

 4

 6

 8

 10

 12

 14

 16

 

DRQ
DRR-RED
RED-RED

A
gg

re
ga

te
 th

ro
ug

hp
ut

: 
SG

1 
an

d 
SG

2 
(M

bp
s)

 2  4  6  8  10  12  14  16  18  20

Processing density of SG1 (cycles/bit) 

(d) Aggregate throughput of flows using IE1

Fig. 15. Average and aggregate throughput when processing density values
of neighboring flows (SG1) are increased. This shows that DRQ and DRR-
RED, even in a partial deployment, achieve fairness in the CPU usage when
some portion of flows has increasingly higher processing demands.

REFERENCES

[1] R. Ramaswamy, N. Weng, and T. Wolf, “Analysis of network processing
workloads,” in Proc. of IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Austin, TX, Mar. 2005, pp.
226–235.

[2] P. Crowley, M. E. Fiuczynski, J.-L. Baer, and B. N. Bershad, “Workloads
for programmable network interfaces,” in Workload Characterization for
Computer System Design. Kluwer Academic Publishers, 2000, ch. 7.

[3] Y. Gottlieb and L. Peterson, “A comparative study of extensible routers,”
in Proc. of IEEE Open Architectures and Network Programming (OPE-
NARCH), June 2002, pp. 51–62.

[4] A. T. Campbell, H. G. D. Meer, M. E. Kounavis, K. Miki, J. B. Vicente,
and D. Villela, “A survey of programmable networks,” ACM SIGCOMM
Computer Communications Review, vol. 29, no. 2, pp. 7–23, April 1999.

[5] A. Barbir, R. Penno, R. Chen, M. Hofmann, and H. Orman, “An
architecture for open pluggable edge services (OPES),” IETF RFC 3835,
2004.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 2  4  6  8  10  12  14  16  18  20

SG1 and SG2
SG 3

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (M
bp

s)
 

Processing density of SG1 (cycles/bit) 

Fig. 16. Aggregate throughput comparison of flows going through DRQ
deployed router and flows going through RED-RED deployed router.

[6] B. Falchuk, J. Chiang, A. Hafid, Y.-H. Cheng, N. Natarjan, F. J. Lin,
and H. Cheng, “An open service platform for deploying and managing
services at network edges,” in Proc. of IEEE Open Architectures and
Network Programming (OPENARCH), San Francisco, CA, 2003.

[7] S. Chong, M. Shin, J. Mo, and H.-W. Lee, “Flow control with processing
constraint,” IEEE Commun. Lett., vol. 9, no. 10, pp. 957–959, Oct. 2005.

[8] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” ACM SIGCOMM Computer Communications
Review, vol. 19, no. 4, pp. 1–12, 1989.

[9] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” in Proc. of ACM SIGCOMM, Sept. 1995, pp. 231–242.

[10] S. Floyd and V. Jacobson, “Random Early Detection gateways for
congestion avoidance,” IEEE/ACM Trans. Networking, vol. 1, pp. 397–
413, Aug. 1993.

[11] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: Active queue
management,” IEEE Network, vol. 15, pp. 48–53, May 2001.

[12] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “On designing
improved controllers for AQM routers supporting TCP flows,” in Proc.
of IEEE INFOCOM, Anchorage, Alaska, Apr. 2001, pp. 1726–1734.

[13] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
Achieving approximately fair bandwidth allocations in high speed net-
works,” in Proc. of ACM SIGCOMM, Sept. 1998, pp. 118–130.

[14] Z. Cao, Z. Wang, and E. W. Zegura, “Rainbow fair queueing: Fair
bandwidth sharing without per-flow state,” in Proc. of IEEE INFOCOM,
Tel Aviv, Israel, Mar. 2000, pp. 922–931.

[15] P. Pappu and T. Wolf, “Scheduling processing resources in pro-
grammable routers,” in Proc. of IEEE INFOCOM, New York, NY, June
2002, pp. 104–112.

