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Abstract— In this paper, we examine the problem of estimating
the capacity of bottleneck links and available bandwidth of end-
to-end paths under non-negligible cross-traffic conditions. We
present a simple stochastic analysis of the problem in the context
of a single congested node and derive several results that allow the
construction of asymptotically-accurate bandwidth estimators.
We first develop a generic queuing model of an Internet router
and solve the estimation problem assuming renewal cross-traffic
at the bottleneck link. Noticing that the renewal assumption on
Internet flows is too strong, we investigate an alternative filtering
solution that asymptotically converges to the desired values of
the bottleneck capacity and available bandwidth under arbitrary
(including non-stationary) cross-traffic. This is one of the first
methods that simultaneously estimates both types of bandwidth
and is provably accurate. We finish the paper by discussing the
impossibility of a similar estimator for paths with two or more
congested routers.

I. INTRODUCTION

Bandwidth estimation has recently become an important
and mature area of Internet research [1], [2], [4], [5], [6],
[7], [10], [11], [12], [14], [15], [16], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27]. A typical goal of these
studies is to understand the characteristics of Internet paths
and those of cross-traffic through a variety of end-to-end
and/or router-assisted measurements. The proposed techniques
usually fall into two categories – those that estimate the
bottleneck bandwidth [4], [5], [6], [12], [13] and those that
deal with the available bandwidth [11], [19], [24], [26]. Recall
that the former bandwidth metric refers to the capacity of the
slowest link of the path, while the latter is generally defined
as the smallest average unused bandwidth among the routers
of an end-to-end path.

The majority of existing bottleneck-bandwidth estimation
methods are justified assuming no cross-traffic along the path
and are usually examined in simulations/experiments to show
that they can work under realistic network conditions [4],
[5], [6], [7], [12]. With available bandwidth estimation, cross-
traffic is essential and is usually taken into account in the
analysis; however, such analysis predominantly assumes a fluid
model for all flows and implicitly requires that such models be
accurate in non-fluid cases. Simulations/experiments are again
used to verify that the proposed methods are capable of dealing
with bursty conditions of real Internet cross-traffic [11], [19],
[24], [26].

To understand some of the reasons for the lack of stochas-
tic modeling in this field, this paper studies a single-node
bandwidth measurement problem and derives a closed-form
estimator for both capacity C and available bandwidth A =
C − r̄, where r̄ is the average rate of cross-traffic at the link.
For an arbitrary cross-traffic arrival process r(t), we define
r̄ as the asymptotic time-average of r(t) and assume that it
exists and is finite:

r̄ = lim
t→∞

1
t

t∫
0

r(u)du < ∞. (1)

Notice that the existence of (1) does not require stationarity
of cross-traffic, nor does it impose any restrictions on the ar-
rival of individual packets to the router. While other definitions
of available bandwidth A and the average cross-traffic rate r̄
are possible, we find that (1) serves our purpose well as it
provides a clean and mathematically tractable metric.

The first half of the paper deals with bandwidth estimation
under i.i.d. renewal cross-traffic and the analysis of packet-
pair/train methods. We first show that under certain conditions
and even the simplest i.i.d. cross-traffic, histogram-based
methods commonly used in prior work (e.g., [5]) can be misled
into producing inaccurate estimates of C. We overcome this
limitation by developing an asymptotically accurate model for
C; however, since this approach eventually requires ergodicity
of cross-traffic, we later build another model that imposes
more restriction on the sampling process (using PASTA prin-
ciples suggested in [26]), but allows cross-traffic to exhibit
arbitrary characteristics.

Unlike previous studies [26], we prove that the correspond-
ing PASTA-based estimators converge to the correct values and
show that they can be used to simultaneously measure capacity
C and available bandwidth A. To our knowledge, this is the
first estimator that measures both C and A without congesting
the link, assumes non-negligible, non-fluid cross-traffic in the
derivations, and applies to non-stationary r(t). Note that while
this estimator can measure A over multiple links, its inherent
purpose is not to become another measurement tool or to work
over multi-node paths, but rather to understand the associated
stochastic models and disseminate the knowledge obtained in
the process of writing this paper.
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We conclude the paper by discussing the impossibility
of building an asymptotically optimal estimator of both C
and A for a two-node case. While estimation of A may
be possible for multi-node paths, our results suggest that
provably-convergent estimators of C do not exist in the context
of end-to-end measurement. Thus, the problem of deriving a
provably accurate estimator for a two-node case with arbitrary
cross-traffic remains open; however, we hope that our initial
work in this direction will stimulate additional research and
prompt others to prove/disprove this conjecture.

II. STOCHASTIC QUEUING MODEL

In this section, we build a simple model of a router that
introduces random delay noise into the measurements of the
receiver and use it to study the performance of packet-pair
bandwidth-sampling techniques. Note that we depart from the
common assumption of negligible and/or fluid cross-traffic and
specifically aim to understand the effects of random queuing
delays on the bandwidth sampling process. First consider an
unloaded router with no cross-traffic. The packet-pair mecha-
nism is based on an observation that if two packets arrive at the
bottleneck link with spacing x smaller than the transmission
delay ∆ of the second packet over the link, their spacing after
the link will be exactly ∆. In practice, however, packets from
other flows often queue between the two probe packets and
increase their spacing on the exit from the bottleneck link to
be larger than ∆.

