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Abstract— In this paper we introduce AdaVegas, an adaptive
congestion control mechanism based on TCP Vegas. TCP Ve-
gas has several parameters which control the way it increases the
sending rate. While TCP Vegas holds theses parameters constant,
AdaVegas sets these values dynamically. In this way AdaVegas is
able to change its increment strategy dynamically and better adapt
to the current environment. Using simulations we both evaluate
AdaVegas and compare it to TCP Vegas. Our simulations show
that AdaVegas achieves significantly better results than TCP Ve-
gas with a fairly low overhead.

I. INTRODUCTION

The Internet is practically everywhere today, and its Trans-
mission Control Protocol (TCP) is the most widely used for
reliable data transmission. A critical design aspect of TCP is
its flow control that allows the protocol to adjust the end to end
communication rate to the available bandwidth at the bottleneck
link. This challenge has become even more critical as the In-
ternet grew to a mass collection of heterogeneous networks and
gateways.

TCP is a window based end to end protocol, and its flow con-
trol is based on adjusting the window size, given the feedback
collected from the network. The initial versions of TCP tried to
detect an “optimal” window size when establishing the connec-
tion, focusing mainly on the receiver’s buffer limitations. Set-
ting the window size only during the session initialization has a
fundamental drawback, since the traffic load fluctuates over the
life of the session.

A major breakthrough was achieved when Jacobson [1] in-
troduced a TCP flow control mechanism that allows the end
stations to adjust their window size dynamically. The main idea
is to use packet loss as an implicit notification that the sending
rate is too high. The sender continuously increases the send-
ing rate, and upon a detection of a packet loss it sharply de-
creases the window size. The loss event is recognized implic-
itly when either a timeout occurs or a certain number of du-
plicate acknowledgments are received. More specifically, the
mechanism is composed of two main parts: The ”"Slow Start”,
where the sender expands its window at an exponential rate,
and “congestion avoidance”, where it increases the window lin-
early every round trip time, and upon a packet loss halves the
window size. This general scheme falls in the category of Addi-
tive Increase Multiplicative Decrease (AIMD) which have been
shown in general to guarantee fairness [2]. The move from slow
start to congestion avoidance occurs when the window size ex-
ceeds a certain threshold. (For a detailed description see [1].).
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TCP Vegas [3] extends the mechanisms of TCP Reno. In
TCP Vegas the user tries to estimate the end to end delay and it
responds to changes in the end to end delay. Such a mechanism
has the potential to detect congestion earlier, and hopefully both
avoid the cost associated with packet loss and achieve an earlier
response.

This work extends the adaptiveness of TCP beyond that of
TCP Vegas and TCP Reno. The basic idea is to have the his-
tory (namely, the previous network responses) guide our win-
dow size changes, which can be interpreted as dynamically set-
ting the parameters of the AIMD flow control mechanism. In
this work we focus on the benefits of dynamically changing the
additive increase parameters.We show that making these pa-
rameters history dependent, even in a very weak way, makes
the users react faster and better to changing environments, and
therefore improves the overall performance. As a motivating
example consider the case, when the available bandwidth in-
creases substantially, the users should use a more aggressive
increment strategy. Using successful transmission as feedback,
our algorithm decides whether to switch to a more aggressive
strategy.

Although we focus on TCP Vegas and specifically on the in-
crement parameter, we believe that our concept may be applied
both to other parameters in TCP Vegas and to other mecha-
nisms, most notably TCP Reno and others. A broader view of
this research is to try and incorporate current machine learning
techniques in the TCP flow control in particular and network
protocols in general. It is for this reason that we regard this
work not only as a presentation of an improved algorithm of
TCP Vegas, but also as a step in incorporating learning algo-
rithms in network protocols. In our case, one can cast the flow
control problem in decision theoretic terms, however, as we dis-
cuss in Section II, setting a “good” optimization criteria may be
tricky.

Related work: Yang and Lam [4] studied AIMD flow con-
trol and derived the relationship between the parameters so that
the flow would be TCP friendly [5]. Bansal and Balakrishnan
[6] evaluate a class of non linear congestion control algorithms.
Both suggest different update parameters for the flow control,
however, the parameters do not change over time. In contrast,
we suggest that the algorithm modify the parameters dynami-
cally.

