
Internet Congestion
Control

By Steven H. Low, Fernando Paganini, and John C. Doyle

This article reviews the current transmission
control protocol (TCP) congestion control
protocols and overviews recent advances
that have brought analytical tools to this
problem. We describe an optimization-based
framework that provides an interpretation of

various flow control mechanisms, in particular, the utility
being optimized by the protocol’s equilibrium structure. We
also look at the dynamics of TCP and employ linear models
to exhibit stability limitations in the predominant TCP ver-
sions, despite certain built-in compensations for delay.
Finally, we present a new protocol that overcomes these lim-
itations and provides stability in a way that is scalable to ar-
bitrary networks, link capacities, and delays.

Introduction
Congestion control mechanisms in today’s Internet already
represent one of the largest deployed artificial feedback sys-

tems; as the Internet continues to expand in size, diversity,
and reach, playing an ever-increasing role in the integration
of other networks (transportation, finance, etc.), having a
solid understanding of how this fundamental resource is
controlled becomes ever more crucial. Given the scale and
complexity of the network, however, and the heuristic, intri-
cate nature of many deployed control mechanisms (which
we summarize in the next section), until recently this prob-
lem appeared to be well beyond the reach of analytical mod-
eling and feedback control theory. Theoretical research on
this topic (e.g., [1]-[5]) has dealt mostly with simple scenar-
ios (e.g., single-bottleneck, per-flow queueing); see also re-
cent surveys in [6] and [7]. Meanwhile, the Internet
community has turned to small-scale simulations to vali-
date designs. All of these leave huge gaps in our understand-
ing of real network behavior.

In the last few years, large strides have been taken in
bringing analytical models into Internet congestion control

28 IEEE Control Systems Magazine February 2002
0272-1708/02/$17.00©2002IEEE

Low (slow@caltech.edu) is with the Departments of Computer Science and Electrical Engineering, California Institute of Technology, Pasa-
dena, CA 91125, U.S.A. Paganini is with the Department of Electrical Engineering, University of California, Los Angeles, CA 90095, U.S.A.
Doyle is with the Departments of Electrical Engineering and Control and Dynamical Systems, California Institute of Technology, Pasadena,
CA 91125, U.S.A.

©
D

IG
IT

A
L

V
IS

IO
N

LT
D

.

(see e.g., [8]-[22] and the references therein). Key to these
advances has been the explicit modeling of the congestion
measure that communicates back to data sources the infor-
mation on congestion in network resources being used;
more precisely, it is assumed that each network link mea-
sures its congestion by a scalar variable (termed price) and
that sources have access to the aggregate price of links in
their path. These assumptions are implicitly present in
many variants of today’s TCP protocols; this framework ex-
hibits the price signal being used in these protocols (e.g.,
loss probability, queueing delay). Also, it is the natural set-
ting for exploring alternative protocols based on more ex-
plicit price signaling (e.g., bit marking).

Two types of studies are of fundamental interest. On the
one hand, it is important to characterize the equilibrium
conditions that can be obtained from a given congestion
control protocol from the point of view of fairness, effi-
ciency in use of resources, dependence on network parame-
ters, etc. In this regard, the above-mentioned prices can be
interpreted in economic terms (e.g., [9]) and the congestion
control system as seeking the global optimum of a certain
aggregate utility function, subject to network capacity con-
straints. By describing the utility implicit in existing TCP
protocols [11], [12], equilibrium properties are inferred,
some of which corroborate empirically observed features.
This methodology will be reviewed in the section “Equilib-
rium Structure and Utility Optimization.” A second line of in-
quiry concerns the dynamics of congestion control
protocols, directly in the domain of control theory. In partic-
ular, we are interested in the stability of the postulated equi-
libria, especially in the presence of feedback delay, and in
performance metrics such as speed of convergence, capac-
ity tracking, etc. In fact, by incorporating explicit measures
of congestion, recent analysis [21], [22] has shown that the
predominant TCP implementation (called Reno) and its
variants are prone to instabilities when combined with net-
work delays and, more surprisingly, with increases in net-
work capacity. We will show similar studies in the section
titled “Dynamics and Stability.”

This raises the question of whether more efficient and
stable protocols could be developed with the help of this an-
alytic framework. We note that the constraint of decentral-
ization makes it impossible for a controller to be
synthesized by, for example, optimal control; still, one can
try to postulate a plausible control law and support it with
proofs of stability and performance. In this regard, global
stability results that apply to arbitrary networks have been
given for new price-based flow controllers [8], [10], [14],
[15] in the absence of delay; further, delay can be studied in
terms of conditions on control gains to retain stability (e.g.,
[8], [10], [22], [23]). Now as noted in, for example, [24] and
[25], window-based protocols contain an automatic com-
pensation for delay (“self-clocking”); this has led to recent
work seeking protocols that would remain stable for suffi-
ciently small delays [26]-[28]. In this vein, we describe in the

final section, “A Scalable Control,” some of our recent work
in finding a protocol that can be implemented in a decentral-
ized way by sources and routers and that provides linear
stability for arbitrary delays, capacities, and routes.

Although TCP Reno has performed remarkably above ex-
pectations and is widely deployed, we emphasize a key limi-
tation of this congestion control mechanism: by using
packet loss as a congestion measure, high utilization can be
achieved only with full queues, i.e., when the network oper-
ates at the boundary of congestion. This seems particularly
ill-suited to handle the types of traffic that have been ob-
served in recent studies. Indeed, Internet traffic, 90% of
which is TCP based (see measurements at www.caida.org),
exhibits burstiness at many time scales, which is due to the
heavy-tailed nature of file sizes [29]-[33]. In simple terms,
this means that most TCP connections are “mice” (short,
but requiring low latency), but a few long TCP connections
(“elephants,” which can tolerate latency) generate most of
the traffic. By controlling the network around a state with
full queues, the elephants subject the mice to unnecessary
loss and queueing delays. This problem can be avoided by
decoupling loss from price signaling. Another limitation of
using loss to measure congestion is the degradation of per-
formance in the cases where losses are often due to other ef-
fects (e.g., wireless links). These considerations are
motivating a new look at congestion control protocols; our
aim in this article is to argue that a more sound analytical
perspective, now available, should be brought to bear on
this investigation.

Current TCP Protocols
TCP uses “window” flow control, where a destination sends
acknowledgments for packets that are correctly received. A
source keeps a variable called window size that determines
the maximum number of outstanding packets that have
been transmitted but not yet acknowledged. When the win-
dow size is exhausted, the source must wait for an acknowl-
edgment before sending a new packet. Two features are
important. The first is the “self-clocking” feature that auto-
matically slows down the source when a network becomes
congested and acknowledgments are delayed. The second
is that the window size controls the source rate: roughly one
window of packets is sent every round-trip time. The first
feature was the only congestion control mechanism in the
Internet before Van Jacobson’s proposal in 1988 [24]. Jacob-
son’s idea is to dynamically adapt window size to network
congestion. In this section, we will review how TCP infers
congestion and adjusts window size.

TCP also provides other end-to-end services such as er-
ror recovery and round-trip time estimation, but we will
limit our attention to the congestion control aspect.

TCP Tahoe and Reno
The predominant TCP implementations are called Tahoe
and Reno. The basic idea of these protocols is for a source to

February 2002 IEEE Control Systems Magazine 29

gently probe the network for spare capacity by linearly in-
creasing its rate and exponentially reducing its rate when
congestion is detected. Congestion is detected when the
source detects a packet loss.

A connection starts cautiously with a small window size
of one packet (up to four packets have recently been pro-
posed), and the source increments its window by one every
time it receives an acknowledgment. This doubles the win-
dow every round-trip time and is called slow-start. When
the window reaches a threshold, the source enters the con-

gestion avoidance phase, where it increases its window by
the reciprocal of the current window size every time it re-
ceives an acknowledgment. This increases the window by
one in each round-trip time and is referred to as additive in-
crease. The threshold that determines the transition from
slow-start to congestion avoidance is meant to indicate the
available capacity in the network and is adjusted each time
a loss is detected. On detecting a loss, the source sets the
slow-start threshold to half of the current window size, re-
transmits the lost packet, and re-enters slow-start by reset-
ting its window to one.

This algorithm was proposed in [24] and implemented in
the Tahoe version of TCP. Two refinements, called fast re-
covery, were subsequently implemented in TCP Reno to re-
cover from loss more efficiently. Call the time from detecting
a loss (through duplicate acknowledgments) to receiving
the acknowledgment for the retransmitted packet the fast
retransmit/fast recover (fr/fr) phase. In TCP Tahoe, the win-
dow size is frozen in the fr/fr phase. This means that a new
packet can be transmitted only a round-trip time later. More-
over, the “pipe” from the source to the destination is cleared
when the retransmitted packet reaches the receiver, and
some of the routers in the path become idle during this pe-
riod, resulting in loss of efficiency. The first refinement al-
lows a Reno source to temporarily increment its window by
one on receiving each duplicate acknowledgment while it is
in the fr/fr phase. The rationale is that each duplicate ac-
knowledgment signals that a packet has left the network.
When the window becomes larger than the number of out-
standing packets, a new packet can be transmitted in the
fr/fr phase while it is waiting for a (nonduplicate) acknowl-
edgment for the retransmitted packet. The second refine-
ment essentially sets the window size at the end of the fr/fr
phase to half of the window size when fr/fr starts and enters
congestion avoidance directly. Hence, slow-start is entered
only rarely in TCP Reno when the connection first starts and

when a loss is detected by timeout rather than duplicate ac-
knowledgments.