Assume that packets of the probe traffic arrive to the
bottleneck router at times a1, a2, . . . and that inter-arrival times
an − an−1 are given by a random process xn determined by
the server’s initial spacing. Further assume that the bottleneck
node delays arriving packets by adding a random processing
time ωn to each received packet n. For the remainder of the
paper, we use constant1 packet size q for the probing flow and
arbitrarily-varying packet sizes for cross-traffic. Furthermore,
there is no strict requirement on the initial spacing xn as long
as the modeling assumptions below are satisfied. This means
that both isolated packet pairs or bursty packet trains can be
used to probe the path. Let the transmission delay of each
application packet through the bottleneck link be q/C = ∆,
where C is the transmission capacity of the link. Under these
assumptions, packet departure times dn are expressed by the
following recurrence2:

dn =

{
a1 + ω1 + ∆ n = 1
max(an, dn−1) + ωn + ∆ n ≥ 2

. (2)

In this formula, the dependence of dn on departure time
dn−1 is a consequence of FIFO queuing (i.e., packet n cannot
depart before packet n− 1 is fully transmitted). Furthermore,
packet n cannot start transmission until it has fully arrived
(i.e., time an). The value of the noise term ωn is proportional
to the number of packets generated by cross-traffic and queued

1Methods that vary the probing packet size also exist (e.g., [6], [10]).
2Times dn specify when the last bit of the packet leaves the router.

Similarly, times an specify when the last bit of the packet is fully received
and the packet is ready for queuing.
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Fig. 1. Departure delays introduced by the node.

in front of packet n. The final metric of interest is inter-
departure delay yn = dn − dn−1 as the packets leave the
router. The various variables and packet arrival/departure are
schematically shown in Figure 1.

Even though the model in (2) appears to be simple, it
leads to fairly complicated distributions for yn if we make no
prior assumptions about cross-traffic. We next examine several
special cases and derive important asymptotic results about
process yn.

III. RENEWAL CROSS-TRAFFIC

A. Packet-Pair Analysis

We start our analysis with a rather common assumption in
queuing theory that cross-traffic arrives into the bottleneck link
according to some renewal process (i.e., delays between cross-
traffic packets are i.i.d. random variables). In what follows
in the next few subsections, we show that modeling of this
direction requires stationarity (more specifically, ergodicity) of
cross-traffic. However, since neither the i.i.d. assumption nor
stationarity holds for regular Internet traffic, we then apply
a different sampling methodology and a different analytical
direction to derive a provably robust estimator of capacity C
and average cross-traffic rate r̄.

The goal of bottleneck bandwidth sampling techniques is to
queue probe packets directly behind each other at the bottle-
neck link and ensure that spacing yn on the exit from the router
is ∆. In practice, however, this is rarely possible when the
rate of cross-traffic is non-negligible. This does present certain
difficulties to the estimation process; however, assuming a
single congested node, the problem is asymptotically tractable
given certain mild conditions on cross-traffic. We present these
results below.

To generate measurements of the bottleneck capacity, it is
commonly derived that the server must send its packets with
initial spacing no more than ∆ (i.e., no slower than C). This is
true for unloaded links; however, when cross-traffic is present,
the probes may be sent arbitrarily slower as long as each
packet i arrives to the router before the departure time of
packet i − 1. This condition translates into an ≤ dn−1 and
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(2) expands to:

dn =

{
a1 + ω1 + ∆ n = 1
dn−1 + ωn + ∆ n ≥ 2

. (3)

From (3), packet inter-departure times yn after the bottle-
neck router are given by:

yn = dn − dn−1 = ∆ + ωn, n ≥ 2. (4)

Notice that random process ωn is defined by the arrival
pattern of cross-traffic and also by its packet-size distribution.
Since this process is a key factor that determines the distri-
bution of sampled delays yn, we next focus on analyzing its
properties. Assume that inter-packet delays of cross-traffic are
given by independent random variables {Xi} and the actual
arrivals occur at times X1, X1 + X2, . . . Thus, the arrival
pattern of cross-traffic defines a renewal process M(t), which
is the number of packet arrivals in the interval [0, t]. Using
common convention, further assume that the mean inter-arrival
delay E[Xi] is given by 1/λ, where λ = r̄ is the mean arrival
rate of cross-traffic in packets per second.

To allow random packet sizes, assume that {Sj}, j =
1, 2, . . . are independent random variables modeling the size of
packets in cross-traffic. We further assume that the bottleneck
link is probed by a sequence of packet-pairs, in which the
delay between the packets within each pair is small (so as
to keep their rate higher than C) and the delay between the
pairs is high (so as not to congest the link). Under these
assumptions, the amount of cross-traffic data received by the
bottleneck link between probe packets 2m − 1 and 2m (i.e.,
in the interval (a2m−1, a2m]) is given by a cumulative reward
process:

vn =
M(an)−M(an−1)∑

j=1

Sj , n = 2m, (5)

where n represents the sequence number of the second packet
in each pair. For now, we assume a general (not necessarily
equilibrium) process M(t) and re-write (4) as:

yn = ∆ +
vn

C
= ∆ +

M(an)−M(an−1)∑
j=1

Sj

C
, n = 2m. (6)

Since classical renewal theory is mostly concerned with
limiting distributions, yn by itself does not lead to any tractable
results because the observation period of the process captured
by each of yn is very small.