The rest of this paper is organized as follows: In Section II
we give an overview of our results, comparing AdaVegas with
current TCP Vegas. In Section III we briefly describe the rele-
vant components of TCP Vegas and describe in detail the new
mechanisms of AdaVegas. In Section IV we describe our simu-
lation model for testing AdaVegas. Section V describes our re-
sults in details. Section VI considers the performance of AdaV-
egas in a heterogeneous environment, both a case of different



round trip time and a case of a combination of AdaVegas and
TCP Vegas users are considered. We conclude with a summary
of some ideas for future work in Section VII.

II. RESULTS OVERVIEW

To gain intuition let us start by defining two different vari-
ants of TCP Vegas that use two different values for the increase
parameter. The first, Vegas_1, is identical to TCP Vegas with
the default increase rate, the second, Vegas_8, has an increase
rate which is 8 times faster than that of Vegas_l !. First we
demonstrate that the two are incomparable, i.e., in some sce-
narios Vegas_1 outperforms Vegas_8 while in others Vegas 8
outperforms Vegas_1. This motivates our design of AdaVegas,
that dynamically sets the increase parameters, and therefore has
the potential to match the performance of the better of the two.

Our first set of scenarios has initially only two users that
share one bottleneck link. At some point of time one user stops
sending packets, which implies that the other user’s fair share is
then doubled. We study how fast the remaining user increases
its window size to capture the available bandwidth. Since we
want to make things as simple as possible in this first set of sce-
narios, we define a large queue size (180 packets, packet size is
1500 bytes) which implies that no packets are dropped.

We consider two sets of scenarios, in one the bottleneck link
has relatively high bandwidth, while in the other it has a rela-
tively low bandwidth. (The results of our simulations are shown
in Figure 1.)

When the fair share is high (the total bandwidth is either 4Mb
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Fig. 1. The changes in the window size of the three mechanisms Vegas 1,
Vegas_8 and AdaVegas in the case where one of two users leaves the bottleneck
link.

or 8Mb) Vegas_1 converges very slowly to the appropriate win-
dow size, while Vegas_8 converges much faster. Since Vegas -8

IThe constant 8 was chosen to demonstrate the advantage of using a fast
increment rate rather than slow increment rate, however, other constants could
have also been used.

converges much faster than Vegas _1, it also utilizes much better
the available bandwidth and achieve higher throughput. When
the fair share is low (0.1Mb and 0.25Mb) Vegas 8 significantly
overshoots the window size, and take longer to converge. How-
ever, the slow convergence time of Vegas 8 is not the main
problem in this case. In this scenario we used a large queue
size, therefore the overshoot did not result in dropped pack-
ets. In more realistic scenarios, this overshoot would result in
packet loss, which in turn would cause lower throughput for Ve-
gas_8. (We demonstrate this in the more complex and realistic
scenarios described later.)

The above discussion shows that there is no clear winner, and
every scenario has different preferable increase values. This
motivates our design of AdaVegas which sets these values dy-
namically, depending on the specific scenario.

One can view this flow control as a learning problem. The
agent (AdaVegas) takes an action (increasing the window size
by a certain constant or decrementing the window by a certain
factor). The agent receives a feedback (whether packets have
been lost or how many acknowledgments were received) and
selects an appropriate action. The decision to perform a cer-
tain action may prove wrong (for example, a packet may be
dropped). However, the agent “decides”, on the basis of prior
successes and failures, which action to perform. This is an al-
most classical decision theoretical model, with a stochastic en-
vironment.

Based on this view, we designed a Markov Decision Process
(MDP) [7] for the flow control problem. The MDP had to chose
between the different increment actions. The reward for each
action was the throughput achieved in the next round trip time
and the goal was to maximize the total user throughput. We
hoped that in any given situation the users will converge to the
actions that maximize their throughput. Because our reward
was the agent’s own throughput and not the total throughput,
the simulations became a live demonstration of Game Theory
famous prisoner’s dilemma. Since every user wanted to maxi-
mize its own throughput, each user chose the most aggressive
action, which of course, caused the total throughput of the sys-
tem to deteriorate.

