
 1

The End-to-End Performance Effects of Parallel TCP Sockets on a Lossy
Wide-Area Network

 Thomas J. Hacker Brian D. Athey Brian Noble
 Center for Parallel Cell & Developmental Electrical Engineering &
 Computing Biology Computer Science
 hacker@umich.edu bleu@umich.edu bnoble@umich.edu

University of Michigan

Ann Arbor, MI USA 48109

Abstract

 This paper examines the effects of using parallel
TCP flows to improve end-to-end network performance
for distributed data intensive applications. A series of
transmission experiments were conducted over a wide-
area network to assess how parallel flows improve
throughput, and to understand the number of flows
necessary to improve throughput while avoiding
congestion. An empirical throughput expression for
parallel flows based on experimental data is presented,
and guidelines for the use of parallel flows are
discussed.

1.0 Introduction

 There are considerable efforts within the Grid and
high performance computing communities to improve
end-to-end network performance for applications that
require substantial amounts of network bandwidth. The
Atlas project [19], for example, must be able to reliably
transfer over 2 Petabytes of data per year over
transatlantic networks between Europe and the United
States.
 Recent experience [1, 2] has demonstrated that
actual aggregate TCP throughput realized by high
performance applications is persistently much less than
the end-to-end structural and load characteristics a
network indicates is available. One source of poor TCP
throughput is a packet loss rate that is much greater
than what would be reasonably expected [20]. Packet
loss is interpreted by TCP as an indication of network
congestion between a sender and receiver. However,
packet loss may be due to factors other than network
congestion, such as intermittent hardware faults [4].
 Current efforts to improve end-to-end performance
take advantage of the empirically discovered
mechanism of striping data transfers across a set of
parallel TCP connections to substantially increase TCP
throughput. As a result, application developers and
network engineers must have a sound understanding of

how parallel TCP connections improve aggregate
throughput as well as their effects on a network.

 This paper addresses several questions
concerning the use of parallel TCP connections. The
first question is how the use of parallel TCP
connections increases aggregate throughput. The
second is how to determine the number of TCP
connections needed to maximize throughput while
avoiding network congestion. Finally, understanding
how parallel TCP connections affect a network, and
under what conditions they should not be used. This
paper suggests some practical guidelines for the use of
parallel sockets to maximize end-to-end performance
for applications while simultaneously minimizing their
network effects.
 The remainder of this paper is organized as
follows. Section two discusses current work. Section
three presents a parallel socket TCP bandwidth
estimation model and the experimental results. Section
four discusses the behavior of packet loss on the
Internet and its effect on TCP throughput. Section five
presents conclusions and guidelines for using parallel
sockets, and discusses some possible avenues for future
work.

2.0 Current Work

 Applications generally take two approaches to
improve end-to-end network throughput that
effectively defeats the congestion avoidance behavior
of TCP. The first approach utilizes UDP, which puts
responsibility for both error recovery and congestion
control completely in the hands of the application. The
second approach opens parallel TCP network
connections and “stripes” the data (in a manner similar
to RAID) across a parallel set of sockets. These two
approaches are aggressive and do not permit the fair
sharing of the network bandwidth available to
applications [5].
 Recent work [1, 2, 6] has demonstrated that the
parallel socket approach greatly increases the aggregate

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 2

network throughput available to an application, but
some report [6] that the speedup is not consistent.
 Many are working to address the issues of poor
network performance and the unpredictability of end-
to-end network bandwidth availability. To address
unpredictability, the Network Weather Service project
[21] is working to predict the network bandwidth
available between two sites on the Internet based on
statistical forecasting. Efforts to address poor network
performance include Diffserv [22], Quality of Service
(QoS) Reservation [23], Bandwidth Brokering [24],
and network and application tuning efforts [3, 6].
 The current work on the use of parallel TCP
connections is essentially empirical in nature and from
an application perspective. Long [8, 9] describes work
that increased the transfer rate of medical images over
the Internet. Allman [10] describes work done to
increase the TCP throughput over satellite links.
Sivakumar [2] developed a library (Psockets) to stripe
data transmissions over multiple TCP network
connections to deliver dramatically increased
performance on a poorly tuned host compared to the
performance of a single TCP stream. Measurements
using the Psockets library for striping network I/O
demonstrated that the use of 12 TCP connections
increased TCP performance from 10 Mb/sec to
approximately 75 Mb/sec. Eggert [17] and
Balakrishnan [18] have both developed modifications
to TCP that take advantage of the positive effects of
parallel TCP sockets. Lee [1] provides an argument
that explains why network performance is improved
over multiple TCP streams compared with a single
TCP stream. The Stanford Linear Accelerator (SLAC)
network research group [16] has created an extensive
measurement infrastructure to measure the effect of
multiple TCP connections between key Internet sites
for the Atlas project.
 Several applications are using or planning to use
parallel TCP connections to increase aggregate TCP
throughput. The ubiquitous example of this is the
Netscape browser, which uses an empirically
determined value of four for the number of parallel
TCP connections used by its clients [25]. The GridFTP
project allows the user to select the number of parallel
TCP connections to use for FTP data transfer [26].
Storage Resource Broker (SRB) [27] has provisions to
use multiple TCP sockets to improve SRB data transfer
throughput. The Internet-2 Distributed Storage
Initiative (I2-DSI) [28] is investigating the use of
parallel TCP connections to improve the performance
of distributed data caches.
 All of the current work has investigated the effects
of parallel TCP connections from an empirical
perspective. Researchers have found that the optimal
number of parallel TCP connections range from 4