TCP Vegas
TCP Vegas [34] improves upon TCP Reno through three
main techniques. The first is a new retransmission mecha-
nism where timeout is checked on receiving the first du-
plicate acknowledgment, rather than waiting for the third
duplicate acknowledgment (as Reno would), and results
in a more timely detection of loss. The second technique

is a more prudent way to grow the window
size during the initial use of slow-start
when a connection starts up, and it results
in fewer losses.

The third technique is a new congestion
avoidance mechanism that corrects the os-
cillatory behavior of Reno. The idea is to
have a source estimate the number of its
own packets buffered in the path and try to

keep this number betweenα (typically 1) andβ (typically 3)
by adjusting its window size. The window size is increased
or decreased linearly in the next round-trip time according
to whether the current estimate is less than α or greater
than β. Otherwise the window size is unchanged. The ratio-
nale behind this is to maintain a small number of packets in
the pipe to take advantage of extra capacity when it be-
comes available. Another interpretation of the congestion
avoidance algorithm of Vegas is given in [12], in which a Ve-
gas source periodically measures the round-trip queueing
delay and sets its rate to be proportional to the ratio of its
round-trip propagation delay to queueing delay, the propor-
tionality constant being between α and β. Hence, the more
congested its path, the higher the queueing delay and the
lower the rate. The Vegas source obtains queueing delay by
monitoring its round-trip time (the time between sending a
packet and receiving its acknowledgment) and subtracting
from it the round-trip propagation delay.

FIFO, DropTail, and RED
A Vegas source adjusts its rate based on observed queueing
delay; in other words, it uses queueing delay as a measure of
congestion. This information is updated by the FIFO
(first-in-first-out) buffer process and fed back implicitly to
sources through round-trip time measurement. A Reno
source uses loss as a measure of congestion. This informa-
tion is typically generated and fed back to sources through
DropTail, a queueing discipline that drops an arrival to a full
buffer. RED (random early detection) [35] is an alternative
way to generate the congestion measure (loss) to Reno
sources. Instead of dropping only at a full buffer, RED main-
tains an exponentially weighted queue length and drops
packets with a probability that increases with the average
queue length. When the average queue length is less than a
minimum threshold, no packets are dropped. When it ex-
ceeds a maximum threshold, all packets are dropped. When

30 IEEE Control Systems Magazine February 2002

Congestion control mechanisms in
the Internet represent one of the
largest deployed artificial feedback
systems.

it is in between, a packet is dropped with a probability that is
a piecewise linear and increasing function of the average
queue length. This type of strategy is called active queue
management (AQM).

Analytical Models
In this section, we describe analytical models that were de-
veloped in the last few years. A large body of literature exists
on congestion control, but we will focus narrowly on these
recent models.

A network is modeled as a set of L links with finite capaci-
ties c c l Ll= ∈(,). They are shared by a set of N sources in-
dexed byi in set I . Each sourcei uses a set L Li ⊆ of links. The
sets Li define an L N× routing matrix

R
l L

li
i=

∈

1

0

,

,

if

otherwise.

A first consideration is that we will use deterministic flow
models to describe transmission rates, in contrast to much
of classical queueing theory, which relies on stochastic
(e.g., Poisson) models for traffic. While randomness in net-
work arrivals is a natural assumption when modeling entire
connections [36], it is less suitable at the packet level, where
transmission times for congestion-controlled sources are
determined predominantly by feedback, as described in the
previous section. Furthermore, the distributions to be used
in such random models have recently come into question
[29]-[33], and in any event, there are few tractable results on
queueing theory in the presence of feedback (but see [37]).
For these reasons, we will study feedback at a higher level of
aggregation than packets, modeling rates as flow quantities.
Each source i has an associated transmission rate x ti(); the
set of transmission rates determines the aggregate flow y tl()
at each link by

()y t R x tl
i

li i li
f() = −∑ τ , (1)

in which the forward transmission delays τ li
f from sources to

links are accounted for. We assume each link has a capacity
cl in packets per second.

The next step is to model the feedback mechanism that
communicates to sources the congestion infor-
mation about the network. The key idea in the
line of work we are discussing is to associate
with each link l a congestion measure p tl(),
which is a positive real-valued quantity. Due to
the economic interpretations to be discussed in
the next section, we will call this variable a
“price” associated with using link l. The funda-
mental assumption we make is that sources
have access to the aggregate price of all links in
their route,

()q t R p ti
l

li l li
b() = −∑ τ . (2)

Here again we allow for backward delays τ li
b in the feedback

path. As we will discuss later, this feedback model includes,
to a good approximation, the mechanism present in existing
protocols, with a different interpretation for price in differ-
ent protocols (e.g., loss probability in TCP Reno, queueing
delay in TCP Vegas).

The preceding equations can be represented in the
Laplace domain in terms of the delayed forward and back-
ward routing matrices:

[()]
,

,

[()]

R s
e l L

R s
e

f li

s
i

b li

li
f

= ∈

=

−

−

τ if

otherwise0

τ li
b s

il L,

,

if

otherwise.

∈

0 (3)

Then we have, in vector form (T denotes transpose):

y s R s x sf() () ()= , (4)

q s R s p sb
T() () ()= . (5)

To specify the congestion control system, it remains to
define i) how the sources adjust their rates based on their
aggregate prices (the TCP algorithm) and ii) how the links
adjust their prices based on their aggregate rates (the AQM
algorithm). At the source side, we can in general postulate a
dynamic model of the form

� (,)

(,),

z F z q

x G z q
i i i i

i i i i

=
= (6)

where zi would be a local state variable. We will, however,
mostly encounter two special cases: the static case, where
there is no zi and we have x t G q ti i i() (())= , and the
first-order case with z xi i= .

Similarly, at the link level one can write a dynamic law

� (,)
� (,).

v H y v

p K y v
l l l l

l l l l

=
= (7)

February 2002 IEEE Control Systems Magazine 31

Sources

0

0

q
R (s)b

T
p

0

0

Links

x y
R (s)f

…
…

Figure 1. General congestion control structure.

The key restriction in the above control laws is that they
must be decentralized, i.e., sources and links only have ac-
cess to their local information. The overall structure of the
congestion control system is now depicted in Fig. 1, where
the diagonal structure of the source and link matrices repre-
sents the decentralization requirement.

We will discuss TCP models within this general frame-
work. In the next subsection, we will focus on equilibrium
properties; dynamic issues are tackled in the following sub-
section, “Dynamics and Stability.”

Equilibrium Structure
and Utility Optimization
In this section, we study the above feedback at equilibrium,
i.e., assuming the rates and prices are at some fixed values
x y p q∗ ∗ ∗ ∗, , , . We will see how an optimization formulation
helps understand the properties of such equilibria.

The equilibrium relationships y Rx∗ ∗= , q R pT∗ ∗= follow
immediately from (4)-(5). Here R is the static routing matrix;
since we are discussing equilibrium, we can set s = 0 in the
model (3) (equivalently, setting all delays to zero).

The first basic assumption we make is that the equilib-
rium rates satisfy

x f qi i i
∗ ∗= (),

where fi()⋅ is a positive, strictly monotone decreasing func-
tion. This function can be found by finding the equilibrium
point in (6); in the static case, it is just given by the source
static law. Monotonicity is a natural assumption for all pro-
tocols: if qi represents congestion in the source’s path, the
equilibrium source rate should be a monotonically decreas-
ing function of it.

We now see that this assumption alone allows us to intro-
duce an optimization interpretation for the equilibrium by
introducing a source utility function. Namely, consider the
inverse f xi i

−1() of the above function and let U xi i() be its in-
tegral; i.e., ′ = −U x f xi i i i() ()1 . By assumption,U xi i()has a posi-
tive, decreasing derivative and is therefore itself monotone
increasing and strictly concave. Now, by construction, the
equilibrium rate will solve

max ()
x i i i i

i

U x x q− ∗. (8)

The above equation can be interpreted in economic terms: if
U xi i() is the utility the source attains for transmitting at rate
xi, and qi

∗ is the price per unit flow it is hypothetically
charged, the above represents a maximization of an individ-

ual source’s profit. We emphasize that this interpretation
required minimal assumptions about the protocol; given a
model of the source (TCP) control, one can derive from it
the utility function associated with the protocol, as we will
see below.

The role of prices is to coordinate the actions of individ-
ual sources so as to align individual optimality with social
optimality, i.e., to ensure that the solutions of (8) also solve
the problem

max ()
x

i
i iU x

≥ ∑0
, (9)

subject to Rx c≤ ; (10)

in other words, maximize aggregate utility
across all sources, subject to link capacity
constraints. This problem, formulated in
[38], is a convex program for which a unique

optimal rate vector exists. The challenge is to solve it in a
distributed manner over a large network.