Keeping this in mind we then continued working on our de-
sign which resulted in AdaVegas. AdaVegas changes its incre-
ment strategy to a more aggressive one as it discovers more
available bandwidth. A detailed description of the mechanism
will be described in Section III, for now we settle for a brief
overview. Since there is no direct knowledge of the available
bandwidth AdaVegas needs to use its history, and records the
number round trip times it has incremented the window con-
secutively successfully. Whenever this number of consecutive
successful increments goes over a predefined threshold the in-
crease parameters are changed. The idea is that if the incre-
ment was successful a few times in a row it might be the case
that there is enough available bandwidth, and it is worthwhile
to estimate that there is enough bandwidth to move to a more
aggressive increase strategy. There are of course several level
of “aggressiveness”. We designed the mechanism for this pa-
per such that the most moderate increment will correspond to
Vegas_1 and the most aggressive to Vegas_8. (We also made
a slight change in the decrement strategy, which will also be
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Fig. 2. Link Utilization comparison of Vegas 1, Vegas_8 and AdaVegas on
scenarios with 150 Users and 10 Users
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Fig. 3. Queue size comparison of Vegas_1, Vegas_8 and AdaVegas on scenarios
with 150 Users and 10 Users

detailed in Section III.)

First, we simulated AdaVegas on the two users scenarios de-
scribed before, and the results are shown in Figure 1. For a low
bandwidth bottleneck, AdaVegas behavior is similar to that of
Vegas_1, and for a high bandwidth bottleneck, AdaVegas be-
havior is similar to that of Vegas_8. We can see how AdaVe-
gas changes from moderate increment (Vegas 1) to an aggres-
sive increment (Vegas_8) in a very smooth way. Our simula-
tions show how AdaVegas is able to adapt to the environment
in which it is operating. When the available bandwidth is high,
it increases in a high rate, and when the available bandwidth is
low, it uses a moderate increment rate.

The two user scenarios are rather synthetic, and were given
to demonstrate the principles of AdaVegas behavior. Now that
the basic motivation for AdaVegas is understood, we move to
more “realistic”” scenarios, and demonstrate that also in these
situations our basic claims still hold. Namely, AdaVegas will
match the better of Vegas_1 and Vegas_8. (A detailed descrip-
tion of the simulation and results will be given in Sections V
and VI).

We set up a two sets of scenarios, in one 10 users are sharing
a bottleneck link, and in the other 150 users are sharing the
same bottleneck link. Each user alternates between ON periods,
in which it tries to send packets greedily, and OFF periods, in
which it is not active. We use a heavy tailed distribution for
both the ON period and the OFF period. To evaluate the results
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Fig. 4. Fairness index comparison of Vegas_1, Vegas 8 and AdaVegas on
scenarios with 150 users and 10 users.
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Fig. 5. Loss rate at bottleneck link for 150 users. Each triplet shows loss rate
for the three mechanism Vegas_1, AdaVegas and Vegas_8. The loss rate for 10
users was negligible and therefore not presented.

we consider line utilization, queue size, packet loss rate and
fairness index.

Figure 2 shows the link utilization. When 150 users share the
line, Vegas_1 outperforms Vegas_8, and AdaVegas utilization is
almost identical to that of Vegas_I (and significantly better than
Vegas_8). When 10 users are sharing the line, Vegas_8 out-
performs Vegas_1 and the gap widens as the ON mean time is
shorter. In this case AdaVegas’ utilization is between that of Ve-
gas_1 and Vegas_8 (and slightly closer to that of Vegas 8).(More
details are given in Section V.)

Figure 3 shows the queue size. When 150 users share the
line, Vegas_1 and AdaVegas are similar, however AdaVegas is
slightly lower. When 10 users share the line, Vegas _8 queues
are significantly larger than those of both Vegas_1 and AdaVe-
gas, and AdaVegas queues are slightly larger than those of Ve-
gas_1. (The reason for which Vegas_8 has such large queues is
related to some of the parameters setting, and is explained and
discussed in Sections IV and V.)

Figure 4 shows the fairness index which is defined as

n W)
FairnessIndex = %’)2
nk i Wi
where W; is the window size of user ¢ (out of n users). When
150 users share the line, Vegas_1 is more fair than Vegas_8,
and AdaVegas is close to Vegas_1. When 10 users share the



bottleneck, the differences between Vegas_1 and Vegas_ 8 are
smaller.