(Netscape) to 12 (Psockets) to a number between 4 and
20 depending on the window size (SLAC group).
 Concerns about the effects of using multiple
network sockets on the overall fairness and efficiency
of the network have been raised [5, 28, 17].
Mechanisms such as traffic shaping and rate limiting
[29, 31] have been proposed and implemented to
attempt to prevent aggressive users from using more
than their fair share of the network.
 Despite the demonstrated effectiveness of using
parallel sockets to improve aggregate TCP throughput,
little work has been done to develop a theoretical
model to validate the use of these optimal values. The
models would help us understand the following: (1) the
underlying mechanisms that allow parallel TCP
connections to deliver tremendously increased
performance; (2) the effects of using parallel sockets
on the fairness and efficiency of the network; and (3)
under what conditions and circumstances the parallel
sockets should be used.
 The next section of this paper will develop a
theoretical model of parallel TCP connections that will
explain how they take advantage of systemic non-
congestion packet loss to improve aggregate
throughput, and present experimental results that
validates the theoretical model.

3.0 TCP Bandwidth Estimation Models

 There are several studies that have derived
theoretical expressions to calculate single stream TCP
bandwidth as a function of packet loss, round trip time,
maximum segment size, along with a handful of other
miscellaneous parameters. Bolliger [11] performed a
detailed analysis of three common techniques and
assessed their ability to accurately estimate TCP
bandwidth across a wide range of packet losses. The
most accurate model is described in [12] as an
approximation of the following form (equation 1):1

()
MSS

ppbpTbpRTT
RTT
WpTCPBW

+

+

≈
2

0

max

321
8

33,1min
3

2
1,min)(

In this equation, TCPBW(p) represents bytes transmitted
per second, MSS is the maximum segment size, Wmax is
the maximum congestion window size, RTT is the
round trip time, b is the number of packets of
transmitted data that is acknowledged by one
acknowledgement (ACK) from the receiver (usually b
= 2), T0 is the timeout value and p is the packet loss

1 Equation (1) is rescaled from the original form in [12] to match the
scale of Equation (2) by adding MSS.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 3

ratio, which is the number of retransmitted packets
divided by the total number of packets transmitted.
 Bolliger found that the Mathis equation [13] is
essentially as accurate for packet loss rates less than
1/100 as equation (1), but has a much simpler form:

p
C

RTT
MSSBW ≤ (2)

 In equation (2), p, MSS and RTT are the same
variables used in equation (1), C is a constant and BW
is the number of bytes transmitted per second.
 To understand the underlying mechanisms of TCP
throughput, it is useful to consider the dynamic
behavior of MSS, RTT and p and the effect each has on
overall TCP bandwidth.
 Of the three factors, MSS is the most static. If both
sides of the TCP session have MTU discovery enabled
[30] within the host operating system, both sides will
attempt to negotiate the largest possible maximum
transmission unit (and thus MSS) possible for the
session. The MSS setting depends on the structural
characteristics of the network, host adapters and
operating system. Most often, the “standard” maximum
MTU supported by networks and network adapters is
1500 bytes. In some cases, however, the data link
layers of routers and switches that make up the end-to-
end network will support larger frame sizes. If the
MTU of a TCP connection can be increased from 1500
bytes to the “jumbo frame” size of 9000 bytes, the right
hand side of equation (2) increases by a factor of 6,
thus increasing actual maximum TCP bandwidth by a
factor of 6 as well.
 The value of RTT during a session is more
dynamic than MSS, but less dynamic than p. The lower
bound on the value of RTT is the transmission speed of
a signal from host to host across the network, which is
essentially limited by the speed of light. As the path
length of the end-to-end network increases, the
introduction of routers and framing protocols on the
physical links between the two hosts adds latency to
the RTT factor, and other factors involved with queuing
and congestion can increase RTT as well. From an end
host perspective, however, there is little that can be
done to substantially improve RTT.
 The final factor, packet loss rate p, is the most
dynamic parameter of the triplet—MSS, RTT and p.
The TCP congestion avoidance algorithm [32]
interprets packet loss as an indication that the network
is congested and that the sender should decrease its
transmission rate. In the operational Internet, the packet
loss rate p spans many orders of magnitude and
represents a significant contribution to variability in
end-to-end TCP performance. It is important to note
that the packet loss rate has been observed to fall into

two regimes: packet loss due to network congestion,
and traffic insensitive packet loss. These two regimes
will be explored in section 3.2.
 The next section of this paper will present the
derivation of an expression for aggregate TCP
bandwidth, describe some of the characteristics of
packet loss on the Internet, and describe how these
characteristics affects the performance of single and
multi stream TCP sessions.