A natural way to introduce prices in regard to the above
optimization is the duality approach introduced in [10] (see
also [39] for related ideas and [20] for multicast extensions).
Here prices appear as Lagrange multipliers for the problem
(9)-(10). Specifically, consider the Lagrangian

L x p U x p y c

U x q x p c

i
i

i l
l

l l

i
i

i i i l
l

l

(,) () ()

() .

= − −

= − +

∑ ∑
∑ ∑

The dual problem is

min ()
p i

i
i l

l
lB q p c

≥ ∑ ∑+
0

, (11)

where

B q U x x qi i x i i i i
i

() max ()= −
≥ 0

. (12)

Convex duality implies that at the optimum p∗s (which need
not be unique), the corresponding x ∗ maximizing individual
optimality (12) is exactly the unique solution to the primal
problem (9)-(10). Note that (12) is identical to (8); therefore,
provided the equilibrium prices p∗ can be made to align with
the Lagrange multipliers, the individual optima, computed
in a decentralized fashion by sources, will align with the
global optima of (9)-(10).

The simplest link algorithm that guarantees these equi-
librium prices are indeed Lagrange multipliers, as shown in
[10], is based on applying the gradient projection algorithm
to the dual problem (11):

�
(()) ()

[()] () ,
p

y t c p t

y t c p tl
l l l

l l l

=
− >
− =

+

γ
γ

if

if

0

0 (13)

32 IEEE Control Systems Magazine February 2002

Any pricing scheme that stabilizes
queues or queueing delays solves
the dual problem.

where [] max{ , }z z+ = 0 . The fact that the gradient of the
Lagrangian only depends on aggregate rates yl is key to the
above decentralized implementation at the links. If the
above equations are at equilibrium, we have y cl l

∗ ≤ , with
nonzero prices pl

∗ corresponding to the active constraints.
It follows that equilibrium prices are the Lagrange multipli-
ers. This property, however, is not exclusive to this algo-
rithm; rather, any pricing scheme that stabilizes queues, or
queueing delays (e.g., RED or Vegas, see below), so that flow
rates yl

∗ are matched to capacities cl , will allow for the same
interpretation. This is because matching
rate drives the gradient of the dual problem
(11)-(12) with respect to p to zero, solving
the dual problem and implying that the re-
sulting prices are Lagrange multipliers.

Another approach to price variables, pro-
posed in [8] (and used also in [15]), is to treat
them as a penalty or barrier function for the
constraint (10). Here prices are assumed to
be a static, increasing function of yl ,
p h yl l= (), which becomes large as yl approaches cl . It follows
that the resulting equilibrium maximizes the global utility

U x h y dyi
i

i l

y

l

l∑ ∫∑−() ()
0

,
(14)

which can be seen as an approximation to the above prob-
lem (9)-(10).

To summarize the discussion so far, under very general
assumptions, the equilibrium points of source protocols
can be interpreted in terms of sources maximizing individ-
ual profit based on their own utility functions. Link algo-
rithms generate prices to align, exactly or approximately,
these “selfish” strategies with social welfare. Different pro-
tocols correspond to different utility functionsUi and to dif-
ferent dynamic laws (6)-(7) that attempt, in a decentralized
way, to reach the appropriate equilibrium. We now take a
closer look at modeling Reno and Vegas in this context.

TCP Reno/RED
We focus only on the congestion avoidance phase of TCP
Reno, in which an elephant typically spends most of its time.
We take source rates as the primal variable x and link loss
probabilities as prices p. In this section, we assume the
round-trip time τ i of sourcei is constant and that rate xi is re-
lated to window wi by

x t
w t

i
i

i

()
()=
τ

.
(15)

The window of outstanding packets at time t actually re-
flects the average rate in the interval [,]t ti− τ ; the above ap-
proximation is valid since our models are not intended to
provide accurate description at finer time scales than the
round-trip time.

We also make the key assumption that loss probabilities
p tl()are small so that the end-to-end probabilitiesq ti()satisfy

q t p t p ti l
l L

l
l Li i

() (()) ~ ()= − − −
∈ ∈
∏ ∑1 1

for all i and for all t.
We now model the additive-increase-multiplicative-de-

crease (AIMD) algorithm of TCP Reno in an average sense at
time scales above the round-trip time. In particular, our
models do not attempt to predict a window jump of the sort

observed under MD; rather, they should track the mean evo-
lution of the window as a function of ACKs and losses. We ini-
tially ignore feedback delays, since we are interested in
equilibrium points.

At time t, x ti() is the rate at which packets are sent and
acknowledgments received. A fraction(())1 −q ti of these ac-
knowledgments are positive, each incrementing the window
w ti() by1 / ()w ti ; hence the windoww ti() increases, on aver-
age, at the rate of x t q t w ti i i()(()) / ()1 − . Similarly, negative
acknowledgments are returning at an average rate of
x t q ti i() (), each halving the window, and hence the window
w ti() decreases at a rate of x t q t w ti i i() () () / 2. Hence, since
x t w ti i i() () /= τ , we have for Reno the average model

� ()
() ()x

q t
q t x ti

i

i
i i= − −1 1

22
2

τ
.

(16)

We now consider the equilibrium of (16):

q
xi

i i

∗
∗=

+
2

2 2 2τ ()
.

(17)

From it, we can obtain the utility function of TCP Reno by
identifying the above with the Karush-Kuhn-Tucker condi-
tion ′ =∗ ∗U x qi i i() . This gives the utility function

U x
x

i i
i

i i() tan=

−2
2

1

τ
τ

,
(18)

which seems to appear first in [9] and [11]. Our description
here is slightly different from that in [11] in that, here, loss
probability is taken as the dual variable regardless of the
link algorithms, which from this point of view affect the dy-
namics but not the utility function.

February 2002 IEEE Control Systems Magazine 33

The objective is to have local
dynamic stability for arbitrary

network delays, link capacities, and
routing topologies.

The relation (17) between equilibrium source rate and
loss probability reduces to the well-known relation (see,
e.g., [40] and [41])

x
a

qi
i i

=
τ

,

when the probability qi is small or, equivalently, when the
window τ i ix is large compared with 2. (This corresponds to
replacing(())1 −q ti in (16) by 1, as done in [22].) The value of
the constant a around 1 has been found empirically to de-
pend on implementation details such as TCP variant (e.g.,
Reno versus NewReno versus SACK) and whether delayed
acknowledgment is implemented. Equating ′U xi i() with qi,
the utility function of TCP Reno becomes

U x
a
xi i

i i

() = −
2

2τ
.

This version is used in [15] and [42].
We now turn to the link algorithm, i.e., how loss probabili-

ties p tl() are generated as a function of link rate yl . Both
DropTail and RED produce losses as a function of the state of
the queue, so the question involves modeling of the queue
dynamics as a function of the input rate yl . In the current
context of flow models, it is natural to model queues as inte-
grating the excess capacity; this option is discussed below,
and in the case of RED, one can then easily relate queues to
loss (or marking) probability. Unfortunately, a deterministic
model of DropTail that includes the queue dynamics does
not appear to be tractable.

At the other extreme, many references model queues as
being in steady state and postulate a static law p h yl l l= () for
loss probability as a function of traffic rate, e.g., [8], [15]. The
question as to whether the steady-state queue assumption
can be justified is still a subject of current research [43]; how-
ever, dynamic simulation studies of Reno/RED, as in [22] or
those described below (see Fig. 2(b)), indicate that queue dy-
namics are indeed significant at the time scale of interest.

For this reason we will consider the first option and
model queues as integrators, focusing on the RED queue
management to obtain simple models of loss probabilities.
Letb tl()denote the instantaneous queue length at time t; its
dynamics is then modeled by

� (()), ()

[()] , () .
b

y t c b t

y t c b tl
l l l

l l l

=
− >
− =

+

if

if

0

0 (19)

RED averages the instantaneous queue by an exponentially
weighted average; denoting r tl() to be the averaged queue
length, we can model it as a low-pass filter

� (() ())r c r t b tl l l l l= − −α (20)

for some constant0 1< <α l . Given the average queue length
r tl(), the marking (or dropping) probability is given by a
static function

p t m r t

r t b

r t b b r t b
l l l

l l

l l l l l l() (()) :

, ()

() , ()
= =

≤
− < <

0

ρ ρ l

l l l l l l

l l

r t p b r t b

r t b

η () (), ()

, ()

− − ≤ <
≥

1 2 2

1 2 (21)

where b bl l, , and pl are RED parameters,

ρ ηl
l

l l
l

l

l

p
b b

p
b

: :=
−

= −
and

1
.

Now (19), (20), and (21) fall into the general form (7), where
the internal state vl is composed of bl and rl .

Assume now that these equations are in equilibrium. It is
not difficult to see that in this case y cl l

∗ ≤ , and that the in-
equality is only strict when pl

∗ = 0. These facts imply that the
equilibrium pl

∗ constitute a set of Lagrange multipliers for
the dual problem (11)-(12). Thus, we conclude that if the
Reno/RED reaches equilibrium, the resulting source rates xi

∗

will solve the primal problem (9)-(10) with the source utility
functions given in (18). Moreover, the loss probabilities pl

∗

are Lagrange multipliers that solve the dual problem
(11)-(12).