Define a time-average process Wn to be the average of {yi}
up to time n:

Wn =
1
n

n∑
i=1

yi. (7)

Then, we have the following result.
Claim 1: Assuming ergodic cross-traffic, time-average pro-

cess Wn converges to:

lim
n→∞Wn = ∆ +

λE[xn]E[Sj ]
C

= ∆ + E[ωn], (8)

R
1

R
2

Snd1

Snd2

1.5 mb/s

Rcv1

Rcv2

100 mb/s

100 mb/s100 mb/s

100 mb/s

Fig. 2. Single-link simulation topology.

where E[xn] is the mean inter-probe delay of packet-pairs.
Proof: Process Wn samples a much larger span of

M(t) and has a limiting distribution as we demonstrate below.
Applying Wald’s equation to (6) [28]:

E [yn] = ∆ +
E[M(an) − M(an−1)]E[Sj ]

C
. (9)

The last result holds since M(t) and Sj are independent
and M(an) − M(an−1) is a stopping time for sequence
{Sj}. Equation (9) can be further simplified by noticing that
E[M(t)] is the renewal function m(t):

E [yn] = ∆ +
(m(an) − m(an−1))E[Sj ]

C
. (10)

Assuming stationary cross-traffic, (10) expands to [28]:

E [yn] = ∆ +
λE[xn]E[Sj ]

C
. (11)

Finally, assuming ergodicity of cross-traffic (which implies
that of process yn), we can obtain (11) using a large number
of packet pairs as the limit of Wn in (7) as n → ∞.

Notice that the second term in (8) is strictly positive under
the assumptions of this paper. This leads to an interesting
observation that the filtering problem we are facing is quite
challenging since the sampled process yn represents signal
∆ corrupted by a non-zero-mean noise ωn. This is a drastic
departure from the classical filter theory, which mostly deals
with zero-mean additive noise. It is also interesting that the
only way to make the noise zero-mean is to either send probe
traffic with E[xn] = 0 (i.e., infinitely fast) or to have no cross-
traffic at the bottleneck link (i.e., λ = r̄ = 0). The former case
is impossible since xn is always positive and the latter case is
a simplification that we explicitly want to avoid in this work.

We will present our analysis of packet-train probing shortly,
but in the mean time, discuss several simulations to provide
an intuitive explanation of the results obtained so far.

B. Simulations

Before we proceed to estimation of C, let us explain several
observations made in previous work and put them in the
context of our model in (6) and (8). For the simulations in this
section, we used the ns2 network simulator with the topology
shown in Fig. 2. In the figure, the source of probe packets
Snd1 sends its data to receiver Rcv1 across two routers R1

and R2. The speed of all access links is 100 mb/s (delay 5 ms),
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Fig. 3. The histogram of measured inter-arrival times yn under CBR cross-
traffic.

while the bottleneck link R1 → R2 has capacity C = 1.5 mb/s
and 20 ms delay. Note that there are five cross-traffic sources
attached to Snd2.

We next discuss simulation results obtained under UDP
cross-traffic. In the first case, we initialize all five sources
in Snd2 to be CBR streams, each transmitting at 200 kb/s
(r̄ = 1 mb/s total cross-traffic). Each CBR flow starts with
a random initial delay to prevent synchronization with other
flows and uses 500-byte packets. The probe flow at Snd1
sends its data at an average rate of 500 kb/s for the probing
duration, which results in 100% utilization of the bottleneck
link. In the second case, we lower packet size of cross-traffic to
300 bytes and increase its total rate to 1.3 mb/s to demonstrate
more challenging scenarios when there is packet loss at the
bottleneck.

These simulation results are summarized in Fig. 3, which
illustrates the distribution of the measured samples yn based
on each pair of packets sent with spacing xn ≤ ∆ (the results
exclude packet pairs that experienced loss). Given capacity
C = 1.5 mb/s and packet size q = 1, 500 bytes, the value of
∆ is 8 ms. Fig. 3 shows that none of the samples are located
at the correct value of 8 ms and that the mean of the sampled
signal (i.e., Wn) has shifted to 11.7 ms for the first case and
14.5 ms for the second one.

Next, we employ TCP cross-traffic, which is generated
by five FTP sources attached to Snd2. The TCP flows use
different packet sizes of 540, 640, 840, 1,040, and 1,240 bytes,
respectively. The histogram of yn for this case is shown in Fig.
4 for two different average cross-traffic rates r̄ = 750 kb/s and
r̄ = 1 mb/s. As seen in the figure, even though some of the
samples are located at 8 ms, the majority of the mass in the
histogram (including the peak modes) are located at the values
much higher than 8 ms.

Recall from (8) that Wn of the measured signal tends to
∆+E[ωn]. Under CBR cross-traffic, we can estimate the mean
of the noise E[ωn] to be approximately 11.7− 8 = 3.7 ms in
the first case and 14.5−8 = 6.5 ms in the second one. The two
naive estimates of C based on Wn are C̃ = q/Wn = 1, 025
kb/s and C̃ = 827 kb/s, respectively. Likewise, for the TCP
case, the measured averages (i.e., 12.2 and 13.3 ms each) of
samples yn lead to incorrect naive estimates C̃ = 983 kb/s
and C̃ = 902 kb/s, respectively.

