
Streaming the Sound of Smart Cities:
Experimentations on the SmartSantander test-bed

Congduc Pham
University of Pau, LIUPPA Laboratory

congduc.pham@univ-pau.fr

Philippe Cousin
Easy Global Market

phlippe.cousin@eglobalmark.com

Abstract—Smart Cities have emerged as an efficient infras-
tructure to contribute to so-called global sensing or situation-
awareness applications. One example of large scale deployment
of sensors in the city is the SmartSantander test-bed. Most
of the deployment so far propose traditional scalar physical
measures such as temperature or luminosity for a number of
environment-related applications. The EAR-IT project moves a
step further and proposes large-scale ”real-life” experimenta-
tions of intelligent acoustics for supporting high societal value
applications. One scenario that will be demonstrated is an on-
demand acoustic data streaming feature for surveillance systems
and management of emergencies. In this paper, we will present
experimentations on streaming encoded acoustic data on low-
resources devices. We will highlight the main sources of delays
assuming no flow control nor congestion control to determine the
best case performance level and will demonstrate that streaming
acoustic data can be realized in a multi-hop manner on the
SmartSantander infrastructure.

Index Terms—Smart Cities, Sensor networks, Audio streaming,
surveillance

I. INTRODUCTION

In the last few years, the research efforts in the field of
Wireless Sensor Networks (WSN) have shown high potentials
for surveillance applications and have paved the way to
nowadays so-called ubiquitous/global sensing and smart cities
paradigm that extends WSN to a more generic Internet-of-
Thing (IoT) concepts. A number of leading projects on global
sensing and smart cities have been launched recently and the
SmartSantander infrastructure [1] is probably one of the most
important one in term of deployment scale and in number of
hosted applications test-beds and project. One of the hosted
project is the EAR-IT project [2] which focuses on large-
scale ”real-life” experimentations of intelligent acoustics for
supporting high societal value applications and delivering new
innovative range of services and applications mainly targeting
to smart-buildings and smart-cities. One scenario that will be
demonstrated is an on-demand acoustic data streaming feature
for surveillance systems and management of emergencies.
Figure 1 depicts the EAR-IT context with a 2-tier architecture
of sensing nodes. The first tier consists of a limited number
of powerful Acoustic Processing Units (APU) with advanced
analysis capabilities to accurately detect events of interest. The
second tier is composed of a large number of low-cost, low-
power sensing devices, noted IoT nodes in the figure, that can
be used in a complementary way to capture, on an on-demand
basis, acoustic data that will be streamed to the central control

system using other IoT nodes as relay nodes. Delay can be
an important factor as the on-demand scenario is typically
intended for a human operator requesting acoustic data on
well-identified parts of the city.

Fig. 1. EAR-IT context on-demand audio data streaming

Although the acoustic capture system on the numerous IoT
nodes are not as efficient and powerful than the one on the
APU, the advantage of IoT nodes is their density that provides
a large-scale coverage of the city. Therefore a human operator
could request acoustic data from a set of IoT nodes to improve
its understanding of the emergency. Note that the central
control system depicted in figure 1 is actually a gateway node
that manages a number of APU and IoT nodes. Many gateways
are deployed across the test-bed and a gateway is connected to
the Internet with a large bandwidth network technology: WiFi,
wired Ethernet or 3G depending on what is available. We will
then consider that the difficult part is to stream acoustic data
from an IoT to its corresponding gateway, and once the data
has reached the gateway, powerful and traditional streaming
tool/software/protocol could be used to transfer the acoustic
data to the final destination.

There have been studies on multimedia sensors but few of
them really consider timing on realistic hardware constraints
for sending/receiving flows of packets [3], [4], [5], [6]. In this
paper, we will present experimentations on streaming encoded
acoustic data on low-resources devices. We will highlight

the main sources of delays assuming no flow control nor
congestion control to determine the best case performance
level. The motivation of this article is to present original
experiments of acoustic surveillance systems in a real large-
scale test-bed of deployed IoT nodes with 802.15.4 multi-hop
connectivity.

The paper is then organized as follows: Section II reviews
the SmartSantander test-bed architecture and especially the
sensor node hardware. Section III presents real measures on
sensor hardware and radio modules to qualify the 802.15.4
communication stacks at the application level. The motivation
is to know exactly the performance level that could be obtained
for streaming applications. Experimental results of multi-hop
acoustic data transmissions with 802.15.4 radio modules will
be presented in Section IV. We will present in this section the
experimental test-bed, the developed tools for the tests and the
audio codec. Conclusions will be given in Section V.