The loss rate for 150 users is given in Figure 5. As expected
the packet loss rate of Vegas_8 is the highest and in general the
loss rate increases with the duration of the ON period. For the
case of 10 users the loss rate of all three is very low.

The above simulations show that AdaVegas is able to ap-
proach the behavior of the better suited mechanism. In cases
in which Vegas_1 reaches better utilization, AdaVegas is closer
to it, and when Vegas_8 is better, AdaVegas is closer to it. This
is the main benefit of using AdaVegas with its “adaptive mech-
anism”. Although AdaVegas does not always perform as well
as the best mechanism, its performance is very similar to that
of the best mechanism.

III. ADAPTIVE VEGAS ALGORITHM
A. TCP Vegas: Quick Overview

In this section we overview the parts in TCP Vegas which are
related to this paper. In both this subsection and subsection III-
B we refer for simplicity to window size, transmission rate and
queue sizes in terms of segments. (For a detailed description of
TCP Vegas see [3].)

The main idea behind TCP Vegas congestion avoidance and
Slow Start is that a connection continuously tries to estimate
the amount of extra data it has queued at the bottleneck link.
This means the amount of data that would not have been sent,
if the sending rate was equal to the connection bandwidth, and
therefore is queued. Every round trip time (RTT) TCP Vegas
picks a distinguished segment and computes its round trip time.
This is done by recording the segment sending time, and record-
ing the time its acknowledgment is received, the difference is
called sampled_RTT. Base RTT is defined as the round trip
time of a segment when the line is not congested, namely, TCP
Vegas sets Base_RTT to the minimum value of all the sam—
pled RTT. Every RTT, using Base RTT, the sampled RTT
and congestion window size, TCP Vegas estimates the expected
and actual throughput.

The Expected throughput is the sending rate that would have
been achieved by using the current congestion window size, if
the line had not been congested. The expected throughput is
set to CO”geSti;’:S;“g?fow‘me TCP Vegas keeps track of the
amount of data sent during the time between the distinguished
packet was sent and its acknowledgment received. The ac-
tual throughput is then computed by dividing this amount by
the sampled RTT. This way, every RTT,TCP Vegas has an
evaluation of the Expected and Actual throughput. Given
this information TCP Vegas considers the difference A =
Expected-Actual, which is its estimation of the extra data
sent. During congestion avoidance TCP Vegas compares every
RTT the value of A to two predefined thresholds « and 3. If
A < o then TCP Vegas concludes that there is a light load and
therefore increases the congestion window size by one MSS
(Maximum Segment Size) during the next round trip time. If
A > f then TCP Vegas concludes that the line is congested
and decreases the congestion window size by one MSS during
the next round trip time. If & < A < 8 TCP Vegas concludes
that the amount of extra data is reasonable, and does not change

the congestion window size. If a packet is considered dropped
the window is cut in half, regardless of the value of A.

B. Our algorithm: AdaVegas

Every RTT AdaVegas, like TCP Vegas, computes A, and de-
cides which action to take according to «, 8 and A. Our crucial
control parameter in AdaVegas is ¢nc which is set in TCP Ve-
gas to be 1 (namely one MSS). Like TCP Vegas, AdaVegas
increases the congestion window size when A < «a. How-
ever, instead of using an increment of 1 x M SS, AdaVegas
uses inc x M SS, where inc is set dynamically in the following
way:

1) A set of predefined values for inc, a and 3 are defined.
Each set corresponds to a different increment strategy
(from moderate to aggressive).

2) AdaVegas remembers the number of successive RTT in
which A < a, and refers to this value as suce.

3) A number of ranges of succ are defined, each of which
corresponds to one of the increment strategies. The larger
succ, the more aggressive the corresponding strategy.

Whenever A < a AdaVegas updates succ and then sets a, 3
and inc to the corresponding values. The parameters we used
are given in Table L.

[ | o8 [inc]
0<succ<3 113 1
4<succ<T | 2
4<succ<15 || 2

16 < succ 4

TABLE I
ADAVEGAS DYNAMIC VALUES FOR a, 3 AND in¢ AND THE
CORRESPONDING RANGE FOR succ.

oo A

2
4
8

As can be seen from Table I we double the increment rate
when switching from one strategy to the next. Theoretically,
doubling the increment rate results in logarithm convergence
time, in contrast to TCP Vegas which converges linearly. How-
ever, in our simulations we limit the increment rate to 8 x M SS
per RTT, which allows us to exhibit a faster convergence time,
but not a logarithmic one.