[16] F. Sabrina, C. D. Nguyen, S. K. Jha, D. Platt, and F. Safaei, “Processing
resource scheduling in programmable networks,” Computer Communi-
cations, vol. 28, no. 6, pp. 676–687, Apr. 2005.

[17] T. Wolf and M. A. Franklin, “CommBench - a telecommunications
benchmark for network processors,” in Proc. of IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
Austin, TX, Apr. 2000, pp. 154–162.

[18] G. Memik, M. Smith, and W. Hu, “NetBench: A benchmarking suite
for network processors,” in Proc. of IEEE International Conference on
Computer-Aided Design, San Jose, CA, Nov. 2001.

[19] M. Tsai, C. Kulkarni, C. Sauer, N. Shah, and K. Keutzer, “A bench-
marking methodology for network processors,” in Proc. of 1st Network
Processor Workshop, 8th Int. Symp. on High Performance Computer
Architectures (HPCA), Cambridge, MA, Feb. 2002.

[20] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in commu-
nication networks: shadow prices, proportional fairness and stability,” J.
of the Operational Research Society, vol. 49, pp. 237–252, Apr. 1998.

[21] S. H. Low and D. E. Lapsley, “Optimization flow control I: Basic
algorithm and convergence,” IEEE/ACM Trans. Networking, vol. 7, pp.
861–875, Dec. 1999.

[22] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA:
Athena Scientific, 1999.

[23] S. H. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM Trans. Networking, vol. 11, pp. 525–536, Aug. 2003.

[24] F. P. Kelly, “Mathematical modelling of the internet,” in Mathematics
Unlimited – 2001 and Beyond, B. Engquist and W. Schmid, Eds. Berlin:
Springer Verlag, 2001, pp. 685–702.

[25] V. Misra, W. B. Gong, and D. Towsley, “Fluid-based analysis of a
network of AQM routers supporting TCP flows with an application to
RED,” in Proc. of ACM SIGCOMM, Sept. 2000, pp. 151–160.

[26] Y. Liu, F. Presti, V. Misra, and D. Towsley, “Fluid models and solutions
for large-scale IP networks,” in Proc. of ACM SIGMETRICS, San Diego,
CA, June 2003, pp. 151–160.



13

[27] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A control theoretic
analysis of RED,” in Proc. of IEEE INFOCOM, Anchorage, Alaska, Apr.
2001, pp. 1510–1519.

[28] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linear stability
of TCP/RED and a scalable control,” Computer Networks, vol. 43, pp.
633–647, Dec. 2003.

[29] “Internet end-to-end performance monitoring group (IEPM),” 2006.
[Online]. Available: http://www-iepm.slac.stanford.edu/

[30] K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion
notification (ECN) to IP,” IETF RFC 2481, 1999.

[31] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP,” IETF RFC 3168, 2001.

[32] H. Han, C. V. Hollot, Y. Chait, and V. Misra, “TCP networks stabilized
by buffer-based AQMs,” in Proc. of IEEE INFOCOM, Hongkong, Mar.
2004, pp. 964–974.

[33] “ns-2 network simulator,” 2000. [Online]. Available:
http://www.isi.edu/nsnam/ns/

[34] S. Floyd, “Recommendations on using the gentle variant of RED,” Mar.
2000. [Online]. Available: http://www.aciri.org/floyd/red/gentle.html

[35] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay, “Variability in TCP round-
trip times,” in Proc. of 3rd ACM SIGCOMM Conference on Internet
Measurement Conference, Oct. 2003, pp. 279–284.

[36] M. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: evidence and possible causes,” IEEE/ACM Trans. Networking,
vol. 5, pp. 835–846, Dec. 1997.

[37] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson
modeling,” IEEE/ACM Trans. Networking, vol. 3, pp. 226–244, June
1995.

[38] K. Park, in Self–Similar Network Traffic and Performance Evaluation,
W. Willinger, Ed. New York: John Wiley & Sons, 2000.