II. THE SMARTSANTANDER TEST-BED HARDWARE

The SmartSantander test-bed is a 3-location infrastructure
project. One main location being the Santander city in north
of Spain with more than 2000 nodes deployed across the city.
Many information can be found on the project web site [1]
but we will present in this section some key information that
briefly present the main characteristics of the deployed nodes.

A. IoT nodes and gateways

IoT nodes in the Santander test-bed are WaspMote sensor
boards and gateways are Meshlium gateways, both from the
Libelium company [7]. Most of IoT nodes are also repeaters
for multi-hops communication to the gateway. Figure 2 shows
on the left part the WaspMote sensor node serving as IoT node
and on the right part the gateway [1].

Fig. 2. Deployed IoT node (left) and gateway (right)

The WaspMote is built around an Atmel1281 micro-
controller running at 8MHz with 128KB of flash memory
available for the user application code. RAM memory is
limited to 4KB but an SD card of 2GB can be put on the board.
The WaspMote has a number of I/O interfaces: UARTs, SPI
and I2C buses, analog and digital pins. There are 6 UARTs
in the WaspMote that serve various purposes, the one that is
relevant for our study is the UARTs which connects the micro-
controller to the radio modules: UART0 and UART1 for the

default XBee Socket and an Expansion Radio Board Socket
respectively. The XBee socket can directly receive an XBee
radio module from Digi International [8] that offers various
connectivity technologies: 802.15.4, Digimesh/ZigBee, WiFi,
900 & 860MHz. The Radio Expansion Socket can receive a
dedicated GSM/GPRS module or a radio expansion board that
offers a second XBee connectivity board which is the case for
nodes in the test-bed. Various connectivity combinations can
therefore be realized. The WaspMote depicted in Figure 2 has
2 XBee modules: (i) XBee 802.15.4 on a radio expansion
board connected to the Radio Expansion socket and, (ii)
XBee Digimesh on the XBee socket. The gateway is built
on the Linux operating system and has many connectivity
possibilities: XBee 802.15.4, XBee Digimesh, WiFi, Ethernet,
GSM/GPRS, Bluetooth to name the few that are readily
available.

B. Radio module

IoT nodes have one XBee 802.15.4 module and one XBee
Digimesh module. Differences between the 802.15.4 and the
Digimesh version are that Digimesh implements a proprietary
routing protocols along with more advanced coordination/node
discovery functions. XBee 802.15.4 offers the basic 802.15.4
[9] PHY and MAC layer service set in non-beacon mode.
802.15.4 and Digimesh can co-exist together but no direct
communications are possible between the 2 variants. Both
802.15.4 and Digimesh are available from Digi in either
”normal” or ”pro” version. ”pro” version uses a higher transmit
power: maximum for ”pro” is 63mW while maximum for ”nor-
mal” is 1mW. Santander’s nodes have the ”pro” version set at
10mW transmit power which is the maximum allowed transmit
power in Europe. With this transmit power, the module has an
advertised transmission range in line-of-sight environment of
750m. Details on the XBee/XBee-PRO 802.15.4 modules can
be found in [10], [11].

The 802.15.4 module is available for experimentations
(mesh traffic can then be performed with this interface)
while the management and service traffic are handled by the
Digimesh module. Note that an IoT can send experimentation
logs to its associated gateway through the DigiMesh interface.
With the Digimesh routing features, Over-The-Air (OTA)
code deployment or communication in a multi-hop manner is
natively possible whereas routing must be handled specifically
by the application/user code with the 802.15.4 module.

In this paper, we only consider acoustic data transmission
using the 802.15.4 radio module connected to the UART1 of
the WaspMote.

III. IOT NODE QUALIFICATION

A. Sending side

One important part of our work in this paper is to take into
account the real overheads and limitations of realistic sensor
hardware. Most of simulation models or analytical studies only
consider the frame transmission time as a source of delay.
However, before being able to transmit a frame, the radio
module needs to receive the frame in its transmission buffer. In