In order to understand how C̃ and the value of Wn evolve,
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Fig. 4. The histogram of measured inter-arrival times yn under TCP cross-
traffic.

we run another simulation under 1 mb/s total TCP cross-traffic
and plot the evolutions of the absolute error |C̃−C| and that of
Wn in Fig. 5. As Fig. 5(a) shows, the absolute error between
C and C̃ converges to a certain value after 5,000 samples yn,
providing a rather poor estimate C̃ ≈ 1, 010 kb/s. Fig. 5(b)
illustrates that Wn in fact converges to ∆ + E[ωn], where the
mean of the noise is Wn − ∆ ≈ 11.9 − 8 = 3.9 ms.

Previous work [1], [4], [5], [15], [22] focused on identifying
the peaks (modes) in the histogram of the collected bandwidth
samples and used these peaks to estimate the bandwidth;
however, as Figs. 3 and 4 show, this can be misleading when
the distribution of the noise is not known a-priori. For example,
the tallest peak on the right side of Fig. 3 is located at 13 ms
(C̃ = 923 kb/s), which is only a slightly better estimate than
827 kb/s derived from the mean of yn. Moreover, the tallest
peak in Fig. 4(a) is located at 14.5 ms, which leads to a worse
estimate C̃ = 827 kb/s compared to 983 kb/s computed from
the mean of yn.

To combat these problems, existing studies [1], [4], [5], [15],
[22] apply numerous empirical methods to find out which
mode is more likely to be correct. This may be the only
feasible solution in multi-hop networks; however, one must
keep in mind that it is possible that none of the modes in the
measured histogram corresponds to ∆ as evidenced by both
graphs in Fig. 3.

C. Packet-Train Analysis

Another topic of debate in prior work was whether packet-
train methods offer any benefits over packet-pair methods.
Some studies suggested that packet-train measurements con-
verge to the available bandwidth3 for sufficiently long bursts
of packets [1], [4]; however, no analytical evidence to this
effect has been presented so far. Other studies [5] employed
packet-train estimates to increase the measurement accuracy
of bottleneck bandwidth estimation, but it is not clear how
these samples benefit asymptotic convergence of the estimation
process.

We consider a hypothetic packet-train method that transmits
probe traffic in bursts of k packets and averages the inter-
packet arrival delays within each burst to obtain individual

3Even though this question appears to have been settled in some of the
recent papers, we provide additional insight into this issue.
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Fig. 5. (a) The absolute error of the packet-pair estimate under TCP cross-
traffic of r̄ = 1 mb/s. (b) Evolution of Wn.

samples {Zk
n}, where n is the burst number. For example, if

k = 10, samples y2, . . . , y10 define Z10
1 , samples y12, . . . , y20

define Z10
2 , and so on. The reason for excluding samples

y1, yn+1, . . . , ynk+1 is because they are based on the leading
packets of each burst, which encounter large inter-burst gaps
in front of them and do not follow the model developed so
far.

In what follows in this section, we derive the distribution
of {Zk

n} as k → ∞.
Claim 2: For sufficiently large k, constant xn = x, and a

regenerative processes M(t), packet-train samples converge to
the following Gaussian distribution for large n:

{
Zk

n

} D−→ N
(
∆ +

λxE[Sj ]
C

,
λxV ar[Sj − λE[Sj ]Xi]

(k − 1)C2

)
,

(12)
where

D−→ denotes convergence in distribution, N(µ, σ) is a
Gaussian distribution with mean µ and standard deviation σ,
and Xi are inter-packet arrival delays of cross-traffic.

Proof: First, define a k-sample version of the cumulative
reward process in (5):

V k
n =

M(akn)−M(ak(n−1)+1)∑
j=1

Sj , n = 1, 2, . . . . (13)

Process V k
n is also a counting process, however, its time-

scale is measured in bursts instead of packets. Thus, V k
n

determines the amount of cross-traffic data received by the
bottleneck link during an entire burst n. Equation (13) shows
that Zk

n can be asymptotically interpreted as the reward rate
of the reward-renewal process V k

n :

Zk
n = ∆ +

V k
n

(k − 1)C
, (14)

where k − 1 is the number of inter-packet gaps in a k-packet
train of probe packets. Assuming M(t) is regenerative and for
sufficiently large k, we have [28]:

Zk
n = ∆ +

V k
1

(k − 1)C
+ o(1). (15)

Applying the regenerative central limit theorem, constrain-
ing the rest of the derivations in this section to constant
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Fig. 6. The histogram of measured inter-arrival times Zk
n based on packet

trains and CBR cross-traffic of r̄ = 1.3 mb/s.

xn = x, and assuming E[Xi] < ∞ [28]:{
V k

1

k − 1

}
D−→ N

(
λxE[Sj ],

λxV ar[Sj − λE[Sj ]Xi]
k − 1

)
.

(16)
Combining (15) and (16), we get (12).

First, notice that the mean of this distribution is the same
as that of samples {yn} in (11), which, as was intuitively
expected, means that both measurement methods have the
same expectation. Second, it is also easy to notice that the
variance of Zk

n tends to zero as long as V ar[Xi] is finite.
Claim 3: If V ar[Xi] is finite, the variance of packet-train

samples Zk
n tends to zero for large k.