3.1 Multi-stream TCP Bandwidth

 If an application uses n multiple TCP streams
between two hosts, the aggregate bandwidth of all n
TCP connections can be derived from equation (2), in
which MSSi, RTTi and pi represent the relevant
parameters for each TCP connection i:

+++≤

nn

n
agg pRTT

MSS
pRTT

MSS
pRTT

MSSCBW L
22

2

11

1 (3)

Since MSS is determined on a system wide level by a
combination of network architecture and MTU
discovery, it is reasonable to assume that each MSSi
value is identical and constant across all simultaneous
TCP connections between hosts.
 We can reasonably assume that RTT will be
equivalent across all TCP connections, since every
packet for each TCP connection will likely take the
same network path and converge to equilibrium. Note
that since the TCP congestion avoidance algorithm is
an equilibrium process that seeks to balance all TCP
streams to fairly share network bottleneck bandwidth
[15], each stream must either respond to changes in the
packet loss rate, RTT, or a combination of both to
converge to equilibrium. Since all of the streams on a
set of parallel TCP connections are between two hosts,
all of the streams should converge to equivalent RTT
values, as long as the network between the hosts
remains uncongested. For purposes of this discussion,
C can be set aside.
 Thus, equation (3) can be modified to:

+++≤

n

agg p
MSS

p
MSS

p
MSS

RTT
BW L

21

1 (4)

Upon examination of equation (4), some features of
parallel TCP connections become apparent. First, an
application opening n multiple TCP connections is in
essence creating a large “virtual MSS” on the
aggregate connection that is n times the MSS of a
single connection. Factoring MSS out of equation (4)
produces:

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 4

+++≤

n

agg pppRTT
MSSBW 111

21

L (5)

It becomes apparent that given the relatively static
nature of the values of MSS and RTT compared with
the dynamic nature of p, the packet loss rate p is a
primary factor in determining aggregate TCP
throughput of a parallel TCP connection session.

3.2 Packet Loss and its Effect on TCP
Bandwidth

 It is apparent from equation (4) that the increased
virtual MSS of parallel TCP connections is directly
affected by the packet loss rate p and RTT of each
connection. RTT has hard lower bounds that are
structural and difficult to address. Packet loss p, on the
other hand, is the parameter that is most sensitive to
network load and is affected by a several factors.
 It has been observed that packet loss falls into two
characteristic regimes: random losses not due to
congestion, and congestion related losses. Paxson [14]
found that packet losses tend to occur at random
intervals in bursts of multiple packets, rather than
single packet drops. Borella [33] found bursty packet
loss behavior as well. Additionally, the probability of a
packet loss event increases when packets are queued in
intermediate hops as the network becomes loaded.
Bolot [20] found that packet loss demonstrates random
characteristics when the stream uses a fraction of the
available network bandwidth.
 As the number of multiple TCP connections
increases, the behavior of each packet loss factor pi is
unaffected as long as few packets are queued in routers
or switches at each hop in the network path. In the
absence of congestion, it is appropriate to assume that
the proportion of packet loss will be fairly distributed
across all connections. However, when the aggregate
packet stream begins to create congestion, any router or
switch in the may begin to drop packets. The packet
loss attributable to each TCP stream will depend on the
queuing discipline, and on any phase effects caused by
TCP senders sharing a network bottleneck [39].
 However, there are four exceptions to the
assumption that packet loss is fairly distributed when
congestion occurs. It has been empirically determined
[34, 7] that three pathological conditions exist. One
condition, lockout, occurs when one stream dominates
the queue in a router. The second condition, drop-tailed
queues, arises when queuing algorithms unfairly target
a number of flows through the queue with excessive
packet loss rates for newly arriving packets. The third
condition produces heavy-tailed data transmission time
distributions due to congestion and high packet loss
rates [40]. Finally, Floyd [39] found that the

convergence of multiple TCP streams at a congested
bottleneck can create phase effects in which one stream
unfairly dominates the queue and thus the outbound
link.
 The unfair distribution of packet loss is an
undesirable condition in congested routers [31]. To
provide mechanisms in routers to fairly distribute
packet loss, new queuing schemes, such as Random
Early Detection (RED) [31] are being designed and
deployed. For this analysis, we will assume that packet
loss impacts parallel TCP streams equally.
 The following example illustrates the impact of
multiple TCP streams in an uncongested network:
If we assume that bytesMSS 4418= , msRTT 70= ,

and
10000

1=ip for all connections, and using

5.0
sec

sec1000
/1000000

/8
sec)70(

)4418(≅

=Κ m

Mbitbits
bytebits

mRTT
bytesMSS

The upper bound on aggregate TCP bandwidth can
then be calculated using equation (5). Table 1 contains
the results of this calculation for a number of sockets.