many low cost sensor platforms, which is the case for Libelium
WaspMote, the bottleneck is often the interconnection between
the micro-controller and the radio module. Many sensor boards
use UARTs (serial line) for data transfer which data transfer
rate lies somewhere between 38400bps and 230400bps for
standard bit rates. Non-standard baud rates are usually pos-
sible, depending on the micro-controller master clock, and
also, depending on UARTs, higher speed can be achieved.
Nevertheless, in addition to the radio transmission time, one
has to take into account the time needed to write data into the
radio module’s buffer. This time is far from being negligible
as most of serial communications also adds 2 bits of overhead
(1 start bit and 1 stop bit) to each 8-bit data. Therefore, with
a serial data transfer rate of 230400bps, which is already fast
for a sensor board UART, writing 100 bytes of application
payload needs at least 100 × 10/230400 = 4.34ms if the
100 bytes can be passed to the radio without any additional
framing bytes. In many cases, one has to add extra framing
bytes, making the 4.34ms a sort of minimum overhead to add
to each packet transmission in most of UART-based sensor
boards. If we consider an audio flow that requires sending a
multitude of packets, we clearly see that the minimum time
before 2 packet generation is the sum of the time to write
frame data to the radio and the time for the radio to transmit
the frame. According to the 802.15.4 standard, if we consider
a unicast transmission with the initial back-off exponent BE
set to 0 (default is 3), we still typically need a minimum of
5.44ms+4.34ms = 9.78ms to send a single 100-byte packet
if there is no error.

To highlight the importance of the time needed to write
to the radio, we propose to measure the time spent in the
send() function, noted tsend, and the minimum time between
2 packet generation, noted tpkt. tpkt will typically take into
account various counter updates and data manipulation so
depending on the amount of processing required to get and
prepare the data, tpkt can be quite greater than tsend. With
tsend, we can easily derive the maximum sending throughput
that can be achieved if packets could be sent back-to-back,
and with tpkt we can have a more realistic sending throughput.
In order to measure these 2 values, we will use a Libelium
WaspMote as a traffic generator to send packet back-to-back
with a minimum of data manipulation needed to maintain some
statistics (counters) and to fill-in data into packets, and we
added accurate timing of the programming API. We want to
investigate the off-the-shelves performance of the WaspMote
that are deployed in Santander so the UART transfer rate is
kept to the default 38400 baud rate. We also use light version
of the Libelium API that provides much higher performance
level compared to the ”full” Libelium API that additionally
handles long packets with fragmentation/reassembly support.
This is done at a much higher cost while being mostly
unnecessary for streaming acoustic data.

Figure 3 shows the time in send() breakout for the Wasp-
Mote where we can especially see the time required to write to
the radio. The time in parse message() is the time to wait for
the TX status from the XBee radio module. This is a source

of improvement as it is possible to remove this overhead from
the send() function in order to return faster from the function
call as the XBee Arduino library does on Arduino boards [12].
In Figure 3 the sum of all the timing represents what we called
tsend. We can see that the time needed to write to the radio
does represent the main overhead of the send procedure.

8,25	 6,3	 6,35	 8,3	
8,1	 8,25	 8,3	 8,35	 8,2	 10,3	 9	 8,25	 10,3	 10,35	 9,65	 9,8	 10,3	 10,35	 11,55	

6,2	 8,25	 10,25	
10,4	

10,3	 12,5	
12,35	 14,3	 16,45	

16,5	 18,55	 20,65	
20,7	 22,65	

24,75	 24,8	 26,9	
28,8	

28,9	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	 85	 90	 95	 100	

Ti
m
e	
in
	 m

s	

XBee	 payload	 in	 bytes	

Time	 in	 send()	 breakout,	 light	 Libelium	 API	

-me	 before	 radio	 various,	 not	 detailed	 -me	 in	 parse_message()	 -me	 wri-ng	 to	 radio	

Fig. 3. Time in send() breakout, WaspMote

Figure 4 shows both tsend and tpkt for the WaspMote. The
maximum realistic sending throughput can be derived from
tpkt and this is depicted in figure 5.

17,74	 19,11	
20,89	 22,47	

24,26	 25,74	
27,53	 29	 30,53	 32,16	

33,68	 35,32	
36,79	 38,47	

40	 41,58	 43,26	
44,89	

46,68	

14,45	 15,05	 16,6	
18,7	 20,5	

22,75	 23,3	 24,75	
26,75	 28,85	

30,45	 30,95	 33	 35	 36,7	 37,1	 39,2	
41,25	 43,25	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	 85	 90	 95	 100	

!m
e	
in
	 m

s	

XBee	 payload	 in	 bytes	

Time	 between	 2	 packet	 genera!on	 and	 !me	 in	 send(),	
light	 Libelium	 API	

-me	 between	 send()	 -me	 in	 send()	

Fig. 4. Time between 2 packet generation and time in send()