We remark again that the preceding analysis refers to the
averaged model of TCP, as described in (16); we are not at-
tempting to impose equilibrium on the detailed evolution of
a window under AIMD, but rather on its mean evolution, as
would happen with the average of many identical sources
(see simulations below). Still, even in this mean sense, we
have not given any indication yet that TCP reaches equilib-
rium. Indeed, in the next section we will find that it often
does not, since the equilibrium is unstable and a limit cycle
is observed; in particular, average windows and queues can
oscillate dramatically. Nevertheless, the above equilibrium
analysis is useful in understanding the state that is aimed for
by the current protocols, i.e., the resource allocation policy
implicitly present in the current Internet. Furthermore,
there is evidence that some of the insights derived from the
equilibrium models do reflect empirical properties of the
Internet. This suggests that the models might have value in
describing the protocol’s long-term behavior, even in an os-
cillatory regime. We now discuss some of these insights.

Delay and Loss
The current protocol (Reno with DropTail) fills, rather than
empties, bottleneck queues when the number of elephants
becomes large, leading to a high loss rate and queueing de-
lay. What is more intriguing is that increasing the buffer size
does not reduce loss rate significantly, but only increases
queueing delay. This delay and loss behavior is exactly op-
posite the mice-elephant control strategy we aim for: to
maximally utilize the network in a way that leaves network

34 IEEE Control Systems Magazine February 2002

queues small so that delay-sensitive mice can fly through
the network with little queueing delay.

According to the duality model, loss probability under
Reno is the Lagrange multiplier, and hence its equilibrium
value is determined solely by the network topology and the
number of sources, independent of link algorithms and buffer
size. Increasing the buffer size but leaving everything else
unchanged does not change the equilibrium loss probabil-
ity, and hence a larger backlog must be maintained to gener-
ate the same loss probability. This means that with
DropTail, the buffer at a bottleneck link is always close to
full, regardless of buffer size. With RED, since loss probabil-
ity is increasing in average queue length, the queue length
must increase steadily as the number of sources grows.

Fairness
It is well known that TCP Reno discriminates against con-
nections with large propagation delays. This is clear from
(17), which implies that Reno equalizes windows for
sources that experience the same loss probability, and
hence their rates are inversely proportional to their
round-trip times.

The equilibrium characterization (17) also exposes the
“beat down” effect, where sources that go through more
congested links, seeing larger qi, receive less bandwidth.
This effect is hidden in single-link models and, in multilink
models, is often confused with delay-induced discrimina-
tion of TCP, as expressed in (17). It has been observed in
simulations [44] and has long been deemed unfair, but the
duality model shows that it is an unavoidable, and even de-
sirable, feature of end-to-end congestion control. For each
unit of increment in aggregate utility, a source with a longer
path consumes more resources and hence should be beaten
down. If this is undesirable, it can be remedied by weighting
the utility function with delay.

TCP Vegas
The dynamic model and utility function Ui of TCP Vegas
have been derived and validated in [12]. We briefly summa-
rize the results here.

The utility function of TCP Vegas is

U x d xi i i i i() log= α ,

where α i is a protocol parameter and di is the round-trip
propagation delay of source i. In equilibrium, source i buff-
ersα i id packets in the routers in its path. The utility function
implies that Vegas achieves proportional fairness in equilib-
rium.

The price variable in TCP Vegas is queueing delay, which
evolves according to

� (())p
c

y t cl
l

l l= −1
,

(22)

with an additional nonnegativity constraint, exactly as in
(13) with γ replaced by 1/cl . Therefore, again we can inter-
pret equilibrium prices as Lagrangian multipliers.

To describe the rate adjustment (6), let

x t U q t
d

q ti i i
i i

i

() (())
()

= ′ =− 1 α

be the target rate chosen based on the end-to-end queueing
delay q ti() and the marginal utility ′Ui. Then Vegas’s source
algorithm is

�
, () ()

, () ()
x

x t x t

x t x t
i

i
i i

i
i i

=
<

− >

1

1

2

2

τ

τ

if

if

moving the source rate x ti() toward the target rate x ti()at a
pace of1 2/ τ i .

The models of TCP Reno and Vegas are summarized in
Table 1.

Dynamics and Stability
As discussed in the previous section, static or dynamic con-
trol laws at sources and links attempt to drive the system to
a desirable equilibrium point. So far, we have only used dy-
namic models to derive the equilibrium points, and we note
that there can be different dynamic laws with the same equi-
librium, only distinguished by their dynamic properties,
which we now discuss. Mainly, we would like to determine
whether the equilibrium is (locally or globally) stable. We

February 2002 IEEE Control Systems Magazine 35

Table 1. Models of TCP/AQM. (x t U q ti i i() (())= ′−1)

TCP Model

Reno Source control � ()
() ()x

q t
q t x ti

i

i
i i= − −1

2
1
2

2

τ

RED Link control � (()) ()

[()] ()
�

b
y t c b t

y t c b t
r

l
l l l

l l l

l

=
− >
− =

=

+

if

if

0

0
− −

=
α l l l l

l l l

c r t b t

p m r

(() ())

()

Utility
U x

x
i i

i

i i() tan=

−2
2

1

τ
τ

Vegas Source control

�
, () ()

, () ()
x

x t x t

x t x t
i

i
i i

i
i i

=
<

− >

1

1

2

2

τ

τ

if

if

FIFO Link control

�
(()), ()

[()] , ()
p c

y t c p t

c
y t c p t

l
l

l l l

l
l l l

=
− >

− =+

1
0

1

if

if 0

Utility U x d xi i i i i() log= α

begin with a brief overview of some dynamic laws that have
been proposed in the optimization framework and that al-
low for analytical stability results. We will then move to
study in detail the dynamics of TCP Reno/RED.

In general, one could have dynamics at both sources and
links; however, most analytical results refer to systems
where only one of the laws is dynamic and the other static.
In this regard, [8] denotes by primal algorithms those where
the dynamics are at the sources, and by dual algorithms
when the dynamics are at the links. An example of dynamics
at the source is the first-order law (used in [8] for a particu-
lar utility function)

� (()))x U x q xi i i i i= ′ −κ .

Combined with a static link law p h yl l l= (), it is shown in [8]
that the system, in the absence of delays, has a single global at-
tractor, which optimizes the cost function in (14); in fact, this
modified utility serves as a Lyapunov function for the system.

An example of dynamics at the links was already given in
(13); combined with the static source control

[]x t U q ti i i() (())= ′ − +1 , (23)

it is shown in [10] that global stability is obtained. Another
link algorithm, proposed in [45] and [46], is

�
(), ()

[] , (
p

y c b p t

y c b p tl
l l l l l l

l l l l l l

=
− + >
− + +

γ α
γ α

if

if

0

) ,=

 0

where bl is the queue length, as in (19). Global stability in the
absence of delay for this scheme, together with (23), has been
proved in [14] by a Lyapunov argument. This protocol can be
implemented in a similar fashion to RED, but simulations in
[45] and [46] have shown a marked improvement over RED in
terms of achieving fast responses and low queues.

Recently, [16] has proposed a scheme with dynamics at
both links and sources, but working at different time scales;
thus, stability analysis reduces to two problems, one with
static links and one with static sources.

We emphasize that the Lyapunov-based stability proofs
in [8] and [14], while global, do not consider network de-
lays. Some local, linearized studies in [8] and [23] examine
tolerance to delay and in general yield bounds on the vari-
ous gain parameters of the algorithms (e.g., κi, γ l must be in-
versely proportional to delay) to maintain local stability. In
turn, the global stability analysis in [10] is done in discrete
time, possibly asynchronously, and does allow for delays,
but again stability is guaranteed only if gain parameters are
sufficiently small.

Note that delays are the only dynamics of the open-loop
system described in Fig. 1; were it not for delay, the rate and
price adaptation could be performed arbitrarily fast. Thus,
it is natural that gain parameters should be chosen in-
versely proportional to delay. Since sources measure their

round-trip time, and a scaling by1/τ i is already implicit in a
window-based protocol due to (15) (the “self-clocking” fea-
ture), this raises the intriguing possibility that compensa-
tion for delay could be done automatically in a protocol
such as Reno.

We now turn to a detailed study of Reno/RED that con-
tains dynamics at both sources and links.

Dynamics of Reno/RED
The dynamic model of Reno/RED has so far been used only
to understand the equilibrium properties; we now study the
dynamic properties around an equilibrium by linearizing
the model developed earlier. Before we do that, we must re-
fine the nonlinear model to include the effect of delays,
which are essential to stability analysis.