[39] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times,”
ACM SIGCOMM Computer Communications Review, vol. 32, pp. 75–
88, July 2002.

[40] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” in Proc. of ACM
SIGMETRICS, July 1998, pp. 151–160.

APPENDIX

Proof of Proposition 1: First, we show that the primal-

optimal solution (r∗, θ∗, π∗) of Problem P with αs =
√

3/2Ms

τs

forms an equilibrium point (x∗, σ∗, ρ∗, p∗, y∗, z∗, v∗,
ŷ∗, v̂∗) in the average Reno/DRQ network where x∗ =
r∗, σ∗ = θ∗, ρ∗ = π∗ if θ∗ and π∗ satisfy C1 and C2.
Since

∑
s∈S(l) r

∗
s ≤ Bl, ∀l ∈ L, and

∑
s∈S(k) w

k
s r

∗
s ≤ Ck,

∀k ∈ K, Eqs. (7) and (8) imply that there exist y∗l ≥ 0,
∀l ∈ L, and z∗k, v

∗
k ≥ 0, ∀k ∈ K. Thus, from Eqs. (11) and

(14), there exist ŷ∗l = y∗l ≥ 0, ∀l ∈ L, and v̂∗k = v∗k ≥ 0,
∀k ∈ K, whose specific values can be obtained from Eqs.
(10) and (13) for ρ∗l = π∗

l and σ∗
k = θ∗k since 0 ≤ π∗

l < 1
and 0 ≤ θ∗k < 1. Finally, for x∗s > 0, Eqs. (9) and (15)

yield x∗s =
√

3/2Ms

τs
(
∑

k∈K(s) w
k
sσ

∗
k +

∑
l∈L(s) ρ

∗
l )

−1, which
also holds for (r∗, θ∗, π∗) by the Lagrangian optimality of

(r∗, θ∗, π∗) in Eq. (6) with αs =
√

3/2Ms

τs
.

Next we prove the converse that if the average Reno/DRQ
network has an equilibrium point (x∗, σ∗, ρ∗, p∗, y∗, z∗, v∗,
ŷ∗, v̂∗), then (x∗, σ∗, ρ∗) is the primal-dual optimal solution

of the corresponding Problem P with αs =
√

3/2Ms

τs
and,

moreover, no other equilibrium points can exist in the network.
By the duality theory [22], the necessary and sufficient con-
dition for (x∗, σ∗, ρ∗) to be the primal-dual optimal solution
of Problem P is that x∗ is primal feasible, (σ∗, ρ∗) is dual
feasible, and (x∗, σ∗, ρ∗) satisfies Lagrangian optimality and
complementary slackness. First, Eqs. (7) and (8) imply that∑

s∈S(l) x
∗
s ≤ Bl for all l ∈ L and

∑
s∈S(k) w

k
sx

∗
s ≤ Ck

for all k ∈ K, and Eq. (9) implies that x∗ ≥ 0. Thus, x∗

is primal feasible. Second, the dual feasibility of (σ∗, ρ∗) is
obvious since σ∗ and ρ∗ cannot be negative by the definition
of REDs in Eqs. (10) and (13). Third, since Eq. (6) is the
Lagrangian optimality condition of Problem P, we need to
show that

x∗s =
αs∑

k∈K(s) w
k
sσ

∗
k +

∑
l∈L(s) ρ

∗
l

, ∀ s ∈ S (33)

hold. Consider flow s. If we suppose that σ∗
k = 0, ∀k ∈ K(s),

and ρ∗l = 0, ∀l ∈ L(s), for this flow s, then p∗s = 0 from
Eq. (15), which contradicts Eq. (9) since it cannot have an
equilibrium point satisfying p∗s = 0. Thus, at least one of σ∗

k,
k ∈ K(s), and ρ∗l , l ∈ L(s), must be positive, which implies
that 0 < p∗s < 1 from Eq. (15) and consequently x∗s > 0 from
Eq. (9). Therefore, from Eq. (9), we know that Ms(1−p∗