4510	

6279	

7659	

8901	
9893	

10878	
11624	

12414	
13102	

13682	
14252	 14723	

15222	 15597	 16000	 16354	 16644	 16930	 17138	

5536	

7973	

9639	
10695	

11707	
12308	

13734	
14545	 14953	

15251	
15764	

16801	 16970	 17143	
17439	

18329	 18367	 18424	 18497	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

20000	

10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	 85	 90	 95	 100	

m
ax
	 th

ro
ug
hp

ut
	 in
	 b
ps
	

XBee	 payload	 in	 bytes	

XBee	 applica7on	 level	 max	 sending	 throughput,	 realis7c	 send	 overhead	
light	 Libelium	 API	 	

realis2c	 send	 overhead	 2ne	 in	 send()	 only	

Fig. 5. Maximum realistic sending throughput

We can see that Libelium WaspMote with an unmodified
communication library from Libelium can reach a maximum
sending throughput of about 17100bps.

B. Taking into account the receiver side

In the next set of experiments, we use the traffic generator
to generate at the sending side packets to a receiver. In general,
flow control and congestion control can be implemented
but any control would slow down the transmission anyway.
Therefore, we are not using flow control nor congestion control
but experimentally determine the minimum time between 2
packet generation at the sending side that would not overflow
the receiver. Figure 6 shows the minimum time between 2
packet generation to avoid frame drops or incomplete frames
at the receiver. We can see that with a receiver and the concern
that packets are not arriving too fast at the receiver side, the
minimum time between 2 packet generation increases from
≈ 47ms to ≈ 63ms for the maximum payload size.

31,00	
34,00	

38,00	
41,00	

44,00	
48,00	

52,00	
56,00	

60,00	
63,00	

0,00	

10,00	

20,00	

30,00	

40,00	

50,00	

60,00	

70,00	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

!m
e	
in
	 m

s	

XBee	 payload	 in	 bytes	

Minimum	 !me	 between	 2	 packet	 genera!on	 to	 avoid	 packet	 drop	 at	
receiving	 side	

Fig. 6. Minimum time between 2 packet generation

4510	

7659	

9893	

11624	

13102	
14252	

15222	
16000	

16644	 17138	

2581	

4706	

6316	

7805	
9091	

10000	
10769	

11429	
12000	

12698	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

	 m
ax
	 th

ro
ug
hp

ut
	 in
	 b
ps
	

XBee	 payload	 in	 bytes	

Sender	 throughput	 back-‐to-‐back	 and	 sender	 throughput	 without	 packet	 drop	

sender	 throughput,	 back-‐to-‐back	 sender	 throughput,	 without	 pkt	 drop	

Fig. 7. Sender throughput (back-to-back) and maximum receiver throughput

Figure 7 shows the difference between the maximum sender
throughput and the maximum receiver throughput which is
about 12700bps. Note that we are using the standard low-
level serial communication library of the WaspMote (which is
based on Arduino library) except that we increased the buffer
size of the UART1 to the same value than for UART0 (512
bytes). We also did not modify the queue management policy
which is a drop tail behavior on receiving characters.

C. Multi-hop issues

These results are for a single hop transmission and therefore
probably represent the best case. It means that these values
of minimum time between 2 packet generation are really a
minimum that avoids having high packet loss rate. If there are
many sensors sending at the same time, congestion control
with advanced QoS control and prioritization between packets
should probably be needed at the cost of higher latencies
which is often not tractable for streaming or near real-time
applications. This is the reason we are not considering flow
control nor congestion control in this paper since we want to
see to which extend streaming acoustic data is feasible and at
what maximum performance level.

In most WSN, data are sent from sensor nodes to a sink
or base station. This sink is not always the final destination
because it can also transmit the data to a remote control
center, but it is generally assumed that the sink has high
bandwidth transmission capabilities (such as the gateways in
the Santander test-bed). Figure 8 shows a more detailed time
diagram of a multi-hop transmission. We can see that all the
sensor nodes along the path from the source node to the sink
do have the same constraints regarding the minimum time
between 2 packet generation.

data 0

ack

start of send()

return from send()

data 1

start of send()

return from send()

Relay node

API API radio medium APP. (SENDER) APP. (RCV) API APP (RLY) radio medium

Time to get data from radio

data 0

ack

data 0

ack

ack

Fig. 8. Multi-hop transmission

Actually, it is well-known that multi-hop transmissions gen-
erate higher level of packet losses because of interference and
contention on the radio channel (uplink, from the source; and
downlink, to the sink). In this case, when the minimum time
between 2 packet generation is too small, there are contention
issues between receiving from the source and relaying to
the sink. This is depicted in figure 8 by the gray block.
However, as we found that the minimum time between 2
packet generation is much greater than the radio transmission
time (which is about 5ms for a 100-byte packet), multi-hop
transmissions in this case will most likely rather suffer from

high processing latencies than from contention problem. On
the figure, we can see that the relay node, upon reception of
the packet from the source node, needs an additional delay to
get data from the radio (yellow block), before being able to
send it to the next hop. This delay is far from being negligible
as in the best case it is similar to the time to write to the radio.