Setting a and 3 in TCP Vegas influences both the throughput
and the fairness. We therefore slightly modify « and § accord-
ing to the increment rate. This enables smooth increment of the
sending window as seen in Figure 1, while maintaining fairness
as can be seen in Figure 4.

Our basic methodology has been to leave other parts of
TCP Vegas algorithm unchanged. However, since in high in-
crement rates AdaVegas may overshoot, we slightly modified
the decrement algorithm to better cope with such situations.
When increasing the congestion window size, AdaVegas re-
members the increase rate used for a certain period. This way,
when congestion is detected, TCP Vegas decreases the window
size according to the last increment rate used. More specifi-
cally, whenever AdaVegas expands the window (i.e., A < «)
, it sets lastInc + inc. After two RTTs of steady state
(ie., @ < A < ) AdaVegas resets lastInc (lastInc <+



1). When congestion is detected (i.e., A > () AdaVegas
sets lastInc + maz(lastIne/2,1) and decreases the win-
dow by lastInc. The logic behind this is that we assume
that if congestion occurred after incrementing the window, it
is probably because of an overshoot. We therefore estimate
that the right window size is between congestionWindow and
congestionWindow — lastInc, and we move to the average of
the two sizes. In our simulations we observed that this decrease
mechanism is especially crucial for high increment rates.

We would like to emphasize that when a packet is dropped
AdaVegas cuts the window in half, similar to TCP Vegas and
TCP reno.

IV. SIMULATION MODEL

We consider the following simulation model. A number of
different users, denoted by N, are connected through a sin-
gle bottleneck link, each to a different destination. The generic
topology is shown in Figure 6, with the default delay and band-
width values. Each source and destination is connected to
a router through a fast link of 100Mb/sec and 1msec delay.
The routers are using a drop tail queue of size 180 segments.
The bottleneck link has a delay of 300msec and bandwidth of
20Mb/sec. Naturally, congestion occurs at router 1.

Lmsec Llmsec
100Mbfsec 100Mb/sec

ROUTER #
2z

ROUTER
! 201bfses

Fig. 6. Topology used in our simulations

We use ON/OFF users with heavy tailed distribution for both
the ON periods and OFF periods. During the ON period each
user tries to send as many packets as possible. At the end of
an ON period, the user stops sending packet and starts an OFF
period that ends in a new ON period. The duration of both the
ON and OFF periods are heavy tailed distributions (specifically
Pareto distribution with parameter 1.5). In different scenarios
we use different means for the heavy tailed distribution used by
the users, and we explicitly state them.

The simulations where done using the software of ns-2 Net-
work Simulator [8].

Evaluation Criteria

Our analysis focused on the following important parame-
ters:

1) Line Utilization:
We define the line utilization as the amount of success-
fully transmitted data (goodput), divided by the product
of the link bandwidth and simulation time which clearly
gives an upper bound on the throughput. Formally,
Utilization =

(number of acked packets) x (packet size)
(link bandwidth) x (time)

2) Queue Size:
We monitor the queue size at the bottleneck link, which
is shared by all the connections.

3) Loss rate:
We look at the queue on the bottleneck link and compute
the ratio between the number of segments dropped and
the number of segments that arrived at the queue (namely
segments either transmitted or dropped).

4) Fairness:
Our aim is to test whether our improved performance
comes at the cost of lower fairness. Since all the RTT
are identical, it is enough to consider the window sizes.
In a perfectly fair situation, all active user should have
exactly the same window size. At the other extreme a
single user overtakes the bottleneck link’s bandwidth
while all other active users experience starvation (very
small window size). We use the following formula for
the fairness index [2], [9]:

. — (Ez’nzl Wi)2
FairnessIndex = L
Where W; is the window size of the i-th active user out
of n active users. Note that the fairness index is bound
from below by 1/n and from above by 1. The fairness
index equals to 1 when all the users have the exact same
window size.
Both fairness and queue size are sampled at least once a sec-
ond throughout the simulations which are about 1000sec long.