s)
τ2

s
=

2
3

x∗
s
2p∗

s

Ms
(Ns is cancelled out). Solving x∗s from this equation by

substituting Eq. (15) at equilibrium for p∗s , we get Eq. (33) with

αs =
√

3/2Ms

τs
, which concludes the Lagrangian optimality of

(x∗, σ∗, ρ∗). Lastly, we need to show that σ∗
k(

∑
s∈S(k) w

k
sx

∗
s−

Ck) = 0 and ρ∗l (
∑

s∈S(l) x
∗
s−Bl) = 0 for all k ∈ K and l ∈ L

to check complementary slackness of (x∗, σ∗, ρ∗). Consider
arbitrary k ∈ K. If we suppose that

∑
s∈S(k) w

k
sx

∗
s−Ck < 0,

then z∗k = v∗k = 0 from Eq. (8). Thus, v̂∗k = 0 from Eq. (14)
and consequently σ∗

k = 0 from Eq. (13), which concludes
σ∗

k(
∑

s∈S(k) w
k
sx

∗
s − Ck) = 0. Similarly, ρ∗l (

∑
s∈S(l) x

∗
s −

Bl) = 0 for arbitrary l ∈ L. Therefore, we conclude that
(x∗, σ∗, ρ∗) is the primal-dual optimal solution of Problem P.
Moreover, x∗ is unique since the optimal solution of Problem
P is unique. From Eq. (10), it is obvious that y∗l > bl if
ρ∗l > 0 and 0 ≤ y∗l ≤ bl otherwise. The same argument can
be applied to CPU queues from Eq. (13).

Proof of Proposition 2: First, we derive a linearized model
of Reno/DRQ network at the equilibrium point. In the DRQ
network described by Eq. (15), the congestion window for
the sth TCP source, �s, can be modelled by the nonlinear
differential equation

�̇s(t) =
1− ps(t)
Nsτs

− 2�2
s(t)

3Nsτs
ps(t) (34)

where,

ps(t) =

(∑|R|
i=1[Γ(0)T ]siϕi(t− τis)

)2

1 +
(∑|R|

i=1[Γ(0)T ]siϕi(t− τis)
)2 (35)

and ϕi(t) is the ith element of unified pre-marking probability
set as

ϕi =
{
σi if i indicates CPU
ρi if i indicates link

Using Eqs. (7)-(8), we model the ith congested resource
queue by

q̇i(t) = −c̃iIq>0 +
|S|∑
s=1

[Γis(0)]
Ms�s(t− τis)

τs
(36)

where qi(t) is the ith element of the resource queue length set
in bits (or cycles) as

qi =
{
zi if i indicates CPU
yi if i indicates link,



14

c̃i is the ith element of resource capacity set as

c̃i =
{
Ci if i indicates CPU
Bi if i indicates link,

Ms denotes the packet size in bits, and Iq>0 is the indicator
function.

Linearizing Eqs. (34)-(36) about equilibrium (�∗, q∗, ϕ∗)
and taking Laplace transforms gives

�(z) = −F̃ (z)Γ(−z)Tϕ(z) (37)

q(z) = (zI + Ω)−1Γ(z)MT−1�(z) (38)

where F̃ (z) = diag{f̃s(z)},

f̃s(z) =
e−zτs

z + 4�∗
s

3Nsτs

3
2�∗2

s +3

2
Nsτsu∗s(1 + u∗s)2

,

u∗ = Γ(0)Tϕ∗, Ω = Γ(0)MW ∗T−2Γ(0)T C̃−1, T =
diag{τs}, M = diag{Ms}, W ∗ = diag{�∗

s} and C̃ =
diag{c̃i}.

Next, let κi(z) denote the linearized RED dynamics which
can be modelled as the low-pass filter [25],

κi(z) =
ϕi(z)
qi(z)

=
ψi

z/ηi + 1
(39)

where ψi = mi

bi−bi

, and η = loge(1−λ)
h , where h is sampling

interval of RED. Using linearized Eqs. (37)-(39), we can find
the return ratio function of the DRQ network.