We also found that the time to read the received data, noted
tread, is quite independent from the communication baud rate
between the micro-controller and the radio module. We tested
with baud rates of 38400, 125000 and 250000, and tread
depends only on the data size. Figure 9 plots tread (blue curve)
for the WaspMote.

16	 18	 22	 26	 30	 34	 38	 41	 45	 50	

67	 70	 75	 81	
89	 94	

102	 108	
116	 122	

0	

20	

40	

60	

80	

100	

120	

140	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Ti
m
e	
in
	 m

s	

XBee	 payload	 in	 bytes	

Read	 3me	 &	 processing	 w/relay	 3me	

Read	 0me,	 WaspMote	 Processing	 w/relay	 0me	

Fig. 9. Time to read data and total processing w/relay time

The reason why tread does not depend on the communi-
cation baud rate between the micro-controller and the radio
module, at least at the application level, is as follows: most
of communication API used a system-level receive buffer and
when a packet arrives at the radio, a hardware interrupt in
raised and appropriate callback functions are used to fill in
the receive buffer that will be read later on by the application.
Therefore, the baud rate has only an impact on the time needed
to transfer data from the radio module to the receive buffer.
When in the receive buffer, the time needed to transfer the
data from the receive buffer to the application depends on the
speed of memory copy operations, therefore it depends mainly
on the frequency used to operate the sensor board and the data
bus speed. We measured this time on the WaspMote when the
payload size is varied and Figure 9 shows that the time to
read a packet of 100 bytes is about 50ms. We did experiments
on an Arduino Mega2560 board which is very similar to the
WaspMote hardware but running at 16Mhz instead on 8Mhz
and we found that the read time is almost divided by 2.

In total, when adding additional data handling overheads,
a relay node needs about 122ms to process the incoming
packet and to relay it to the next hop, once again for a
100-byte packet, see red curve in Figure 9. Figure 10 shows
the maximum throughput with relay nodes (green curve) and
compares it to the previous throughputs. We can see that multi-
hop transmission on this type of platform adds a considerable
overhead that put strong constraints on the audio encoding
scheme.

In case the next packet from the source node arrives before
the previous packet has been read, the reception buffer may
overflow quite quickly. This is depicted by the dashed green
arrow from the source to the first relay node. On more
elaborated OS and processors, it is possible to have a multi-
threaded behavior to processed the received packet earlier but
in this case contention on serial or data buses need to be
taken into account. In all cases, we clearly see that in the best
case the next packet will not be sent before the return of the
last send. In the next section, we will show real experimental
results of sending acoustic data from a source sensor node to
a sink with relay nodes in between.

4510	

7659	

9893	

11624	

13102	
14252	

15222	
16000	

16644	 17138	

2581	

4706	

6316	

7805	
9091	

10000	
10769	

11429	
12000	

12698	

1194	
2286	

3200	
3951	 4494	

5106	 5490	 5926	 6207	 6557	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	
	 m

ax
	 th

ro
ug
hp

ut
	 in
	 b
ps
	

XBee	 payload	 in	 bytes	

Throughput	 comparison	

sender	 throughput,	 back-‐to-‐back	 sender	 throughput,	 without	 pkt	 drop	 Receiver	 w/relay	 throughput	

Fig. 10. Throughput comparison

IV. STREAMING ACOUSTIC DATA

A. Experimental test-bed

The experiment uses 1 source node consisting of an Arduino
Mega2560 with an XBee 802.15.4 module. The audio files are
stored on an SD card and we can dynamically select which
file is going to be sent, see Figure 11.

Fig. 11. Arduino Mega2560 for acoustic data stored in the SD card

The Arduino board was used rather than a WaspMote
because of its much higher flexibility regarding the hardware
that could be connected to the board (LCD display, SD
card,. . .). The audio file will be transmitted in a number
of packets according to the defined chunk size. When the
sending is triggered, we can choose the time between 2
packet generation as well as the chunk size. We then have a

number of relay nodes that are programmed to relay incoming
packets to the sink which is, in our case, an XBee module
connected to a Linux computer running the reception program
to receive audio packets. Figure 12 shows the relay node based
on WaspMote hardware that reproduces an IoT node of the
Santander test-bed. Our test nodes have been deployed in the
Santander test-bed at the location depicted in figure 13.