Number of
Connections

Maximum
Aggregate
Bandwidth

1 100 50 Mb/sec
2 100+100 100 Mb/sec
3 100+100+100 150 Mb/sec
4 4 (100) 200 Mb/sec
5 5 (100) 250 Mb/sec

Table 1. Packet Loss on Aggregate TCP Bandwidth

 Now, as the aggregate utilization of the network
increases to the point where queues and buffers in
switches and routers begin to overflow and packets are
dropped, the network becomes congested. If the packet
loss due to congestion is fairly shared over all of the
connections through a switch or router, the negative
effects of packet loss on the aggregate TCP bandwidth
for a set of n simultaneous connections is magnified by
a factor of n. For example, if the packet loss rate from
the previous example doubles, the multiplicative packet
loss rate factor in Table 1 is reduced from 100 to 70.71.
For five simultaneous streams, this reduces aggregate
bandwidth from 250 Mb/sec to 176.78 Mb/sec—a
reduction of 30%. Even with this reduction, however,
the aggregate bandwidth of 176.78 Mb/sec using five
parallel TCP connections is still substantially better
than the throughput obtained using only one connection
at the desirable packet loss rate.
 It is difficult to predict at what point the packet
loss will become congestion dependent as the number

∑
n ip

1

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 5

of parallel TCP connections increase. There is,
however, a definite knee in the curve of the graph of
packet loss that indicates that adding additional
network sockets beyond a certain threshold will not
improve aggregate TCP performance. An examination
of Figures 1, 2 and 3 indicates that for a MTU of 1500
bytes, 10 sockets is the effective maximum number of
sockets; for a MTU of 3000 bytes, 5 sockets is the
effective maximum; and for a MTU of 4418 bytes, 3 or
4 sockets is the effective maximum. The effective
maximum presented in Figure 3 (MTU 1500) roughly
corresponds to the results of Sivakumar [2], who found
that the point of maximum throughput was 16 sockets
or less. Sivakumar did not mention the MTU used in
[2], but if the default system settings or MTU
discovery were used on the system, the MTU used was
probably less than or equal to 1500 bytes.

3.3 Validation of Multistream Model

 To validate the theoretical derivation of the
expression for parallel TCP connection throughput
(equations 3 – 5), a series of experiments were
conducted across the Abilene network from the
University of Michigan to the NASA AMES Research
Center in California. Each experiment consisted of a
set of data transfers for a period of four minutes from
U-M to NASA AMES, with the number of parallel
TCP connections varying from 1 to 20. Seven of the
experiments were run with the maximum transmission
unit on the Abilene network (4418 bytes). Two
experiments were run with a MTU of 3000 bytes, and
two were run with a MTU of 1500 bytes. The U-M
computer has a dual processor 800 Mhz Intel Pentium
III server with a Netgear GA620 gigabit Ethernet
adapter, 512 MB of memory running Redhat Linux 6.2
and Web100 measurement software (without the use of
auto tuning) [35]. The NASA AMES is a Dell
PowerEdge 6350 containing a 550Mhz Xeon Intel
Pentium III processor with 512MB of memory and a
SysKonnect SK-9843 SX gigabit Ethernet adapter card
running RedHat Linux. The network settings on the U-
M computer were tuned for optimal performance, and
the default TCP send and receive socket buffer was set
to 16 MB. The NASA AMES computer was also well
tuned and configured with a TCP socket buffer size of
4 MB. Each computer had SACK [41] and Window
Scale (RFC 1323) [42] enabled and the Nagle
algorithm disabled [3]. Each data transfer was
performed with the Iperf utility [36] with a TCP
window size of 2 MB, data block size of 256 KB and
the Nagle algorithm disabled. A traceroute was
performed at the start and end of each run to assess the
stability of the network path.
 The Web100 software (without autotuning) was
utilized on the sender to collect the values of all the

variables that Web100 measures at 10-second intervals
during the 240 second run. The following Web100
parameters were extracted: round trip time
(SmoothedRTT), total count of the packets transmitted
(PktsOut), total count of packets retransmitted
(PktsRetrans), total number of bytes transmitted
(DataBytesOut), total number of bytes retransmitted
(BytesRetrans), and the total number of congestion
recovery events, which are controlled by SACK
(Recoveries).
 The following Iperf measurements were extracted
from the data from each experiment: bandwidth
measured by Iperf for each TCP connection and the
number of TCP sockets used. Missing observations in
the figures are due to lost or incomplete measurements.
 The statistical box plots in the figures are notched
box and whisker plots [43]. This method of statistical
display is desirable because it gives a complete
graphical representation of the entire data, thus
revealing the complete character of the observations.

The parameters necessary to validate the theoretical
model were extracted from the datasets: RTT =

SmoothedRTT, p = (Recoveries)/(PktsOut) and MSS
were statically configured for each test. Figure 1 shows

the relationship between the number of parallel TCP
connections and aggregate bandwidth for an MSS of

4366 bytes. Figure 2 shows the relationship for an MSS
of 2948 bytes, and Figure 3 shows the relationship for

an MSS of 1448 bytes.