Proof: Since λ, x, and E[Sj ] are all finite and do not
depend on k, using independence of Sj and Xi in (12), we
have:

V ar[Zk
n] =

(
λxV ar[Sj ] + λ3xE2[Sj ]V ar[Xi]

(k − 1)C2

)2

, (17)

which tends to 0 for k → ∞.
As a result of this phenomenon, longer packet trains will

produce narrower distributions centered at ∆ + E[ωn]. The
CBR case already studied in Fig. 3(b) clearly has finite
V ar[Xi] and therefore samples {Zk

n} must exhibit decaying
variance as k increases. One example of this convergence for
packet trains with k = 5 and k = 10 is shown in Fig. 6.

D. Discussion

Now we address several observations of previous work.
It is noted in [5] that while packet-pair histograms usually
have many different modes, the histogram of packet-train
samples becomes unimodal with increased k. This readily
follows from (12) and the Gaussian shape of {Zk

n}. Previous
papers also noted (e.g., [5]) that as packet-train size k is
increased, the distribution of samples {Zk

n} exhibits lower
variance. This result follows from the above discussion and
(17). Furthermore, [5] found that packet-train histograms for
large k tend to a single mode whose location is “independent
of burst size k.” Our derivations provide an insight into how
this process happens and shows the location of this “single
mode” to be ∆ + E[ωn] in (12).

In summary, packet-train samples {Zk
n} represent a limited

reward rate that asymptotically converges to a Gaussian distri-
bution with mean E[yn]. Perhaps it is possible to infer some
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characteristics of {Xi} by observing the variance of {Zk
n} and

applying the result in (12); however, since there are several
unknown parameters in the formula (such as V ar[Xi] and
E[Sj ]), this direction does not lead to any tractable results
unless we assume a particular process M(t).

Since {Zk
n} asymptotically tend to a very narrow Gaussian

distribution centered at ∆ + E[ωn], we find that there is no
evidence that {Zk

n} measure the available bandwidth or offer
any additional information about the value of ∆ as compared
to traditional packet-pair samples {yn}.

IV. ARBITRARY CROSS-TRAFFIC

In this section, we relax the stationarity and renewal as-
sumptions about cross-traffic and derive a robust estimator of
C and r̄. Assume an arbitrary arrival process r(t) for cross-
traffic, where r(t) is its instantaneous rate at time t. We impose
only one constraint on this process – it must have a finite time
average r̄ shown in (1). The goal of the sampling process
is to determine both C and r̄. Since r̄ > C imply constant
packet loss and zero available bandwidth, we are generally
interested in non-trivial cases of r̄ ≤ C. Stochastic process
r(t) may be renewal, regenerative, a superposition of ON/OFF
sources, self-similar, or otherwise. Furthermore, since packet
arrival patterns in the current Internet commonly exhibit non-
stationarity (due to day-night cycles, routing changes, link
failure, etc.), our assumptions on r(t) allow us to model a
wide variety of such non-stationary processes and are much
broader than commonly assumed in traffic modeling literature.

Next, notice that if the probing traffic can sample r(t) using
a Poisson sequence of probes at times t1, t2, . . ., the average
of r(ti) converges to r̄ (applying the PASTA principle [28]):

lim
n→∞

r(t1) + r(t2) + ... + r(tn)
n

= lim
t→∞

1
t

t∫
0

r(u)du = r̄,

(18)
as long as delays τi = ti − ti−1 are i.i.d. exponential random
variables. In order to accomplish this type of sampling, the
sender must emit packet-pairs at exponentially distributed
intervals. Assuming that the i-th packet-pair arrives to the
router at time ti, it will sample a small segment of r(t) by
allowing gi amount of data to be queued between the probes:

gi =

ti+xi∫
ti

r(u)du ≈ r(ti)xi, (19)

where xi is the spacing between the packets in the i-th packet-
pair. Again, assuming that yi is the i-th inter-arrival sample
generated by the receiver, we have:

yi = ∆ +
gi

C
= ∆ +

r(ti)xi

C
. (20)

Finally, fixing the value of xi = x, notice that Wn has a

well-defined limit:

lim
n→∞Wn = lim

n→∞
1
n

n∑
i=1

(
∆ +

r(ti)xi

C

)

= ∆ +
x

C
lim

n→∞

n∑
i=1

r(ti)
n

= ∆ +
xr̄

C
. (21)

In essence, this result4 is similar to our earlier derivations,
except that (21) requires much weaker restrictions on cross-
traffic and also shows that a single-node model is completely
tractable in the setting of almost arbitrary cross-traffic. We
next show how to extract both C and r̄ from (21).

A. Capacity

Observe that (21) is a linear function of x, where r̄ is the
slope and ∆ is the intercept5. Therefore, by injecting packet-
pairs with two different spacings xa and xb, one can compute
the unknown terms in (21) using two sets of measurements
{ya

i } and {yb
i }. To accomplish this, define the corresponding

average processes to be W a
n and W b

n:

W a
n =

1
n

n∑
i=1

ya
i , W b

n =
1
n

n∑
i=1

yb
i . (22)

The simplest way to obtain both W a
n and W b

n using a
single measurement is to alternate spacing xa and xb while
preserving the PASTA sampling property. Using a one-bit
header field, the receiver can unambiguously sort the inter-
arrival delays into two sets {ya

i } and {yb
i }, and thus compute

their averages in (22).
While samples are being collected, the receiver has two

running averages produced by (22). Subtracting W b
n from W a

n ,
we are able to separate r̄/C from ∆:

lim
n→∞(W a

n − W b
n) =

(xa − xb)r̄
C

. (23)

Next, denote by ∆̃n the following estimate of ∆ at time n:

∆̃n = W a
n − xa

W a
n − W b

n

xa − xb
. (24)

Taking the limit of (24), we have the following result.
Claim 4: Assuming a single congested bottleneck for which

time-average rate r̄ exists, ∆̃n converges to ∆:

lim
n→∞ ∆̃n = ∆. (25)

Proof: Re-writing (25):

lim
n→∞ ∆̃n = ∆ +

xar̄

C
− xa

(xa − xb)r̄
C(xa − xb)

= ∆, (26)

which is obtained with the help of (21), (23), and (24).
Our next result shows a more friendly restatement of the

previous claim.