Fig. 12. A WaspMote relay node

Fig. 13. Test of acoustic data streaming: topology

Fig. 14. Test of acoustic data streaming: placement of nodes

We placed our nodes on the street lamps indicated in figure
13, at locations 392, 11, 12 and 29. The sender node is always

on location 392 and location 11 always act as a relay. With
1 relay node, the receiver is at location 12 while with 2 relay
nodes, location 12 will serve as a relay and the receiver is
at location 29. The original IoT nodes of the Santander test-
bed are placed on street lamp as shown in figure 14(left). We
strapped our nodes as depicted by figure 14(right).

B. Tools

We developed a number of tools for the test-bed. First, the
program that runs on the sender node can be dynamically
configured to define the file to send, the destination address
(64-bit broadcast or unicast address), the chunk size that will
be used for fragmenting the file and the time between 2 packet
generation. Second, the program that runs on a relay node
can be dynamically configured to define the destination relay
address and an additional relay delay, that will not be used in
our tests here. Third, we developed a receiver program, called
XBeeReceive that runs on a Linux machine and that will
receive the incoming packets from a connected XBee gateway
to either save them to a file or to redirect the binary flow to the
standard output for streaming purposes. And fourth, a simple
program, called XBeeSendCmd has been developed to send
ASCII command strings to the various nodes for configuration
purposes. It supports both 802.15.4 and DigiMesh firmware as
well as provides the possibility to send remote AT command
to configure the XBee radio module itself. A shell script can
make successive calls to XBeeSendCmd to configure various
test scenarios parameters as well as configuring each relay
node with the right next-hop information. For instance, we
have the 2relay-node.sh script that takes 5 parameters,
4 MAC addresses (sender node, relay 1, relay 2 and receiver)
and a file name, to configure a 2-hop scenario. We choose this
solution rather than having a simple routing protocol because
we wanted to have full control on the routing paths, allowing
us to define multiple distinct paths if needed.

C. Audio codecs

Given the low receiver throughput shown in Figure 10, the
choice of an audio codec is of prime importance. Codecs that
are designed for audio music are not suitable and our choice
clearly goes towards codecs used for digitized voice (telephony
or VoIP). In this case, GSM codec that is used in mobile
telephony system can be tractable (for the low rate version at
about 6kbps) but we use instead an efficient open-source voice
codec called codec2 [13] that offers very low rates (1400,
1600, 2400 and 3200bps rates are available) while keeping a
high voice quality and, most importantly, fully documented
and implemented coding and decoding tools that can be used
in streaming scenarios. The codec2 package comes with
the c2enc program that encodes an audio raw file into the
codec2 format and the c2dec program that will decode a
file into a raw format. We then use play and sox to play
and to convert the raw file into other format, if necessary,
for play out in well-know players. Playing a codec2 file,
test2400.bit in a streaming fashion can be realized as
follows: (1) cat test2400.bit | c2dec 2400 - -

| play -r 8000 -s -2 -, assuming that the encoding
rate is 2400bps.

We use these tools with our XBeeReceive tool in
the following way: (2) XBeeReceive -B -stdout
test2400.bit | bfr -b1k -m10% - | c2dec
2400 - - | play -r 8000 -s -2 -. The command
uses an intermediate playout buffer (bfr tool) to add more
control on the data injection into the c2dec program. The -B
and -stdout options of XBeeReceive indicate the binary
mode and the redirection to standard output respectively. At
the sending side, each packet carries the offset in the file (or
flow for streaming mode) and missed data at the receiver are
filled by a ”neutral value” to enhance the play out quality.
For the moment, the neutral value was empirically found to
be 0x55 for 1400 bit rate, 0x77 for 2400 bit rate and 0x01
for 3200 bit rate. There are probably better values or better
ways to enhance the play out quality with missed data but
we leave this issue for future works.

We recorded an audio test file of about 13.2s (using a smart-
phone for instance). An 8-bit PCM encoding scheme would
give a bit more than 104000 bytes. We used sox to convert
the recorded file into an 8-bit sample raw file at 8000Hz.
Then with c2enc we produced codec2 files at 1400, 2400
and 3200bps. The file sizes are 2338, 4014 and 5352 bytes
respectively. All these files can be downloaded in .wav format
for immediate playout in most players at [14]. These files are
placed on the SD card of the Arduino sender node.