0
50

100
150
200
250
300
350
400

1 3 5 7 9 11 13 15 17 18
Number of Parallel TCP Connections

Me
as

ur
ed

 A
gg

re
ga

te
 T

CP

Ba
nd

wi
dt

h
(M

b/
se

c)

Figure 1. Throughput of Parallel TCP Sockets with
MSS of 4366 Bytes

0
50

100
150
200
250
300
350
400

1 3 5 7 9 11 13 15 17 19

Number of Parallel TCP Connections

Me
as

ur
ed

 A
gg

re
ga

te
 T

CP

Ba
nd

wi
dt

h
(M

b/
se

c)

Figure 2. Throughput of Parallel TCP Sockets with
MSS of 2948 Bytes

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 6

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19

Number of Parallel TCP Connections

Me
as

ur
ed

 A
gg

re
ga

te
 T

CP

Ba
nd

wi
dt

h
(M

b/
se

c)

Figure 3. Throughput of Parallel TCP Sockets with
MSS of 1448 Bytes

 Since MSS is constant, and RTT is relatively static,
the packet loss rate p is essential for determining the
maximum aggregate TCP bandwidth. Figures 4, 5 and
6 show p (calculated from the ratio of SACK
recoveries to the total number of outbound packets).
 In examining these figures, it becomes apparent
that there are two characteristic regimes of packet loss.
In the first regime, as the number of sockets increases,
the packet loss increases only slightly, and (with the
exception of Figure 6) the variation in packet loss rate
is low. At some point, however, there is a knee in each
curve where congestion effects begin to significantly
affect the packet loss rate. After this point, the packet
loss rate increases dramatically, and its variability
becomes much larger. TCP interprets packet loss as an
explicit congestion notification from the network that
indicates that the sender should decrease its rate of
transmission. In the random regime of packet loss
however, the TCP sender improperly throttles the data
transmission rate. The knee in each one of these curves
corresponds to the knee in the estimated and actual
aggregate TCP throughput curves in Figures 1–3 and
7–9.
 When the knee in the packet loss rate and
aggregate TCP throughput curves is reached, the
benefits of adding additional TCP connections are lost
due to two factors. First, the packet loss rate will
increase for every additional socket added if the packet
loss rate is in the congestion regime. This additional
packet loss will offset any aggregate TCP bandwidth
gains that might have been realized from additional
TCP connections. Second, and most importantly, the
bottleneck in the network between the sender and
receiver simply has no additional network bandwidth to
offer. At this point, the bottleneck is too congested to
allow any additional streams.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 3 5 7 9 11 13 15 17 19

Number of Sockets

Me
di

an
 P

ac
ke

t L
os

s
(R

ec
ov

er
ies

/P
kt

sO
ut

)

Figure 4. Packet Loss Rate for MSS 4366

0

0.0005

0.001

0.0015

0.002

1 3 5 7 9 11 13 16 18Number of Sockets
Me

di
an

 P
ac

ke
t L

os
s

(R
ec

ov
er

ies
/P

kt
sO

ut
)

Figure 5. Packet Loss Rate for MSS 2948

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006

1 4 7 10 13 16 19

Number of Sockets

Me
di

an
 P

ac
ke

t L
os

s
(R

ec
ov

er
ies

 / P
kt

sO
ut

)

Figure 6. Packet Loss Rate for MSS 1448

 Figures 7, 8 and 9 show the estimated aggregate
TCP bandwidth as a function of the parameters
gathered from the experiments. These parameters were
used in equation (5) to generate the figures.

0
50

100
150
200
250
300
350
400

1 3 5 7 9 11 13 15 17 19Number of Sockets

Es
tim

at
ed

 A
gg

re
ga

te
 T

CP

Ba
nd

wi
dt

h
(M

b/
se

c)

Figure 7. Estimated Aggregate TCP Bandwidth for
MSS 4366

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 7

0

50

100

150

200

1 3 5 7 9 11 13 16 18

Number of Sockets

Es
tim

at
ed

 T
CP

 A
gg

re
ga

te

Ba
nd

wi
dt

h
(M

b/
se

c)

Figure 8. Estimated Aggregate TCP Bandwidth for

MSS 2948

0

50

100

150

200

250

1 3 5 7 9 11 16 18 20

Number of Sockets

Es
tim

at
ed

 A
gg

re
ga

te
 T

CP

Ba
nd

wi
dt

h
(M

b/
se

c)

Figure 9. Estimated Aggregate TCP Bandwidth for

MSS 1448

The round trip time (RTT) gathered from Web100
measurements demonstrated the expected static
properties and remained in the range of 60 to 70 msec.