For this purpose, we must account for forward and back-
ward delays in the propagation of rates and prices, as was
done in (1)-(2). For the window dynamics, a first approxima-
tion would be

� ()(())
()

() ()
()

w x t q t
w t

x t q t
w t

i i i i
i

i i i
i= − − − −τ τ1

1
2

,
(24)

withq ti()as in (2). Here we incorporate the fact that the rate
of incoming ACKs is determined by the source rate τ i units
of time ago. However, a subtle issue that arises in these mod-
els is that the round-trip time is itself time varying, since it
depends on queueing delays. In particular, round-trip time
can be expressed as

τ i i li
l

l

l

t d R
b
c

() = + ∑ ,

where di is the round-trip propagation delay and bl is the
backlog at link l at the time the packet arrived at the link.
These arrival times are difficult to capture exactly, since
they depend themselves on queueing delays earlier in the
path; this would mean that the time argument in bl above
would depend recursively on other queues, themselves at
earlier times, and so on. We avoid this issue by assuming a
common time t for all the queues

τ i i li
l

l

l

t d R
b t

c
()

()= + ∑ .
(25)

This simplification is acceptable provided we do not at-
tempt to model time resolution smaller than round-trip
times. Still, difficulties remain. In particular, if one general-
izes (15) to

x t
w t

ti
i

i

()
()
()

=
τ

,
(26)

the window equation (24) would contain x t t wi i i(()) [− =τ
(())] / [(())]t t t ti i i− −τ τ τ , with a nested time argument in the

36 IEEE Control Systems Magazine February 2002

round-trip time, which is not easy to interpret. For this rea-
son, we adopt the following convention: whenever
round-trip time, or forward and backward delay, appears in
the argument of a variable, we will replace it by its equilib-
rium value τ i

∗, τ
li

f ∗, τ
li

b ∗. This accounts for equilibrium
queueing delays, but at that level does not include their vari-
ation in time. However, when round-trip time appears in the
dependent variable, as in (26), we will consider it time vary-
ing and use for it the model in (25). This avoids recursive
time arguments but is admittedly an approximation, done
exclusively for model tractability. (Similar, though slightly
more restrictive, approximations were made in [22]. As this
paper first noted, and we corroborate below, retaining delay
variations in the round-trip time is essential for the predic-
tive power of this model.) Confidence in these approxima-
tions can only be obtained through comparisons with
packet-level simulations.

With these approximations, we obtain the following non-
linear, time-delayed model for Reno, expanding on (24):

()� ()
() ()

w R p t
w t

t w ti li
l

l li
b i i

i i i

= − −

−
−∑ ∗

∗

∗1
1τ τ

τ τ

()− − −
−∑ ∗
∗

∗

1
2

R p t
w t w t

tli
l

l li
b i i i

i i

τ τ
τ τ

() ()
()

.

Assuming the routing matrix R has full rank, there is a
unique equilibrium (,)w p∗ ∗ . Linearizing around it, we have
(variables now denote perturbations)

()� ()
*

w
q

R p t
q w

w ti
i i l

li l li
b i i

i
i= − − −∗ ∗

∗
∗ ∗

∑1
τ

τ
τ

.

Now consider the link dynamics of RED, as described in
Table 1. For the purposes of linearization, we note that
nonbottleneck links (with empty equilibrium queues) can
be ignored. For bottleneck links, we make the assumption
that rate increases of a source affect all bottlenecks in its
path (we do not model the throttling effect that upstream
links may have on downstream ones) and write

()
()

()

�b R
w t

t
c

R
w t

d R

l li
i

i li
f

i li
f l

li
i

i li
f

i k

=
−

−
−

=
−

+

∑

∑

∗

∗

∗

τ

τ τ

τ

()ik k li
f

k
lb t c

c
∑ −

−
∗τ /

.

Let τ i i kik k kd R b c∗ ∗= + ∑ / be the equilibrium round-trip time
(including queueing delay). Linearizing we have (variables
now denote perturbations):

()�
()

b R
w t

R R
w

c
b tl li

i

i li
f

i i
li

k
ki

i

i k
k li=

−
− −∑ ∑ ∑

∗

∗

∗

∗

τ
τ τ

τ
2 ()f ∗ .

The second term above would be ignored if we did not in-
clude queueing delay in the round-trip time. The double

summation sums over all links k that share a source i with
link l. It says that the link dynamics in the network are cou-
pled through shared sources. The term (/) ()w c b ti i k k li

f∗ ∗ ∗−τ τ
is roughly the backlog at link k due to packets of source i, un-
der FIFO queueing. Hence the backlog b tl() at link l de-
creases at a rate that is proportional to the backlog of this
shared sourcei at another link k. This is because the backlog
in the path of source i reduces the rate at which source i
packets arrive at link l and hence decreases b tl().

Putting everything together, Reno/RED is described, in
the Laplace domain, by

w s sI D D R s p s

p s sI D D b s

b

b
T() () () (),

() () (),

= − +
= +

−

−
1

1
2

3
1

4

()() () () ()s sI R s D R D R s D w sf
T

f= +
−

5 6

1

7 (27)

where the diagonal matrices are

D
q w

D c

D
w

i i

i

l l

i

i

1

3

5

=

=

=

∗ ∗

∗

∗

diag

diag

diag

τ
α

τ

,

(),

(∗

∗ ∗

=

=

=
)

,

(),

2

2

4

6

1
D

q
D c

D

i i

l l l

diag

diag

d

τ
α ρ

iag diag
1 1

7c
D

l i

 =

∗, ,

τ

and R sf () and R sb() are defined in (3).
To gain some insight into the system’s behavior, let us

specialize to the case of a single link with N identical sources
(see generalization to heterogeneous sources in [47]). The
transfer functions are (dropping all subscripts and eliminat-
ing b s())

()w s
e

p s p w
p s

b s

() ()
*

= −
+

−

∗ ∗ ∗ ∗

τ

τ
,

(28)

p s
c

s c
Ne

s e
w s

f

f

s

s
() ()

*

**
=

+ +

−

−

α ρ
α τ

τ

τ
,

(29)

where w c N∗ ∗= τ / is the equilibrium window size and p∗ is
the equilibrium loss probability. When forward delay τ f

∗ = 0,
the model (28)-(29) reduces to that in [22]. It is easy to show
that τ τf ∗ ∗< implies that (29) is open-loop stable. Hence the
closed-loop system is stable if and only if the loop function

L s
c

s c s e

N
p s p w

ef s

s()
()

=
+ + +∗ − ∗ ∗ ∗ ∗

−
∗

∗α ρ
α τ ττ

τ1

does not encircle (,)−1 0 as s traverses the closed D contour
in the complex plane. Substitution with the equilibrium val-
ues of p∗ and w ∗ yields (using p w∗ ∗−~ /2 2)

L s
c

s c s e

c
N c s N

ef s

s()
()

=
+ + +∗ −

∗

∗
−

∗

∗α ρ
α τ

τ
ττ

τ1
2 2

3 3

2
.

(30)

February 2002 IEEE Control Systems Magazine 37

The first factor above is due to queue averaging in RED.
The second factor describes the relation between windows
and buffer size; the term e

f s− ∗τ arises due to the effect of
queueing delays in (27). If τ f ∗ = 0, it reduces to a low-pass fil-
ter of time constant1/τ∗. The third term is due to Reno; it has
a dc gain of (/) (/)c N w N3 3 2 34 4τ∗ ∗= and a pole at
(/) (/)2 22N c wτ τ∗ ∗ ∗= . Under typical conditions, the equilib-
rium window satisfiesw ∗ >> 2so the system has high gain at
low frequencies and a pole that is slower than that of the
second term. Finally, we have the round-trip feedback delay.

The above loop gain consists of a stable function times a
pure delay. The latter will provide significant phase, starting
at frequencies of the order of1/τ. Therefore, a classical Bode
plot analysis says that closed-loop stability will require that
the loop gain at those frequencies be below unity. (Equiva-
lently, one might say that it is impossible for a stable loop to
track variations that are faster than the pure delay of the
loop.) This suggests that it is difficult for RED to stabilize
Reno, as extensive simulation experience has shown. In par-

ticular, assuming τ or c become large, at a fixed frequency ω
the term will be approximately

c
Nj

2

2
τ
ω

∗

,

which grows in magnitude, and has 90° of phase, and is thus
destabilizing. Similar conclusions happen when N is small.
Note that instability for high τ is not surprising; however, here
it shows that Reno is not successful in scaling down gains by
τ, as was suggested as a stabilizing method in the beginning of
the section, based on the self-clocking property. Perhaps
more striking is the destabilizing effect of high capacity; as
routers become faster Reno is bound to go into an unstable
regime. Intuitively, this is because higher capacity leads to
higher equilibrium rate. This produces higher gain in the
multiplicative term of AIMD since sources update more fre-
quently, on each acknowledgment, with a larger amplitude.

Simulation Studies
The equilibrium model has been validated in [48] for Reno
and in [12] for Vegas. In this section, we present simulation
results to validate our linear dynamic model when the sys-
tem is stable or barely unstable. They also illustrate numeri-
cally the stability region of Reno/RED.