D. Results

We performed multi-hop transmissions with 1-relay node
and 2-relay node configuration, see figure 13. Previous tests
on the Santander test-bed showed that most of the IoT nodes
deployed can reach their corresponding Meshlium gateway
in a maximum of 2 intermediate hops. We then start the
XBeeReceive command and issue send commands to the
sender node by specifying the inter-packet time and the chunk
size. After complete reception, we verified the audio quality
by playing the received file with command (1) described
above. We also tested the streaming version with command
(2) described above.

Instead of using the maximum packet size that maximizes
the throughput but makes the impact of any packet loss very
harmful, we use smaller packet size that however provides
at least the required throughput according to the encoding
bit rate. For instance, if the packet size is 30 bytes and we
need a throughput of 2400bps, then the maximum inter-packet
time would be 30 ∗ 8/2400 = 100ms. Figure 15 shows
the maximum inter-packet time for various packet size and
encoding rate. We also plot the total processing time depicted
previously in Figure 9 to show which packet size in not
compatible with a given inter-packet time. For instance, we
can see that if the packet size in 20 bytes, the maximum
inter-packet time for an 3200bps encoding is 50ms while the
total processing w/relay at a relay node is 70. Therefore, it is
expected that either the bit rate will not be met, or packets will
build up in relay node buffer with high risk of packet drops.

67	 70	 75	 81	 89	 94	 102	 108	 116	 122	

0	

100	

200	

300	

400	

500	

600	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

In
te
r-‐
pa

ck
et
	 ,
m
e	
in
	 m

s	

Packet	 size	 in	 bytes	

Maximum	 inter-‐packet	 ,me	 for	 various	 packet	 size	 and	
encoding	 bit	 rate	

1400bps	 2400bps	 3200bps	 Processing	 w/relay	 <me	

Fig. 15. Maximum inter-packet time at various packet size and encoding
rate

However, Figure 15 also shows that for all the considered
bit rates, using a packet size greater or equal to 40 bytes is
compatible with the maximum inter-packet time. For the tests
we present in this paper we propose to use packet size of 40, 50
and 60 bytes. However, for 3200 encoding bit rate, it is not safe
to use 40-byte packets in streaming mode since the maximum
inter-packet time is 100ms to provide at least a throughput of
3200bps. We performed several tests to determine the inter-
packet time for sending packet at the sender node that gives a
correct delivery of the audio file. We found these inter-packet
time to be 110ms, 120ms and 125ms for packet size of 40, 50
and 60 bytes respectively.

1-relay scenario
bit rate 1400bps 2400bps 3200bps
pkt size 40 50 60 40 50 60 40 50 60
npkt 59 47 39 101 81 67 134 108 90
tpkt 105 110 120 105 110 120 105 110 120
nlost 8 6 7 6 5 5 8 9 8
tpkt 110 120 125 110 120 125 110 120 125
nlost 1 0 0 0 2 2 3 1 3
ts, s 6.5 5.6 4.8 11.1 9.7 8.3 14.7 14.4 11.2
trcv 6.9 6.4 5.2 11.6 10.1 8.8 15.4 15 11.7
tplay 4.7 4.5 3.7 8.4 8.2 6.1 13.1 12.8 9.8

TABLE I
1 RELAY NODE SCENARIO

2-relay scenario
bit rate 1400bps 2400bps 3200bps
pkt size 40 50 60 40 50 60 40 50 60
npkt 59 47 39 101 81 67 134 108 90
tpkt 105 110 120 105 110 120 105 110 120
nlost 9 7 7 7 7 7 8 8 10
tpkt 110 120 125 110 120 125 110 120 125
nlost 2 1 1 0 1 2 2 1 2
ts, s 6.4 5.6 4.9 11.2 9.8 8.3 14.6 14.4 11.3
trcv 7.1 6.6 5.3 11.8 10.2 9 15.7 15.2 12
tplay 4.9 4.8 3.9 8.7 8.5 6.4 13.3 13 10.1

TABLE II
2 RELAY NODE SCENARIO

Table I summarizes the 1-relay scenario results and indicates
for each encoding bit rate and packet size the number of
packets that are sent (npkt). We show the number of packet

losses for inter-packet 110ms, 120ms and 125ms (tpkt), but
also reported the number of observed packet losses when
using a smaller inter-packet time (i.e. 105ms, 110ms and
120ms). Reducing further the inter-packet time generates an
overwhelming number of packet drops during our tests. We
indicate the time needed for sending all the packets (ts), the
time for receiving the packets (trcv) and the time at which
the play out begins in streaming mode (tplay). Once again,
the received audio files can be downloaded in .wav format
for immediate playout in most players at [14]. For the 2-relay
node scenario, the results are summarized in Table II.