V. SIMULATION RESULTS
A. Simulation Description

We use two sets of scenarios, which differ only in the number
of users. In the first set we have 150 users while in the second
we have 10 users. The idea is to test AdaVegas in different
scenarios, once with high fair share per user and once with low
fair share per user. In the simulations we use the simulation
model described in Section I'V.

Each set of simulations (150 users and 10 users) consists of 5
scenarios which differ only in the distributions of the duration
of the ON period. In all scenarios the duration of the OFF pe-
riod is distributed with a Pareto distribution with parameter 1.5
and mean 60 sec. The mean of the duration of the ON period
are 200sec, 150sec, 100sec, 50sec and 20sec. The simulations
run for 1010sec, and the results of each scenario are the average
of five runs. In the rest of the section we will refer to the sim-
ulations with 150 users as the low fair share simulations and to
the 10 users simulations as the high fair share simulations.

B. Low Fuair Share Results

The line utilization and queue size for the low fair share sce-
narios are shown in Table IT and Table III, and appear in Figure
2 and Figure 3.

The results show that when fair share is relatively low, Ve-
gas_8 has poor line utilization. Only when users activity is low
(20-ON 60-OFF) does Vegas_8 improve its utilization. As can



I | 200-on | 150-on | 100-on | 50-on | 20-on ||

I | 200-on | 150-on | 100-on | 50-on | 20-on ||

Vegas_1 93% 93% 93% 93% | 89% Vegas_1 0.67/ 0.62/ 0.55/ | 0.43/ | 0.25/
Vegas_8 75% 75% 75% 75% | 81% 0.07 0.07 0.06 0.05 0.05
AdaVegas 93% 93% 93% 2% | 89% Vegas_8 0.34 0.31/ 0.28/ | 0.23/ | 0.15/
TABLE Il 0.07 0.07 0.06 0.06 0.06
L AdaVegas 0.63/ 0.59/ 0.54/ | 0.43/ | 0.27/
INE UTILIZATION FOR 150 USERS
0.07 0.06 0.06 0.06 0.05
TABLE V
I | 200-on | 150-on | 100-on [ 50-on | 20-on || FAIRNESS INDEX FOR 150 USERS. EACH ENTITY SHOWS THE AVERAGE
Vegas_1 151/ 154/ 151/ 118/ 57/ VALUE OF THE FAIRNESS INDEX AND THE STANDARD DEVIATION.
33 30 31 47 53
Vegas_8 82/ 82/ 81/ 79/ 73/
7 70 70 68 63 I | 200-on | 150-on | 100-on | 50-on | 20-on ||
AdaVegas | 142/ | 140/ | 131/ | 104 | 57/ Vegas 1 || 8% | 19% | 6% | 52% | 14%
43 44 47 56 54 Vegas_8 91% 90% 88% 76% | 41%
TABLE L AdaVegas | 89% | 85% | 84% | 74% | 30%
QUEUE SIZE FOR 150 USERS. EACH ENTRY GIVES FIRST THE AVERAGE TABLE VI

QUEUE SIZE AND THEN THE STANDARD DEVIATION.

be seen from the queue size, apparently the users were too ag-
gressive, resulting in drops which caused the congestion win-
dow to underflow as can be deducted from the high variance.
Vegas_1 has high utilization which is also evident from the
queue capacity. As for AdaVegas, it achieves results almost
identical to those of Vegas_1. This is since for low fair share
AdaVegas users operate mostly with the low increment rate.

The packet loss rate at the bottleneck link are shown in Table
IV. The results show that Vegas_1 and AdaVegas have similar
loss rate values. Vegas_8 has a significantly higher loss rate
which is the result of its increment strategy which is far too
aggressive for this low fair share value.