We consider a single link of capacity c pkts/ms shared by
N sources with identical round-trip propagation delay d ms.
For N = 20 30 60, , ,… sources, capacity c = 8 9 15, , ,… pkts/ms,
and propagation delay d = 50 55 100, , ,… ms, we examine the
Nyquist plot of the loop gain of the feedback system (L j()ω
in (30)). For each (,)N c pair, we determine the delay
d N cm(,), at 5-ms increments, at which the smallest intercept
of the Nyquist plot with the real axis is closest to −1. This is
the delay at which the system(,)N c transits from stability to
instability according to the linear model. For this delay, we
compute the critical frequency f N cm(,) at which the phase
of L j()ω is −π. Note that the computation of L j()ω requires
equilibrium round-trip time τ, the sum of propagation delay
d N cm(,) and equilibrium queueing delay. The queueing de-
lay is calculated from the equilibrium model. Hence, for
each (,)N c pair that becomes barely unstable at a delay be-
tween 50 ms and 100 ms, we obtain the critical (propaga-
tion) delay d N cm(,) and the critical frequency f N cm(,).

We repeat these experiments in ns-2, using persistent FTP
sources and RED with ECN marking. The RED parameters
are (0.1, 40 pkts, 540 pkts,10 4−). For each (,)N c pair, we ex-
amine the queue and window trajectories to determine the
critical delay d N cns(,) when the system transits from stabil-
ity to instability. We measure the critical frequency f N cns(,),
the fundamental frequency of queue oscillation, from the
FFT of the queue trajectory. Thus, corresponding to the lin-
ear model, we obtain the critical delay d N cns(,) and fre-
quency f N cns(,) from simulations.

We compare model prediction with simulation. Fig. 2(a)
plots the critical delay d N cm(,) computed from the linear

38 IEEE Control Systems Magazine February 2002

100

95

90

85

80

75

70

65

60

55

50

D
el

ay
 (

M
od

el
)

50 55 60 65 70 75 80 85 90 95 100
Delay (NS)

(a)

30 Data Points

30 Data Points

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Fr
eq

ue
nc

y
(M

od
el

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Frequency (NS)

(b)

Static-Link Model

Dynamic-Link Model

Figure 2. Validation: comparison of critical (round-trip
propagation) delay and critical frequency computed from linear
model and measured from simulation (NS). (a) Critical delay, ms. (b)
Critical frequency, Hz.

model versus the critical delay d N cns(,) from packet-level
simulations. Each data point (there are 30 of them) corre-
sponds to a particular(,)N c pair. The dotted line is where all
points should lie if the linear model agrees perfectly with the
simulation. Fig. 2(b) gives the corresponding plot for critical
frequencies f N cm(,) versus f N cns(,). The agreement be-
tween model and simulation seems quite reasonable (recall
that delay values have a resolution of 5 ms). Also shown in
Fig. 2(b) are critical frequencies predicted from the linear
model if the link dynamics are ignored and congestion prob-
ability is proportional to flow rate, p t y t() ()= ρ , using the
same Nyquist plot method described above. It shows that
queue dynamics is significant at the time scale of interest.

Fig. 3 illustrates the stability region implied by the linear
model. For each N , it plots the critical delay d N cm(,) versus
capacity c. The curve separates stable (below) from unsta-
ble regions (above). The negative slope shows that
TCP/RED becomes unstable when delay or capacity is large.
As N increases, the stability region expands, i.e., a small load
induces instability. A larger delay or capacity, or a smaller
load, leads to a larger equilibrium window; this confirms the
folklore that TCP behaves poorly at large window size.

A Scalable Control
The above discussion suggests that the current protocol
may be ill-suited for future networks where both delay and
capacity can be large. This has motivated the search for pro-
tocols that scale properly so as to maintain stability in the
presence of these variations. With regard to delay stability,
scaling of source gains by 1/τ i was first suggested in [25] and
subsequently proved in [26]-[28] to provide stability for
“primal” laws involving first-order source control and static
link marking, provided delay or control gain is sufficiently
small. The concept of scaling down gains by delay was al-
ready mentioned in the context of optimization-based sta-
bility proofs; when the scaling is done by a common global
constant, this can be very conservative. In contrast, individ-
ualized scaling as suggested here has the appealing feature
that sources with low round-trip times can respond quickly
and take advantage of available bandwidth, and it is only
those sources (with long delays) whose fast response com-
promises stability that must slow down.

In this section, we describe a protocol, developed in
[48], that can be implemented in a decentralized way by
sources and links and that satisfies some basic objectives:
high network utilization in equilibrium and local stability
for arbitrary delays, capacities, and routing. These require-
ments impose certain constraints on the linearized dynam-
ics: integration at links and conditions on the gain at
sources and links. We will present a global implementation
by nonlinear algorithms at sources and links that are con-
sistent with the linearization requirements. We will also
discuss signaling implications of this protocol and con-
clude with a packet-level simulation that validates the the-
oretical results.

Objectives and Linear Design
We now lay out a series of objectives for the feedback con-
trol laws in purely local (linearized) terms. These will lead
us to a local control law, which is proved in [48] to achieve
these objectives.

A first objective is that the target capacity cl is matched
at equilibrium; as in (13), this can be achieved when prices
integrate the excess capacity (variables denote perturba-
tions in this subsection):

�p yl l l= γ .

Is this the only choice? If exact tracking of capacity is de-
sired, there must be an integrator in the loop; and as ex-
plained in [48], to have stability, we must perform the
integration at the lower-dimensional end of the problem,
i.e., at the links. So the above is the simplest law consistent
with this objective; the constant γ l will be chosen later.

The next, main objective is to have local dynamic sta-
bility for arbitrary network delays, link capacities, and
routing topologies.

We now argue more carefully for the desired scaling as a
function of delay. As remarked earlier, delays are the only
dynamics of the open loop; therefore, they are the only
quantity that sets a time scale to our closed-loop behavior.
Thus, we aim here for a system where a scaling of all delays
by a common factor would result in identical time responses
except for time scale. Consider first a single-link, sin-
gle-source problem. The network delay and the above link
integrator will yield a term

e
s

s− τ

in the loop-transfer function. Thinking, for example, in
terms of its Nyquist plot, instability will always occur at high
values of τ unless the gain is made a function of τ. Indeed, in-

February 2002 IEEE Control Systems Magazine 39

100

95

90

85

80

75

70

65

60

55

50

D
el

ay
[m

s]

8 9 10 11 12 13 14 15
Capacity [pkts/ms]

N = 60N = 50

N = 40

N = 30

N = 20

Figure 3. Stability region: for each N, the region above the curve
is unstable and the one below is stable.

troducing a gain K /τ in the loop (specifically at the source)
leads to a loop gain

K
e

s

s− τ

τ
,

which is scale invariant: namely, its frequency response is
a function of τω, so Nyquist plots for all values of τ would
fall on a single curve, and by choosing K appropriately
one can ensure stability for all τ. Further, the time re-
sponses of such a loop will give the desired invariance up
to scale. Inspired by this, for the multilink, multisource
case, we are led to include a factor1/τ i in the control gain
at each source i.

Now we turn to invariance to capacity and routing. It is
crucial that the overall loop gain introduced by the routing
matrices Rf , Rb be kept under control; intuitively, as more
sources or links participate in the feedback, the gain must
be appropriately scaled down. The difficulty is implement-
ing this in a decentralized fashion, without access to the
global routing information. To scale down the gain due to Rf

at links, we exploit the fact that, at equilibrium, the aggre-
gate source rates add up to capacity, so R x cf ()0 ∗ = . Since
sources know their rates and links their capacities, one is
led to introduce a gain 1/cl at each link and a gain xi

∗ at each
source. To scale down the gain due to Rb at sources, we in-
troduce a gain1/M i at each source, M i being the number of
bottleneck links in the source’s path.

Summarizing the above requirements in their simplest
possible form, we propose the following linear control laws:

• For the source, a static gain (from qi to xi) of

− = −
∗

κ α
τi

i i

i i

x
M

: ,
(31)

where α i is a gain parameter to be chosen, xi
∗ is the

equilibrium rate, τ i is round-trip time, and M i is a
bound on the number of bottleneck links in source i’s
path. The sign is used to provide negative feedback
from prices to rates.

• For the link, an integrator with gain normalized by
(virtual) capacity

p
c s

yl
l

l= 1
.

(32)

Note that the normalization gives this price units of
time. In practice, cl is chosen to be strictly less than
the actual link capacity in order to maintain zero
buffer in equilibrium. If cl were the actual link capacity,
pl would represent the queueing delay at the link and
is the price signal used in TCP Vegas (see (22)); so
here we can think of pl as a “virtual” queueing delay
(see [16] for related ideas).

It is proved in [48] that, provided the routing matrix Rhas
full row rank, and the gains α i < 1, the feedback system with
source algorithm (31) and link algorithm (32) is linearly sta-
ble for arbitrary delays, link capacities, and routing.

Global, Nonlinear Implementation
We now describe a global implementation by links and
sources that have suitable equilibrium points, around which
the linearization satisfies the requirements laid out above.

The price dynamics can be implemented by the link al-
gorithm

�
(()), () ;

[()] , ()
p c

y t c p t

c
y t c p t

l
l

l l l

l
l l l

=
− >

− +

1
0

1

if

if =

0.

That is, prices integrate excess capacity in a normalized
way and are saturated to be always nonnegative. At equilib-
rium, bottlenecks with nonzero price will have y cl l= as re-
quired. Nonbottlenecks with y cl l< will have zero price.