V. CONCLUSIONS

Multi-hop multimedia streaming on low-resource devices
(WSN, IoT) is a promising techniques for surveillance ap-
plications. In this paper, we presented experimentations on
the SmartSantander test-bed for acoustic data streaming in the
EAR-IT project. Prior to the streaming experimentation itself,
we first qualify the SmartSantander hardware and highlight
the main sources of delays assuming no flow control nor
congestion control. The purpose of the study is to deter-
mine the best case performance level that could be expected
when considering IEEE 802.15.4 multi-hop connectivity. We
showed that there are incompressible delays due to hardware
constraints and software API that limit the time between 2
successive packet send.

The experiment we performed with the audio codec2 en-
coding scheme demonstrated that streaming acoustic data is
feasible on Smart Cities infrastructures with low-resource de-
vices. The codec2 encoding scheme is a very low bit rate audio
codec therefore leaving room for higher bit-rates if higher
quality is required. However, the WaspMote hardware/software
capabilities are quite limited and 6kbps is probably the max-
imum encoding bit-rate that is compatible with low latency
and streaming feature on this type of platform. If one wants
to go beyond this performance limit, relaying must be done at
the lowest level of the communication API in order to reduce
the data handling time at relay nodes. We plan to investigate
the usage of DigiMesh radio module that have a MAC-level
AODV-like routing feature in future works.

We did not use packet size larger than 60 bytes to reduce
the impact of packet losses. Obviously, it is possible to reduce
the transmission latency by increasing the packet size. In
this case, the inter-packet time may be increased to limit the
number of packet drops. Another solution, which is beyond the
scope of this paper but probably very promising, is to perform
prediction on incoming acoustic data in order to fill missing
data with more appropriate values.

Finally, we chose to not address the overhead for sampling
and encoding the acoustic data. In practice, in addition to the
communication latency, encoding the acoustic data may add
a large processing delay depending on the complexity of the
encoding scheme. Our rationale for not having addressed these
issues is because there is a very large range of hardware possi-
bilities and some specific hardware can incredibly speedup the
encoding scheme. Moreover it is quite possible that dedicated

audio boards will be able to perform most of processing tasks
independently from the main micro-controller. Collaboration
is on-going for building dedicated audio boards.

ACKNOWLEDGMENT

This work is partially supported by the EU FP7 EAR-IT
project. The authors would like to thank the SmartSantander
research team lead by Pr. Luis Muñoz of University of
Cantabria for all the information on the SmartSantander test-
bed they provided. Special thanks to PhD students M. Diop
and E. Muhammad for their invaluable help during the test
campaign.

REFERENCES

[1] SmartSantander, “http://www.smartsantander.eu,” accessed 4/12/2013.
[2] EAR-IT, “http://ear-it.eu/,” accessed 4/12/2013.
[3] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,

and M. Srivastava, “Cyclops: In situ image sensing and interpretation in
wireless sensor networks,” in ACM SenSys, 2005.

[4] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless
multimedia sensor networks,” Computer Networks, vol. 51, pp. 921–960,
2007.

[5] M. R. Misra and G. Xue, “A survey of multimedia streaming in wireless
sensor networks,” IEEE Communications Surveys & Tutorials, 2008.

[6] S. Soro and W. Heinzelman, “A survey of visual sensor networks,”
Advances in Multimedia, 2009.

[7] Libelium, “http://www.libelium.com/,” accessed 4/12/2013.
[8] Digi, “http://www.digi.com/products/wireless-wired-embedded-

solutions/zigbee-rf-modules/,” accessed 4/12/2013.
[9] IEEE, “Ieee std 802.15.4-2006.” 2006.

[10] Digi, “Xbee/xbee-pro rf modules product manual (90000982 g), digi
international inc. august 1, 2012.” 2012.

[11] ——, “Xbee/xbee-pro digimesh rf modules product manual
(90000991 e), digi international inc. january 6, 2012,” 2012.

[12] A. Rapp, “http://code.google.com/p/xbee-arduino/,” accessed 4/12/2013.
[13] D. Rowe, “http://codec2.org,” accessed 2/10/2013.
[14] C. Pham, “http://web.univ-pau.fr/˜cpham/SmartSantanderSample/,” ac-

cessed 5/13/2013.