I | 200-on | 150-on | 100-on [ 50-on | 20-on ||

Vegas_1 1.3% 1.1% 1% 0.5% | 0.2%

Vegas_8 4.4% 4.3% 38% | 28% | 1.2%

AdaVegas 1.5% 1.3% 1.1% | 0.6% | 0.2%
TABLE IV

LOSS RATE AT BOTTLENECK LINK FOR 150 USERS. THE LOSS RATE IS

DEFINED As Rackets-dropped , \p, \ipAURED AT THE BOTTLENECK LINK
packets_arrived
QUEUE

The fairness index results are shown in Table V and Figure
4. The results show that Vegas_1 and AdaVegas have a very
similar value of the fairness index, while Vegas_8 has signifi-
cantly lower value. The fact that AdaVegas performs the same
as Vegas_1 is no surprise, given our argument that in this en-
vironment the AdaVegas operates very much like Vegas 1, i.e.,
incrementing at a rate of one MSS per RTT.

C. High Fair Share Results

The line utilization and queue size for the high fair share sce-
narios are shown in Table VI, Table VII, Figure 2 and Figure
3.

LINE UTILIZATION FOR 10 USERS

All three mechanisms exhibit lower performance as the ac-
tivity (i.e. ON period) decreases. Vegas_8 achieves the best
results, showing the most moderate decrease in line utilization
as activity decreases, while Vegas_1 performs the worst. Ap-
parently the default increment rate is too slow in adapting to
the large changes in the fair share, while the more aggressive
Vegas_8 takes advantage of the changes and therefore reaches
better utilization. AdaVegas performance is, as expected, some-
where between that of Vegas_1 and Vegas 8.

The advantage of Vegas_8 should not be related only to the
high increase rate (which is eventually used by AdaVegas) but
also to the queue utilization. Due to the setting of the parame-
ters a and 3, in steady state each user using Vegas_8 aims for
4-8 segments in the queue while Vegas_1 aims for at 1-3 (see
Section III-B). Since in steady state AdaVegas converges to
Vegas_1 it aims for 1-3 segments in the buffer as well. This en-
ables Vegas_8 to handle better cases of sudden increase in the
fair share.

The loss rate in this scenario is very low. Both AdaVegas and
Vegas_1 have almost no packet loss, and Vegas_8 has a packet
loss rate between 10~4 and 10~°.

The fairness index results for the high fair share are shown in
Table VIII and Figure 4. The results show the average fairness
index and the standard deviation. The fairness index in high fair
share degrades as activity decreases. The relative performance
of the mechanisms seems quite random. The low utilization
results lead us to believe that users don’t converge to the optimal
window, but rather expand the window constantly due to the
high available bandwidth. As activity decreases window sizes
(and hence fairness index) depend more on the ON time of each
user than on the interaction between different users.

VI. HETEROGENOUS ENVIRONMENTS

In this section we focus on two issues in particular. The first
deals with the case in which different connections have different



I | 200-on | 150-on | 100-on | 50-on | 20-on ||

AdaVegas Low Fair Share
9%

Vegas_1 Low Fair Share
9%

Vegas_1 12/ 9/ 7/ 4/ 4/
Vegas_1 13 12 11 9 10
Vegas_8 69/ 67/ 61/ 52/ 22/
Vegas_8 37 40 41 45 27
AdaVegas 21/ 21/ 22/ 15/ 8/
AdaVegas 19 20 22 20 13
TABLE VII

QUEUE SIZE FOR 10 USERS, AVERAGE SIZE AND STANDARD DEVIATION

I | 200-on | 150-on | 100-on [ 50-on | 20-on ||

Vegas_1 0.54/ 0.46/ 047/ | 036/ | 0.27/
0.12 0.14 0.12 0.1 0.12
Vegas_8 0.60/ 0.5/ 0.45/ | 0.28/ | 0.26/
0.11 0.13 0.15 0.1 0.11
AdaVegas || 0.60/ 0.46/ 0.52/ | 0.25/ | 0.23/
0.12 0.13 0.09 0.1 0.10

TABLE VIII

FAIRNESS INDEX FOR 10 USERS. EACH ENTITY SHOWS THE AVERAGE
VALUE OF THE FAIRNESS INDEX AND ITS STANDARD DEVIATION.

round trip times (RTT). The second deals with a mixture of TCP
Vegas and AdaVegas users.

A. Heterogenous round trip time

Since AdaVegas (like TCP Vegas) increases the window once
every RTT, the increment rate is different for connections with
different round trip time. In this set of simulations we use the
topology described in Section IV with the following modifica-
tion: we set the RTT of a half of the connections to 600msec
and the RTT of the other half to 1200msec. All users have ON
mean time of 50sec and OFF time mean is 60sec (using a Pareto
distributions with parameter 1.5). We look both at the case of
high fair share (10 users) and low fair share (150 users). The
results of the experiments are shown in Figure 7.