L(z) = F̃ (z)Γ(−z)TD(z)C̃−1(zI + Ω)−1Γ(z)MT−1 (40)

where D(z) = diag{κi(z)c̃i}. To invoke the Generalized
Nyquist Stability Criterion [32], we should show that the
eigenvalues of L(jw) do not intersect (−∞,−1] for all w ≥ 0.

From Theorem 1 and Proposition 1 in [32], these eigenval-
ues lie in

max{|fs(jw)|}max{|di(jw)|}
min{|gi(jw)|} , (41)

where fs(jw) = μs

�s
f̃s(jw), μs is the number of congested

resources traversed by the sth source, di(jw) = κi(jw) · c̃i,
gi(jw) = jw+λi, and λi is an eigenvalue of C̃− 1

2 ΩC̃− 1
2 . To

be stable, Eq.(41) should be less than 1.
Because min{|gi(jw)|} is an increasing function,

max{|fs(jw)|} and max{|di(jw)|} are decreasing, stability
condition can be replaced by,

max{|fs(0)|}max{|di(0)|}
min{|gi(0)|} < 1. (42)

We can find the following relations

|gi(0)| ≥ φ2
min[Γ(0)]

Λmaxτ2
maxwmax

(43)

|fs(0)| ≤ |R|Λmaxτmax√
3/2

(44)

where Λmax = max{ max{Ck}
min{wk

s}min{Ms} ,
max{Bl}
min{Ms}}, τmax =

max{τs}, wmax = max{wk
s , 1} and φmin[Γ(0)] denotes the

smallest singular values of the matrix Γ(z) evaluated at z = 0.
From the Eqs. (42)-(44),

max{|di(0)|} ≤
√

3/2φ2
min[Γ(0)]

|R|Λ2
maxτ

3
maxwmax

. (45)

PLACE
PHOTO
HERE

Minsu Shin received his B.S., M.S., and Ph.D.
degrees in Electrical Engineering and Computer
Science from Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea, in 1998,
2000, and 2006, respectively. From July 2006, he is a
Visiting Postdoctoral Research Fellow at the Dept. of
Computer Science, North Carolina State University,
Raleigh. His research interests are in congestion con-
trol, programmable networks, and wireless networks.

PLACE
PHOTO
HERE

Song Chong received the B.S. and M.S. degrees in
Control and Instrumentation Engineering from Seoul
National University, Seoul, Korea, in 1988 and 1990,
respectively, and the Ph.D. degree in Electrical and
Computer Engineering from the University of Texas
at Austin in 1995. In March 2000, he joined the
Department of Electrical Engineering and Computer
Science, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea. He is cur-
rently an Associate Professor, leading the Network
Systems Laboratory. Prior to joining KAIST, he

was with the Performance Analysis Department, AT&T Bell Laboratories,
Holmdel, New Jersey, as a Member of Technical Staff. His research interests
include high-speed networks, wireless networks and performance evaluation.
He has published more than 50 papers in international journals and confer-
ences and holds three U.S. patents in these areas. He is currently an Editor of
the Journal of Communications and Networks. He has served as a Technical
Program Committee member of IEEE INFOCOM ‘97, ‘99, ‘03, IEEE ICC ’05,
IEEE GLOBECOM ’05, IEEE VTC ’06, an Organizing Committee member
of PV ‘01, a Program Committee member of PV ‘02-‘06, a Technical Program
Co-chair of ICBN ‘04.

PLACE
PHOTO
HERE

Injong Rhee received his Ph.D. from the University
of North Carolina at Chapel Hill. He is an associate
professor of Computer Science at North Carolina
State University. His areas of research interests in-
clude computer networks, congestion control, wire-
less ad hoc networks and sensor networks. He works
mainly on network protocol designs optimizing the
transport performance of networks.