For the sources, the linearization requirement (31) leads
to a differential equation

∂
∂

= −f
q

f q
M

i

i

i i i

i i

α
τ

()
,

which can be solved analytically and gives the control law

x f q x ei i i i

q

M
i i

i i= =
−

(): ,max

α
τ

(33)

as the static source law. Note that the smaller the delay, the
more responsive a source is in varying its rate as a function
of price. The larger the delay, the more conservative the
source control is, in order to avoid instability.

Here, x imax , is a maximum rate parameter, which can vary
for each source, and in fact can also be scheduled to depend
on M i, τ i. All that is required is that it does not depend onqi.
For instance, x imax , can be chosen to compensate for the ef-
fect of delay τ i on equilibrium rate.

The utility function corresponding to the source con-
trol is

U x
M

x
x

x
x xi

i i

i i

() log ,
,

,= −

≤τ
α

1
max

maxfor i.

The above is the simplest nonlinear source law that gives
the required scaling; as discussed in [48], more degrees of
freedom are available by letting α i be a function of qi; how-
ever, it is important to emphasize that the stability require-
ments do pose constraints on the family of utility functions.

40 IEEE Control Systems Magazine February 2002

February 2002 IEEE Control Systems Magazine 41

Packet-Level Implementation
Requirements
We briefly discuss here the information needed at sources
and links to implement the dynamic laws we defined and the
resulting communication requirements.

Links must have access to their aggregate flow yl ; this
quantity is not directly known but can be estimated from ar-
riving packets (see, e.g., [45]). Note also that since the rate is
integrated, smoothing is already built into the process. The
target capacity cl is assumed known. Indeed, a simple way to
implement the price updates is to maintain a “virtual queue”
counter that is incremented with received packets and dec-
remented at the virtual capacity rate. Then prices are ob-
tained by dividing this counter by the virtual capacity.

Sources must have access to the round-trip time τ i, which
can be obtained by timing packets and their acknowledg-
ments. Note that since the target equilibrium state is with
empty queues, at equilibrium we will have τ i id∗ = ; it is there-

fore recommended to use an estimate of di (typically the
minimum observed round-trip time), as is done in Vegas.
This avoids the possibility that temporary excursions of the
real queue (inevitable at the packet level) would have a
destabilizing effect via the round-trip time.

Also, sources must receive two parameters from the net-
work: the aggregate price qi and the number of bottlenecks
M i. To communicateqi, the technique of random exponential
marking [45] can be used. Here, an ECN bit would be marked
at each link l with probability 1 1− φ φ >− p l , . Assuming inde-
pendence, the overall probability that a packet from source i
gets marked is1 − φ− q i , and thereforeqi can be estimated from
marking statistics at each source. This requires the knowl-
edge of φ, which is presumably a global constant set a priori.
Alternatively, packet dropping can be used in lieu of marking;
provided drop probabilities are low, the superposition of
probabilities holds to a good approximation.

Regarding M i, in the simplest implementation one would
employ an upper bound, which could be a globally known

20

18

16

14

12

10

8

6

4

2

0
0

0

5

5

10

10

15

15

Time [s]
(a)

Time [s]
(c)

Time [s]
(b)

Time [s]
(d)

In
di

vi
du

al
W

in
do

w
 [p

kt
s]

In
di

vi
du

al
W

in
do

w
 [p

kt
s]

500

450

400

350

300

250

200

150

100

50

0
0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

In
st

an
ta

ne
ou

s
Q

ue
ue

 [p
kt

s]
In

st
an

ta
ne

ou
s

Q
ue

ue
 [p

kt
s]

160

140

120

100

80

60

40

20

0

7000

6000

5000

4000

3000

2000

1000

0

Figure 4. Individual window and queue traces. Simulation parameters: 50 sources, capacity = 9 pkts/ms,α = 0 8. , virtual capacity = 95%.
(a) Individual window (delay = 40 ms). (b) Queue (delay = 40 ms). (c) Individual window (delay = 200 ms). (d) Queue (delay = 200 ms).

42 IEEE Control Systems Magazine February 2002

constant or based on the total number of links in the
route, found, for example, from traceroute information
in IP. For a more aggressive control one would need to
communicate, in real time, the number of bottleneck
links. This can be done analogously to what is done with
prices, using a second ECN bit. Assume that links that
are bottlenecks mark this bit with probability1 1− φ− , and
those that are not do not mark. Then the probability of
marking on a route is1 − φ− M i , which allows for the esti-
mation of M i at the sources in real time. This introduces
a time-varying source law whose closed-loop stability
requires further study.

Once the relevant parameters are measured or esti-
mated, the static exponential law in (33) can be used to
determine the desired rate. Multiplying by the mea-
sured round-trip time gives the desired window (after a
round-off) which can then be used directly to control
transmission. Thus, we have an implementation sce-
nario that only adds a moderate amount of overhead to
the current Internet protocols.

Simulation Studies
A packet-level implementation has been completed us-
ing the parallel simulator Parsec [50]. The simulation in-
cludes window management, link queueing, and delay,
but at this point does not include marking; prices are
communicated as floating-point numbers. We simulate a
single link with capacity 9 pkts/ms that is shared by 50
sources. Fig. 4 shows the individual window and queue
as a function of time when the round-trip propagation
delay is 40 ms and 200 ms, respectively. As expected,
both converge regardless of delay. Longer delay sets a
larger time scale for the closed-loop behavior.

Acknowledgments
The simulation results are taken from [47] and con-
ducted by Sachin Adlakha and Jiantao Wang.

References
[1] L. Benmohamed and S.M. Meerkov, “Feedback control of congestion
in store-and-forward networks: The case of a single congested node,”
IEEE/ACM Trans. Networking, vol. 1, pp. 693-707, Dec. 1993.

[2] S. Chong, R. Nagarajan, and Y.-T. Wang, “Designing stable ABR flow
control with rate feedback and open loop control: First order control
case,” Perform. Eval., vol. 34, no. 4, pp. 189-206, Dec. 1998.

[3] E. Altman, T. Basar, and R. Srikant, “Congestion control as a stochas-
tic control problem with action delays,” Automatica, Dec. 1999.

[4] H. Ozbay, S. Kalyanaraman, and A. Iftar, “On rate-based congestion
control in high-speed networks: Design of an h∞ based flow controller for
single bottleneck,” in Proc. Amer. Control Conf., 1998.

[5] S. Mascolo, “Congestion control in high-speed communication net-
works using the Smith principle,” Automatica, vol. 35, no. 12, pp.
1921-1935, Dec. 1999.

[6] E.J. Hernandez-Valencia, L. Benmohamed, R. Nagarajan, and S.
Chong, “Rate control algorithms for the ATM ABR service,” Eur. Trans.
Telecommun., vol. 8, pp. 7-20, 1997.

[7] R. Srikant, “Control of communication networks,” in Perspectives in
Control Engineering: Technologies, Applications, New Directions, T.
Samad, Ed. Piscataway, NJ: IEEE Press, 2000, pp. 462-488.

[8] F.P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: Shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, no. 3, pp. 237-252, Mar. 1998.

[9] F.P. Kelly. (July 1999). Mathematical modelling of the Internet, in Proc.
4th Int. Congr. Industrial Applied Mathematics. Available: http://
www.statslab.cam.ac.uk/~frank/mmi.html

[10] S.H. Low and D.E. Lapsley, “Optimization flow control, I: Basic algo-
rithm and convergence,” IEEE/ACM Trans. Networking, vol. 7, pp.
861-874, Dec. 1999. Available: http://netlab.caltech.edu

[11] S.H. Low. (Sept. 18-20, 2000). A duality model of TCP flow controls, in
Proc. ITC Specialist Seminar on IP Traffic Measurement, Modeling and
Management. Available: http://netlab.caltech.edu

[12] S.H. Low, L. Peterson, and L. Wang. (June 2001). Understanding Ve-
gas: A duality model, in Proc. ACM Sigmetrics . Available:
http://netlab.caltech.edu/ pub.html

[13] S. Athuraliya and S.H. Low, “Optimization flow control with New-
ton-like algorithm,” J. Telecommun. Syst., vol. 15, no. 3/4, pp. 345-358,
2000.

[14] F. Paganini. (2001). On the stability of optimization-based flow control,
in Proc. Amer. Control Conf. Available: http://www.ee.ucla.edu/-paganini/
PS/remproof.ps

[15] S. Kunniyur and R. Srikant. (Mar. 2000). End-to-end congestion con-
trol schemes: Utility functions, random losses and ECN marks, in Proc.
IEEE Infocom. Available: http://www.ieee-infocom.org/2000/pa-
pers/401.ps

[16] S. Kunniyur and R. Srikant. (Apr. 2001). A time-scale decomposition
approach to adaptive ECN marking, in Proc. IEEE Infocom. Available:
http:// comm.csl.uiuc.edu:80/~srikant/pub.html

[17] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556-567, Oct.
2000.

[18] J. Mo, R. La, V. Anantharam, and J. Walrand, “Analysis and compari-
son of TCP Reno and Vegas,” in Proc. IEEE Infocom. Mar. 1999.