-120

-100

-80

-60

-40

-20

0

20

40

1 3 5 7 9 11 13 15 17 19

Number of Sockets

Ac
tu

al
Ba

nd
wi

dt
h

m
in

us
 E

st
im

at
ed

Ba

nd
wi

dt
h

(M
b/

se
c)

Figure 10. Difference between Actual and Estimated

for MSS of 4366 Bytes

 To determine the statistical difference between the
estimated and actual TCP bandwidth as measured by
Iperf, the method described by Jain [37] was used to
determine if two paired observations were statistically
different with a confidence interval of 90%. Figure 10
shows the differences between the measured and
estimated values for each experiment for MSS 4366.
The set of estimated values used for this calculation

was based on the number of bytes transmitted. The
90% confidence interval for the differences between
estimated and actual includes zero if the measurements
are statistically similar. It is apparent from Figure 10
that the Mathis equation slightly overestimates
aggregate TCP bandwidth. This is in agreement with
equation (5), which puts an upper bound on aggregate
TCP throughput. To more accurately predict aggregate
TCP throughput, a precise selection of the
multiplicative constant C as described in Mathis [13]
should be performed.
 The measurements demonstrate that the theoretical
model accurately determines an upper bound on actual
TCP throughput as a function of MSS, RTT and packet
loss rate p.

4.0 Why Parallel Sockets Work

 It seems counterintuitive that using parallel TCP
sockets would improve aggregate throughput, since one
would hope that a network would make a best effort to
maximize throughput on a single stream. There are
however, sources of traffic insensitive packet loss that
are not due to congestion. In this random packet loss
regime, the use of parallel TCP connections allows an
application to alleviate the negative effects of the
misinterpretation of packet loss by the TCP congestion
control algorithm. This section will give an explanation
of why using parallel TCP connections increases
aggregate throughput.
 The derivation of equation 2 in Mathis [13]
uses a geometric argument with constant probability

packet loss rate
22

22
1

2
1

+

= WW

p
, where W is the

congestion window size in packets. When a loss event
occurs every 1/p packets, the slow-start algorithm will
decrease the congestion window by half. This leads to
the “saw tooth” pattern shown in Figure 11.

Figure 11. TCP Saw Tooth Pattern

If the assumption that p is a constant probability is
modified by the assumption that, for an individual TCP

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 8

stream, it is independent of the loss rate of other TCP
streams from the same sender on an uncongested
network, and that for each stream i, ip is from a
distribution identical to the other distributions for loss
rate, the situation described in Figure 11 can be used to
describe the effects of parallel TCP connections as
shown in Figure 12.

Figure 12. The Effects of Multiple Sockets

 Given that the packet loss rates parallel TCP
connections are not all sensitive to traffic, and that
packet losses occur in each channel at the same rate (as
long as packet losses are not due to network
congestion), an interesting effect occurs. If the three
streams in Figure 12 are combined into the aggregate
representation shown in Figure 13, it is clear that using
multiple network sockets is in essence equivalent to
increasing the rate of recovery from a loss event from
one MSS per successful transmission to three times
MSS. Note that this increased recovery rate is
theoretical and functionally equivalent to using a larger
MSS on a single channel with the same packet loss rate
p.

Figure 13. Geometric Construction of the Aggregate

Effects of Multiple TCP Connections

 As the number of simultaneous TCP connections
increases, the overall rate of recovery increases until
the network begins to congest. At this point, the packet
loss rate becomes dependent on the number of sockets

and the amount of congestion in the network. The
packet loss rate change indicates that the network is
congested, and that the TCP sender should reduce its
congestion window.
 As the number of parallel TCP connections
increases, and the higher packet loss rates decrease the
impact of multiple sockets, the aggregate TCP
bandwidth will stop increasing, or begin to decrease.
 Given that the aggregate rate of congestion
recovery across the parallel TCP streams is
functionally equivalent to an increased recovery rate,
there is an interesting observation that can be made.
TCP connections over wide area networks suffer from
the disadvantage of long round trip times relative to
other TCP connections. This disadvantage allows TCP
senders with small RTTs to recover faster from
congestion and packet loss events than TCP sessions
with longer RTTs. Since the use of parallel TCP
sockets provides a higher recovery rate, hosts with
longer RTTs are able to compete on a fairer basis with
small RTT TCP connections for bandwidth in a
bottleneck.

4.1 Selecting the Number of Sockets

When the packet loss rate p transitions from the
random loss to the congestion loss regime, the benefits
from using additional sockets is offset by the additional
aggregate packet loss rate. From the previous section, it
is apparent that the knee that is present in the TCP
bandwidth curve directly corresponds to the knee in the
packet loss curve. The challenge in selecting an
appropriate number of sockets to maximize throughput
is thus the problem of moving up to, but not beyond,
the knee in the packet loss curve.
 Any application using parallel TCP connections
must select the appropriate number of sockets that will
maximize throughput while avoiding the creation of
congestion. It is imperative that applications avoid
congesting a network to prevent congestion collapse of
the bottleneck link. As shown by the data, adding
additional TCP connections beyond the knee in the
packet loss curve has no additional benefit, and may
actually decrease aggregate performance.
 Determining the point of congestion in the end-to-
end network a priori is difficult, if not impossible,
given the inherent dynamic nature of a network.
However, it may be possible to gather relevant
parameters using Web100 from actual data transfers,
which then can be used in combination with statistical
time-series prediction methods to attempt to predict the
end-to-end packet loss rate p, RTT and MSS, and thus
the limit on TCP bandwidth. In addition to using
statistical predictions to predict the value of p, it may
also be possible to use the same techniques to collect
and store information on the number of parallel TCP

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 9

connections necessary to maximize aggregate
performance and avoid congestion. The predicted
values of p and the effective number of parallel TCP
connections can then be used as a starting point for a
simple greedy search algorithm that adjusts the number
of parallel TCP connections to maximize throughput.