As expected, in all scenarios the throughput of the connec-
tions with the low RTT was significantly higher. For a relatively
low fair share the results of AdaVegas and Vegas_1 are similar.
Again, this comes as no surprise since we assume that in this
case AdaVegas basically runs TCP Vegas. For a relatively high
fair share AdaVegas shows a significant improvement in link
utilization, and in the throughput of all sessions. In addition
the fairness between the different users has also improved in
AdaVegas. We find these results quite encouraging, due to the
significant advantage gained by AdaVegas.

B. Heterogenous users

We examine a mixture Vegas_l and AdaVegas. Since in
certain scenarios AdaVegas becomes more aggressive than Ve-
gas_1, this issue can be problematic. We examine simulations
with different mixtures of AdaVegas users and Vegas_1 users.
Like in earlier simulations, we did simulations with low fair
share (150 users) and with high fair share (10 users). We use

Bl low RTT
[ high RTT

Il low RTT
[ high RTT

AdaVegas High Fair Share Vegas_1 High Fair Share

Il low RTT
] high RTT

Hl low RTT
1 high RTT

Fig. 7. Simulating users with different RTT. The high fair share shows the
simulation results with 10 users of which 5 users have RTT of 600ms and the
other 5 users have RTT of 1200ms. The low fair share shows the simulation
results with 150 users of which 75 have RTT of 600ms and 75 have RTT of
1200ms. The results show the relative share of the low RTT sessions, high RTT
sessions and the unused bandwidth.

the topology described in Section IV with the following modi-
fications: All users work with 50sec mean ON time, and 60sec
mean OFF time Pareto distribution. In each scenario there is a
different mixture of AdaVegas users and Vegas _1 users. (Round
trip time of all the users is identical.) The results of the experi-
ments are shown in Figure 8.

For relatively low fair share, the difference between the
throughput of the AdaVegsa users and the Vegas_1 users is
small and the line utilization is stable around 92%. Again, this
is no surprise since in low fair share environments AdaVegas
users act like Vegas_1 users.

For high fair share, the advantage of AdaVegas becomes ap-
parent. As the fraction of AdaVegas users increases, the line
utilization increases from around 55% to about 70%. In addi-
tion, the performance of Vegas_l users slightly deteriorates as
the fraction of AdaVegas users increases.

VII. CONCLUSION

We have introduced AdaVegas, a flow control mechanism
based on TCP Vegas. By setting its increment parameters dy-
namically, AdaVegas is able to better adapt to the changing
network environments. We have studied AdaVegas behavior in
various scenarios and showed that it is able to adapt well. We
compared AdaVegas performance with that of TCP Vegas, and
have shown that AdaVegas achieves an improvement.

We simulated AdaVegas in environments were different users
had different RTTs, and in environments were some users were
AdaVegas and others TCP Vegas. Both cases show the advan-
tage of using AdaVegas.

Although we focused on TCP Vegas, we believe learning
mechanism can also be used in other variants of TCP, namely
TCP New Reno, and in other network protocols. Therefore,we
regard this paper not only as a research to improve TCP Vegas,
but as an example of how learning algorithms can be used in
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Fig. 8. Different mixture of AdaVegas users and Vegas_ 1 users. The top graph
has 150 users, and the bottom has 10 users. We plot the throughput of the
average AdaVegas user, the average user (both TCP Vegas and AdaVegas) and
the average TCP Vegas (Vegas_1) user. The fair share is shown by the dashed
line. The throughput is measured in bytes.

TCP flow control specifically and network protocol in general
to achieve better performance.

In the future we plan to incorporate in TCP New Reno adap-
tive mechanisms to control both the increase and decrease pa-
rameters. As for AdaVegas, we would like to add an adaptive
mechanism for the decrement which will be similar to the one
used for the increment. In addition, we would like to allow
the increment value to be unbound, and our preliminary ex-
periments were encouraging. However, using higher increment
rates raises the question of how to set the & and 8 parameters
of TCP Vegas due to the delicate interaction between those pa-
rameters and the increase parameter.
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