[19] R. La and V. Anantharam. (Mar. 2000). Charge-sensitive TCP and rate
control in the Internet, in Proc. IEEE Infocom. Available:
http://www.ieee-infocom.org/2000/papers/401.ps

[20] K. Kar, S. Sarkar, and L. Tassiulas, “Optimization based rate control
for multirate multicast sessions,” in Proc. IEEE Infocom., Apr. 2001.

[21] V. Misra, W.-B Gong, and D. Towsley, “Fluid-based analysis of a net-
work of AQM routers supporting tcp flows with an application to RED,”
in Proc. ACM SIGCOMM, 2000.

[22] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. (Apr. 2001). A control
theoretic analysis of RED, in Proc. IEEE Infocom. Available:
http://www-net.cs. umass.edu/papers/papers.html

[23] F. Paganini, “Flow control via pricing: a feedback perspective,” in
Proc. 2000 Allerton Conf., Oct. 2000.

[24] V. Jacobson. (Aug. 1988). Congestion avoidance and control, in Proc.
SIGCOMM’88, ACM. Available: ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

[25] F.P. Kelly. (Dec. 1999). Models for a self-managed Internet, in Proc. R.
Soc. Meeting. Available: http://www.statslab.cam.ac.uk/~frank/smi.html

[26] R. Johari and D. Tan, “End-to-end congestion control for the
Internet: Delays and stability,” Cambridge Univ., Cambridge, U.K., Cam-
bridge Univ. Statistical Laboratory Research Report, Tech. Rep. 2000-2,
2000.

[27] L. Massoulie, “Stability of distributed congestion control with heter-
ogeneous feedback delays,” Microsoft Research, Cambridge, U.K., Tech.
Rep. TR 2000-111, 2000.

[28] G. Vinnicombe, “On the stability of end-to-end congestion control for the
Internet,” Cambridge Univ., Cambridge, U.K., Tech. Rep. CUED/
F-INFENG/TR.398, Dec. 2000.

[29] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, “On the self-similar
nature of Ethernet traffic,” IEEE/ACM Trans. Networking, vol. 2, pp. 1-15, 1994.

[30] V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poisson model-
ing,” IEEE/ACM Trans. Networking, vol. 3, pp. 226-244, 1995.

[31] W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson, “Self-similarity
through high variability: Statistical analysis of Ethernet LAN traffic at the
source level,” IEEE/ACM Trans. Networking, vol. 5, pp. 71-86, 1997.

[32] M.E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic:
Evidence and possible causes,” IEEE/ACM Trans. Networking, vol. 5, pp.
835-846, 1997.

[33] X. Zhu, J. Yu, and J.C. Doyle, “Heavy tails, generalized coding, and optimal
web layout,” in Proc. IEEE Infocom., Apr. 2001.

[34] L.S. Brakmo and L.L. Peterson, “TCP Vegas: End to end congestion avoid-
ance on a global Internet,” IEEE J. Select. Areas Commun., vol. 13, pp.
1465-1480, Oct. 1995. Available: http://cs.princeton.edu/nsg/papers/
jsac-vegas.ps

[35] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Trans. Networking, vol. 1, pp. 397-413, Aug. 1993.
Available: ftp://ftp.ee.lbl.gov/papers/early.ps.gz

[36] G. de Veciana, T.J. Lee, and T. Konstantopoulos, “Stability and perfor-
mance analysis of networks supporting elastic services,” IEEE/ACM Trans.
Networking, vol. 9 , Feb. 2001.

[37] F. Baccelli and D. Hong, “AIMD, fairness and fractal scaling of TCP traffic,”
INRIA, Paris, France, Tech. Rep. RR 4155, 2001.

[38] F.P. Kelly, “Charging and rate control for elastic traffic,”Eur. Trans. Telecommun.,
vol.8,pp.33-37,1997.Available:http://www.statslab.cam.ac.uk/~frank/elastic.html

[39] H. Yaiche, R.R. Mazumdar, and C. Rosenberg, “A game theoretic frame-
work for bandwidth allocation and pricing in broadband networks,”
IEEE/ACM Trans. Networking, vol. 8, pp. 2-14, Oct. 2000.

[40] T.V. Lakshman and U. Madhow, “The performance of TCP/IP for networks
with high bandwidth-delay products and random loss,” IEEE/ACM Trans. Net-
working, vol. 5, pp. 336-350, June 1997. Available: http://www.ece.ucsb.edu/Fac-
ulty/ Madhow/Publications/ton97.ps

[41] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior
of the TCP congestion avoidance algorithm,” ACM Comput. Commun. Rev.,
vol. 27, no. 3, July 1997. Available: http://www.psc.edu/networking/papers/
model sub ccr97.ps

[42] L. Massoulie and J. Roberts. (Mar. 1999). Bandwidth sharing: Objectives
and algorithms, in Infocom’99. Available: http://www.dmi.ens.fr/~mistral/
tcpworkshop.html

[43] G. Vinnicombe, “A new TCP with guaranteed network stability,” Cam-
bridge Univ., Cambridge, U.K., Technical report, preprint, June 2001.

[44] S. Floyd, “Connections with multiple congested gateways in
packet-switched networks, Part I: One-way traffic,” Comput. Commun. Rev.,
vol. 21, no. 5, Oct. 1991.

[45] S. Athuraliya, V.H. Li, S.H. Low, and Q. Yin, “REM: Active queue manage-
ment,” IEEE Network, vol. 15, pp. 48-53, May/June 2001. Extended version in
Proc. ITC17, Salvador, Brazil, Sept. 2001. Available: http://netlab.caltech.edu

[46] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. (Apr. 2001). On designing
improved controllers for AQM routers supporting TCP flows, in Proc. IEEE
Infocom. Available: http://www-net.cs.umass.edu/papers/papers.html

[47] S.H. Low, F.Paganini, J.Wang, S.A. Adlakha, and J.C. Doyle, “Linear stabil-
ity of TCP/RED and a scalable control,” in Proc. 39th Annual Allerton Conf.
Communication, Control, and Computing, Monticello, IL, Oct. 2001. Available:
http://netlab.caltech.edu

[48] S. Athuraliya and S.H. Low, “An empirical validation of a duality model of
TCP and queue management algorithms,” in Proc. Winter Simulation Conf.,
Dec. 2001.

[49] F. Paganini, J.C. Doyle, and S.H. Low. (Dec. 2001). Scalable laws for stable
network congestion control, in Proc. Conf. Decision and Control. Available:
http://www.ee.ucla.edu/~paganini

[50] Parallel simulation environment for complex systems. Available:
http://pcl.cs.ucla.edu/projects/parsec/

Steven H. Low received his B.S. from Cornell in 1984 and his
Ph.D. from Berkeley in 1992, both in electrical engineering.
He was a consultant to NEC in 1991, with AT&T Bell Labora-
tories, Murray Hill, from 1992 to 1996, and with the Univer-
sity of Melbourne, Australia, from 1996 to 2000. He is now an
Associate Professor at California Institute of Technology.
His research interests are in the control and optimization of
communications networks and protocols. He was a co-re-
cipient of the IEEE William R. Bennett Prize Paper Award in
1997 and received the 1996 R&D 100 Award. He is on the edi-
torial board of IEEE/ACM Transactions on Networking, and
he has been a guest editor of the IEEE Journal on Selected
Areas in Communications.

Fernando Paganini received his Ingeniero Electricista and
Licenciado en Matematica degrees from the Universidad de
la Republica, Montevideo, Uruguay, in 1990, and his M.S. and
Ph.D. degrees in electrical engineering from the California
Institute of Technology, Pasadena, in 1992 and 1996, respec-
tively. From 1996 to 1997, he was a Postdoctoral Associate at
the Massachusetts Institute of Technology. Since 1997 he
has been with the Electrical Engineering Department at the
University of California, Los Angeles, where he is currently
Associate Professor. His research interests are robust con-
trol, distributed control, and applications to communica-
tion networks and power systems. He was the recipient of
the O. Hugo Schuck award for best paper at the 1994 Ameri-
can Control Conference, the Wilts and Clauser Prizes for his
Ph.D. Thesis at Caltech in 1996, the 1999 NSF CAREER
Award, and the 1999 Packard Fellowship.

John C. Doyle is Professor of Electrical Engineering and
Control and Dynamical Systems at California Institute of
Technology. He has a B.S. and an M.S. in electrical engineer-
ing from MIT and a Ph.D. in mathematics from the University
of California, Berkeley. His current research interests are in
theoretical foundations for complex networks, primarily in
engineering and biology, and the interplay between robust-
ness, feedback, control, dynamical systems, computation,
communication, and statistical physics. Additional inter-
ests are in theoretical foundations of multiscale physics and
financial markets. Awards include the IEEE Centennial Out-
standing Young Engineer in 1984, the 1976 IEEE Hickernell,
the 1983 American Automatic Control Council (AACC)
Eckman, and the 1984 Bernard Friedman. Prize paper
awards include the IEEE Baker, the IEEE Transactions on Au-
tomatic Control Axelby (twice), and the AACC Schuck.

February 2002 IEEE Control Systems Magazine 43