4A similar formula has been derived in [3], [8], [19] and several other
papers under a fluid assumption.

5For technical differences between this approach and previous work (such
as TOPP [19]), see [17].
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TABLE I

AVAILABLE BANDWIDTH ESTIMATION ERROR

Bottleneck capacity Relative error
C (mb/s) Model (29) Pathload Spruce IGI

1.5 8.6% 46.5% 27.9% 84.5%
5 8.3% 40.1% 23.4% 90.0%
10 10.1% 40.9% 26.9% 89.0%
15 7.7% 38.5% 24.5% 83.1%

Corollary 1: Assuming a single congested bottleneck for
which time-average rate r̄ exists, estimate C̃n = q/∆̃n

converges to capacity C:

lim
n→∞ C̃n = lim

n→∞
q

W a
n − xa

W a
n−W b

n

xa−xb

= lim
n→∞

q(xa − xb)
xaW b

n − xbW a
n

= C. (27)

B. Available Bandwidth

Notice that knowing an estimate of C in (27) and using r̄
in (23), it is easy to estimate the mean rate of cross-traffic:

lim
n→∞

(W a
n − W b

n)C̃n

xa − xb
= r̄, (28)

which leads to the following result.
Corollary 2: Assuming a single congested bottleneck for

which time-average rate r̄ exists, the following converges to
the available bandwidth A = C − r̄:

lim
n→∞ q

(
xa − xb − W a

n + W b
n

xaW b
n − xbW a

n

)
= C − r̄ = A. (29)

C. Simulations

We confirm these results and compare our models with
several recent methods spruce [26], IGI [8], and pathload
[12] through ns2 simulations. Since the main theme of this
paper is bandwidth estimation in heavily-congested routers,
we conduct all simulations over a loaded bottleneck link in
Fig. 2 with utilization varying between 82% and 92% (the
exact value changes depending on C and the interaction of
TCP cross-traffic with probe packets). Delays xa and xb are
set to maintain the desired range of link utilization.

Define EA = |Ã − A|/A and EC = |C̃ − C|/C to
be the relative estimation errors of A and C, respectively,
where A is the true available bandwidth of a path, Ã is
its estimate using one of the measurement techniques, C is
the true bottleneck capacity, and C̃ is its estimate. Table I
shows relative estimation errors EA for spruce, IGI, and
pathload. For pathload, we averaged the low and high
values of the produced estimates Ã. In the IGI case, we used
the estimates available at the end of IGI’s internal convergence
algorithm. Also note that we fed both spruce and IGI the
exact bottleneck capacity C, while model (29) and pathload
operated without this information.

As the table shows, spruce performs better than
pathload in heavily-congested cases, which is expected
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Fig. 7. Evolution of relative estimation errors of (27) and (29) over a single
congested link with C = 1.5 mb/s and 85% link utilization.
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Fig. 8. Relative estimation errors EA produced by spruce and IGI over a
single congested link with C = 1.5 mb/s and 85% link utilization.

since it can utilize the known capacity information. Inter-
estingly, however, IGI’s estimates are worse than those of
pathload even though IGI utilizes the true capacity C in
its estimation algorithm. A similar result is observed in [26]
under a relatively small amount of cross-traffic (20% to 40%
link utilization).

Next, we examine models (27), (29) with a large number of
samples to show their asymptotic convergence and estimation
accuracy. We plot the evolution of relative estimation errors
EC and EA in Fig. 7. As Fig. 7(a) shows, C̃ converges to a
value that is very close (within 3%) to the true value of C. In
Fig. 7(b), the available bandwidth estimates quickly converge
within 10% of A. For the purpose of comparison, we next
plot estimation errors EA produced by spruce and IGI in
Fig. 8. As Fig. 8(a) shows, even with the exact value of C
and after 1,000 samples, spruce exhibits an error of 27%.
Furthermore, IGI’s estimates are much worse than spruce’s
as illustrated in Fig. 8(b), which plots the evolution of errors
until IGI’s internal algorithm terminates.

To better understand these results, we next study how the
accuracy of capacity information provided to spruce and IGI
affects their measurement accuracy.

D. Further Analysis of spruce and IGI
Since bottleneck capacities of Internet paths are not gener-

ally known, the use of spruce and IGI may be limited to a
small number of known paths, unless these methods can obtain
capacity measurements from other tools such as nettimer
[15], [16], pathrate [5], or CapProbe [13]. These estimators
of C are usually very accurate when the routers along the path
are not highly utilized; however, as link utilization increases,
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Fig. 9. (a) Relative capacity estimation error EC measured by CapProbe. (b)
Relative estimation errors EA of spruce and IGI based on the ratio C̃/C.

their results often become inaccurate. Hence, a natural ques-
tion is how robust are spruce and IGI to inaccurate values
of C provided to their estimation process? We examine this
issue below, but first discuss simulation results of CapProbe
to illustrate the pitfalls that many estimators of C experience
over heavy-loaded bottleneck links.