5.0 Conclusion and Future Work

This paper addresses the question of how parallel TCP
connections can improve aggregate TCP bandwidth. It
also addresses the question of how to select the
maximum number of sockets necessary to maximize
TCP throughput while simultaneously avoiding
congestion. A theoretical model was developed to
analyze the questions. It was validated by a series of
experiments. The findings indicate that in the absence
of congestion, the use of parallel TCP connections is
equivalent to using a large MSS on a single connection,
with the added benefit of reducing the negative effects
of random packet loss.
 It is imperative that application developers do not
arbitrarily select a value for the number of parallel TCP
connections. If the selected value is too large, the
aggregate flow may cause network congestion and
throughput will not be maximized.
 For future work, there are several avenues of
research worth pursuing. First, the use of time-series
prediction models (such as Network Weather Service
[21]) for predicting values of the packet loss rate p and
the number of parallel TCP connections (s) would
allow application developers to select an appropriate
value for s. The ability to predict p would provide a
mechanism for Grid computing environments to place
an accurate commodity value on available network
bandwidth for purposes of trading network bandwidth
on an open Grid Computing trading market [44, 45].
Finally, the use of constraint satisfaction algorithms for
choosing the optimal value for s by applications should
be investigated.

REFERENCES

[1] Lee, J., Gunter, D., Tierney, B., Allock, W., Bester, J.,
Bresnahan, J. and Tecke, S. Applied Techniques for High
Bandwidth Data Transfers across Wide Area Networks Dec
2000, LBNL-46269.
[2] Sivakumar, H., Bailey, S., Grossman, R. L., PSockets:
The Case for Application-level Network Striping for Data
Intensive Applications using High Speed Wide Area
Networks, SC2000: High-Performance Network and
Computing Conference, Dallas, TX, 11/00.
[3] Pittsburgh Supercomputer Center Networking Group.
“Enabling High Performance Data Transfers on Hosts”,
http://www.psc.edu/networking/perf_tune.html.
[4] Lakshman, T. V. and Madhow, U., The Performance of
TCP/IP for Networks with High Bandwidth-Delay Products

and Random Loss. IFIP Transactions C-26, High
Performance Networking, pages 135--150, 1994.
[5] Floyd, S., and Fall, K., Promoting the Use of End-to-End
Congestion Control in the Internet, IEEE/ACM Transactions
on Networking, August 1999.
[6] Lee, J. Gunter, D., Tierney, B., Allock, W., Bester, J.
Bresnahan, J., and Tecke, S., Applied Techniques for High
Bandwidth Data Transfers across Wide Area Networks. Sept
2001, LBNL-46269, CHEP 01 Beijing China.
[7] Matt Mathis, Personal Communication.
[8] Long, R., L. E. Berman, L. Neve, G. Roy, and G. R.
Thoma, "An application-level technique for faster
transmission of large images on the Internet", Proceedings of
the SPIE: Multimedia Computing and Networking 1995 Vol.
2417 February 6-8, 1995, San Jose, CA.
[9] Long L. R., Berman L E., Thoma GR. "Client/Server
Design for Fast Retrieval of Large Images on the Internet."
Proceedings of the 8th IEEE Symposium of Computer-Based
Medical Systems (CBMS'95), Lubbock TX June 9-10, 1995
pp.284-291.
[10] Allman, M. Ostermann, S. and Kruse, H. Data Transfer
Efficiency Over Satellite Circuits Using a Multi-Socket
Extension to the File Transfer Protocol (FTP). In Proceedings
of the ACTS Results Conference. NASA Lewis Research
Center, September 1995.
[11] Bolliger, J., Gross, T. and Hengartner, U., Bandwidth
modeling for network-aware applications. In INFOCOM '99,
March 1999.
[12] Padhye, J., Firoiu, V., Towsley, D. and Kurose, J.,
Modeling TCP throughput: a simple model and its empirical
validation. ACMSIGCOMM, September 1998.
[13] Mathis, M., Semke, J., Mahdavi, J. and Ott, T., “The
Macroscopic Behavior of the TCP Congestion Avoidance
Algorithm.” Computer Communication Review, volume 27,
number3, July 1997.
[14] Paxson, V., "End-to-end Internet packet dynamics," in
Proc. ACM SIGCOMM, pp. 139--152, September 1997.
[15] Chiu, D-M. and Jain, R., "Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in Computer
Networks," Computer Networks and ISDN Systems, vol. 17,
pp. 1-14, 1989.
[16] Internet End-to-End Performance Monitoring.
http://www-iepm.slac.stanford.edu/.
[17] Eggert, L., Heidemann, J. and Touch, J. Effects of
Ensemble-TCP. ACM Computer Communication Review, 30
(1), pp. 15-29, January, 2000.
[18] Balakrishnan, H., Rahul, H. and Seshan, S., "An
Integrated Congestion Management Architecture for Internet
Hosts", Proc. ACM SIGCOMM, September 1999.
[19] ATLAS High Energy Physics Project.
http://pdg.lbl.gov/atlas/atlas.html.
[20] Bolot. J-C., “Characterizing End-to-End packet delay
and loss in the Internet”, Journal of High Speed Networks,
2(3):305--323, 1993.
[21] Wolski, R., “Dynamically Forecasting Network
Performance to Support Dynamic Scheduling Using the
Network Weather Service.” In 6th High-Performance
Distributed Computing, Aug. 1997.
[22] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
and Weiss, W., "An architecture for differentiated services,"
Internet Draft, IETF Diffserv Working Group, August 1998.
ftp://ftp.ietf.org/internet-drafts/draft-ietf-diffservarch -01.txt.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