For the CapProbe simulation, we use the topology shown in
Fig. 2 with a single bottleneck link whose utilization was kept
at 85% using five TCP cross-traffic sources. Fig. 9(a) plots the
evolution of EC produced by CapProbe in this experiment. As
the figure shows, CapProbe’s minimum filtering is sensitive to
random queuing delays in front of the first packet of the pair
and can eventually converge to a completely wrong value (60%
error).

We next examine how the value of C̃ �= C supplied to
IGI and spruce affects their accuracy. We plot the relative
estimation errors in Fig. 9(b), in which the accuracy of both
methods deteriorates when C̃/C becomes large. To understand
the exact effect of C̃ on these methods, we have the following
simple analysis.

According to [8], IGI first sends packet trains Zi with inter-
packet spacing xi (xi < xj for i < j) to determine the turning
point x̂. Each packet-train consists of k back-to-back packets
and the turning point is the n-th inter-packet spacing xn at
which the receiving rate of probe traffic starts to match the
sending rate:

x̂ = xn =
1

k − 1

k∑
i=2

yi. (30)

Subsequently, IGI computes the average cross-traffic rate r̄
as following [8]:

r̄ =

∑
yi>max(∆,x̂)

C̃ (yi − ∆)

(k − 1)x̂
(31)

and estimates available bandwidth by subtracting (31) from
its a-priori known value of C̃: Ã = C̃ − r̄. Notice from
(31) that the average cross-traffic r̄ depends on the capacity
value provided to the estimation algorithm. This dependency
explains the increased estimation inaccuracy when C̃/C �= 1
as illustrated in Fig. 9(b).

Similarly, estimation accuracy of spruce also changes as
a function of C̃. For example, even though spruce provides

0 10 20 30 40
0

10

20

30

40

x(n) (ms)

m
e
a
n

o
f
y
(n

)
(m

s
)

Simulation result
y=x

(a) CBR cross-traffic

0 20 40 60 80 100
0

20

40

60

80

100

x(n) (ms)

m
e
a
n

o
f
y
(n

)
(m

s
)

Simulation result
y=x

(b) TCP cross-traffic

Fig. 10. Convergence of ωn to zero-mean additive noise for large xn under
CBR and TCP cross-traffic.

better estimates than IGI with a correct capacity value C̃ =
C = 1.5 mb/s, it exhibits large estimation errors (over 200%)
when C̃ exceeds C by 33%. This means that the accuracy of
spruce is also heavily dependent on the performance of the
underlying bottleneck bandwidth estimation method.

To better understand this observation, we next analyze
spruce’s estimation process. Spruce collects individual
samples Ai [26]:

Ai = C
(
1 − yi − ∆

∆

)
, (32)

where yi is the i-th measured packet spacing at the receiver.
The algorithm averages samples Ai to obtain a running esti-
mate of the available bandwidth:

An =
1
n

n∑
i=1

Ai = 2C − C2

qn

n∑
i=1

yi. (33)

Taking the limits of (33) and substituting Wn from (21) into
(33), we get

Ã = lim
n→∞An = C − x

∆
r̄. (34)

This brief analysis shows that the bandwidth estimation
mechanism in spruce requires that the sender set its inter-
packet spacing x to be ∆ = q/C. This is possible when C
is known exactly; however, in cases when C is not correctly
estimated, the initial spacing x cannot be set to ∆ and spruce
cannot converge to A. Also notice that if r̄ � C, estimation er-
rors are generally small; however, as link utilization increases,
any deviation of x/∆ from 1 will have a significant impact
on Ã.

V. MULTIPLE LINKS

In this section, we extend our single-node model to the
case of multiple congested routers and conjecture that it is
impossible to derive a closed-form solution that filters out the
noise introduced by cross-traffic at several links of an end-to-
end path.

A. Large Inter-Probe Delays

Consider the original model of a router in (2). This time,
assume that none of the probe packets queue behind each other
at the bottleneck router. This means that packet n − 1 leaves
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the router before packet n arrives, which is expected if inter-
packet spacing xn at the source is very large compared to the
transmission delay ∆. Under these assumptions, dn−1 < an

and (2) becomes:

dn = an + ωn + ∆, n ≥ 1. (35)

Hence, inter-departure delays yn are:

yn = an − an−1 + ωn − ωn−1, n ≥ 2. (36)

Notice that the first term an−an−1 in (36) is the inter-arrival
delay xn of the probe traffic and the second term ωn − ωn−1

can be modeled as some zero-mean random noise. This can
be explained intuitively by noticing that under the assumption
of large xn, each router delays probe packets (on average)
by the same amount. Then the distance between each pair of
subsequent packets fluctuates around the mean of xn. Using
an inductive argument, it is also easy to show the following.

Claim 5: If the initial spacing xn is larger (in a statistical
sense) than queuing delays experienced by packets at each
router of an N -hop end-to-end path, the mean of the sampled
signal yn is equal to E[xn] and the following holds for each
router j:

E[ω(j)
n − ω

(j)
n−1] = 0. (37)

To confirm that the zero-mean model in (37) holds in
practice, we run ns2 simulations with 85% utilization at the
bottleneck link and varying packet sizes of CBR and TCP
cross-traffic. The plots of E[yn] as a function of xn for
different values of xn = x are shown in Fig. 10. As the
two figures show, E[yn] converges to xn at 40 and 100 ms,
respectively, at which time the noise at the bottleneck router
becomes zero-mean-additive. Note that similar results hold
for multiple congested routers, different traffic patterns, and
different packet sizes. Also note that the point at which E[yn]
converges to x is not necessarily the value of the available
bandwidth as was suggested in prior work [8].

B. Recursive Model for Multi-Node Paths

Assuming multiple congested routers along a path, the result
in (25) no longer holds. To better understand multi-link effects,
we use the topology in Fig. 11, where the bottleneck link C
has capacity 1.5 mb/s and pre-bottleneck link Cp = 1.8 mb/s.
Five FTP sources are attached to each of snd2 and snd3
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Fig. 12. The evolution of estimated transmission delay ∆̃n for a single and
two congested links.

and both links are utilized by cross-traffic at 85%. Fig. 12
illustrates the convergence process of ∆̃n for the single-node
and multi-node cases. As Fig. 12(b) shows, estimates ∆̃n do
not converge to the true value of ∆ = 8 ms, regardless of the
number of samples yi.

Notice that it is possible to recursively extend the original
model in (26) to multiple congested links where the input xn

of each link is the output yn of the previous link. However,
this model becomes intractable as we show next. Add index
j to each process and each random variable to indicate that
it is local to router j along the path from the sender to the
receiver. Further assume that Q

(j)
i is the queuing delay (due

to cross-traffic and other probe packets) in front of packet i

inside router j and φ
(j)
i is some zero-mean noise process at

router j at time i. Then, we define the following recursive
model:

y
(j)
i =

{
∆j + ω

(j)
i , x

(j)
i < Q

(j)
i−1

∆j + φ
(j)
i , x

(j)
i ≥ Q

(j)
i−1

, (38)

where y
(j)
i is the departure spacing of the i-th packet-pair from

router j, ∆j = q/Cj is the transmission delay of the probe
packets over link j, and x

(j)
i is the arrival spacing between the

probes at router j. Notice that if the arrival spacing between
packets i − 1 and i (which is simply x

(j)
i = y

(j−1)
i ) is less

than the time packet i − 1 spends in the buffer (i.e., Q
(j)
i−1),

the two packets queue behind each other and follow the model
developed earlier in this paper. When the opposite holds, the
packets do not queue behind each other and the router adds
i.i.d. zero-mean noise φ

(j)
i to ∆j .

C. Conjecture of Impossibility

One of the main difficulties of this situation is the stochastic
mixture of the two types of noise in (38). While at this time
we do not offer a complete treatment of this problem, we show
that even when all links follow the first model (i.e., all packets
queue behind each other), the problem appears intractable.
Under these assumptions, (38) leads to:

W (j)
n = ∆j +

1
nCj

n∑
i=1

rj(ti)x
(j)
i , (39)
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where rj(t) is the cross-traffic process at router j. For a two
congested-router case, (39) becomes:

W (2)
n = ∆2 +

1
nC2

n∑
i=1

r2(ti)y
(1)
i

= ∆2 +
1

nC2

n∑
i=1

r2(ti)
[
∆1 +

r1(ti)x
C1

]

→ ∆2 +
∆1r̄2

C2
+

x

C1C2

∞∫
0

r1(u)r2(u)du. (40)

Since Poisson samples taken at the receiver lead to obtaining
a time average of a mixed signal introduced by the two routers,
it appears impossible to filter out the unknown cross-traffic
statistics or the main integral in (40).

We next examine how the amount of cross-traffic in two
congested links affects the estimation accuracy of the earlier
models developed in the paper. We set the average cross-
traffic rates r1(t) and r2(t) to be the same in both routers
(i.e., r̄1 = r̄2 = µ) and vary this value between 500 kb/s
and 1.2 mb/s. We again use the topology in Fig. 11 and plot
in Fig. 13 the value of C̃n computed using (27) when cross-
traffic is simultaneously injected into both links (Cp = 2 mb/s,
C = 1.5 mb/s). As the figure illustrates, the estimates of the
bottleneck bandwidth converge to a value that is significantly
less than the true capacity C and become progressively worse
as µ increases.

VI. CONCLUSION

This paper examined the problem of estimating the capac-
ity/available bandwidth of a single congested link and showed
a simple stochastic analysis of the problem. Unlike previous
approaches, our estimation did not rely on empirically-driven
methods, but instead used a queuing model of the bottle-
neck router that specifically assumed non-negligible, non-fluid
cross-traffic. It is also the first model to provide simultaneous
asymptotically-accurate estimation of both C and A in the
presence of arbitrary cross-traffic.

Our analysis in the multi-node cases suggests that the
problem of obtaining provably-convergent estimates of C and
A in such environments does not have a solution. This insight
possibly explains the lack of analytical/stochastic justification
for many of the proposed methods. Knowing that accurate
estimation of C for the multi-node case is impossible will
potentially provide an important foundation for the methods
that rely on empirically-optimized heuristics.
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