 10

[23] Georgiadis, L., Guerin, R., Peris, V. and Sivarajan, K.
Efficient network QoS provisioning based on per node traffic
shaping. IEEE ACM Trans. on Networking, Aug. 1996.
[24] Sander, V. Adamson, W., Foster, I., Alain, R. End-to-
End Provision of Policy Information for Network QoS. In
10th High-Performance Distributed Computing, August
2001.
[25] Cohen, E., Kaplan, H. and Oldham, J., "Managing TCP
Connections under Persistent HTTP", Proceedings of the
Eighth International World Wide Web Conference, Toronto,
Canada, May 1999.
[26] Grid Forum GridFTP Introduction:
http://www.sdsc.edu/GridForum/RemoteData/Paper
s/gridftp_intro_gf5.pdf.
[27] Baru, C., Moore, R., Rajasekar, A. and Wan, M., “The
SDSC Storage Resource Broker.” In Procs. of CASCON'98,
Toronto, Canada, 1998
[28] Floyd, S., “Congestion Control Principles”, RFC 2914.
[29] Semeria, C. “Internet Processor II ASIC: Rate-limiting
and Traffic-policing Features.” Juniper Networks White
Paper.
http://www.juniper.net/techcenter/techpapers/200005.html.
[30] Mogul, J. and Deering, S., "Path MTU Discovery,"
Network Information Center RFC 1191, pp. 1-19, Apr. 1990.
[31] Floyd, S. and Jacobson, V. Random early detection
gateways for congestion avoidance. IEEE/ACM Transactions
on Networking, 1(4): 397-413, August 1993.
http://citeseer.nj.nec.com/floyd93random.html.
[32] Jacobson, V., Congestion Avoidance and Control. In
Proceedings of the ACM SIGCOMM '88 Conference, 314-
329, 1988.
[33] Borella, M. S., Swider, D., Uludag, S. and Brewster, G.,
"Internet Packet Loss: Measurement and Implications for
End-to-End QoS," Proceedings, International Conference on
Parallel Processing, Aug. 1998.
[34] Feng, W. and Tinnakornsrisuphap, P., “The Failure of
TCP in High-Performance Computational Grids”, SC2000:
High-Performance Network and Computing Conference,
Dallas, TX, 11/00.
[35] Web100 Project. http://www.web100.org.
[36] Gates, M. and Warshavsky, A., Iperf version 1.1.1,
Bandwidth Testing Tool, NLANR Applications, February
2000.
[37] Jain, R., The Art of Computer Systems Performance
Analysis. John Wiley & Sons, Inc., New York, New York,
1991.
[38] S. Floyd. “TCP and Explicit Congestion Notification.”
ACM Computer Communication Review, 24(5): 10-23, Oct.
1994.
[39] Floyd, S. and V. Jacobson. 1992. On traffic phase effects
in packet-switched gateways. Internetworking: Research and
Experience 3: 115-156.
[40] Guo, L., Crovella, M. and Matta, I., “TCP congestion
control and heavy tails," Tech. Rep. BUCSTR -2000-017,
Computer Science Dept - Boston University, 2000.
[41] Mathis, M., Mahdavi, J., Floyd, S. and Romanow, A.,
“TCP Selective Acknowledgement Options. RFC 2018,
Proposed Standard, April 1996.” URL ftp://ftp.isi.edu/in-
notes/rfc2018.txt.
[42] V. Jacobson, R. Braden, D. Borman, "RFC1323: TCP
Extensions for High Performance", May 1992

[43] McGill, Tukey and Larsen, "Variations of Box Plots,"
Am. Statistician, Feb. 1978, Vol. 32, No. 1, pp. 12-16.
[44] Buyya, R., Abramson, D. and Giddy, J. “An Economy
Grid Architecture for Service-Oriented Grid Computing”,
10th IEEE International Heterogeneous Computing Workshop
(HCW 2001), In Conjunction with IPDPS 2001, San
Francisco, USA, April 2001.
[45] Hacker, T., and Thigpen, W., “Distributed Accounting
on the Grid”, Grid Forum Working Draft, 2000.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

	IPDPS 2002
	Return to Main Menu

