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Abstract—With an increase in the number of monitoring
sensors deployed on physical infrastructures, there is a corre-
sponding increase in data volumes that need to be processed.
Data measured or collected by sensors is typically processed at
destination or “in-transit” (i.e. from data capture to delivery to
a user). When such data are processed in-transit over a shared
distributed computing infrastructure, it is useful to provide elastic
computational capability which can be adapted based on process-
ing requirements and demand. Where Service Level Agreements
(SLAs) have been pre-agreed, such available computational
capacity needs to be shared in such a way that any Quality
of Service related constraints in such SLAs are not violated.
This is particularly challenging for time critical applications and
with highly variable and unpredictable rates of data generation
(e.g. in Smart Grid applications where energy usage patterns
may change unpredictably). Previously, we proposed a Reference
net based architectural model for supporting QoS for multiple
concurrent data streams being processed (prior to delivery to a
user) over a shared infrastructure. In this paper, we describe a
practical realisation of this architecture using the OpenNebula
Cloud platform. We consider our infrastructure to be composed
of a number of nodes, each of which has multiple processing
units and data buffers. We utilize the “token bucket” model for
regulating, on a per stream basis, the data injection rate into each
node. We subsequently demonstrate how a streaming pipeline can
be supported and managed using a dynamic control strategy at
each node.

I. INTRODUCTION & MOTIVATION

Over recent years there has been a growing proliferation of
sensors and the embedding of sensor technologies in physi-
cal infrastructure (such as in built environments, to support
environment monitoring, etc). Work in this area builds on
applications of wireless sensor networks (WSN), making use
of the collaborative output of a large number of nodes. As a
result, there is a need to develop software applications that
process the data coming from such sensors “on the fly”, i.e.
as it is being generated and streamed, and that do not fit
into the model of traditional databases and querying paradigm
(i.e. where the data needs to be archived prior to processing).
Applications that have such characteristics require real time
analysis of such data streams, as often the subsequent actions
undertaken are dependent on the processing of data over
a particular time/sample window. A variety of applications

match these characteristics, such as in electricity networks
(often termed as “Smart Grids”), for monitoring/managing the
demand of energy and its distribution; in surveillance systems
for monitoring of behaviours, activities, etc. of people; in bio-
logical systems for the observation of a species population (in
danger of extinction, protected or of interest to scientists); in
traffic management (for monitoring traffic pattern behaviours
to manage journey times, manage congestion or support more
‘active” management of road networks); in social sciences
to determine sentiment of a particular community through
real time analysis of a Twitter data stream, etc. In these
applications, sensors can range in complexity from a large, en-
vironmental instrument that is able to record and transmit data,
to the use of specialist wireless sensor networks, transmitting
at pre-defined intervals to people-based sensors (where mobile
devices are used to generate data at unpredictable times).
Another class of applications fall within the area of “Urgent
Computing” – which refers to providing prioritized access
to computational and data resources to support emergency
computations such as severe weather prediction during matters
of immediate concern – such as hurricanes, flooding, medical
emergencies, etc. Immediate access to computational jobs in
critical emergencies must be given, and time cannot be wasted
in job queues of high end computational resources. Moreover,
as the number of sensors increase, the task of data management
(storing and processing) design and implementation within
such applications becomes more challenging.
In general terms, when data is generated from a “source”,

and the result of its analysis is required at a “sink”, there are
two main ways to analyse and process such data: in-transit or
in-situ. In-situ analysis involves use of computing capacity at
the location where data is generated or archived, sometime not
possible and difficult to carry out due to cost or time deadline
constraints. An alternative approach involves processing the
data during transmission to the sink (provided the data is
routed through intermediate nodes on its path from source
to sink). In this paper, we propose an OpenNebula-based
system which enforces Quality of Service (QoS), measured
exclusively in terms of throughput, for the simultaneous pro-
cessing and analysis of multiple data streams over a shared, in-



transit, data processing infrastructure. Our work is motivated
through scenarios from Smart Grids (electricity networks),
where sensors (smart meters) generate data at highly variable
and unpredictable bursts. Our system can process and transmit
data streams which have such characteristics. It is assumed that
the network bandwidth for data transfer is not the bottleneck
in the system. We also assume that the processing of a data
stream is composed of a sequence of stages and data is
routed through these stages. A Petri net-based model of this
architecture has been presented in [1], our key contribution is
to demonstrate how such an architecture can be realised using
the open source OpenNebula Cloud system. A key mechanism
for enabling QoS (throughput) in our architecture is the coordi-
nated action of the token bucket-based admission & regulation
component with the resource provisioning component (that
manages access to virtual machines (VMs) in the OpenNebula
system). Therefore, we have to guarantee that the virtualisation
overheads do not significantly alter the original incoming rate
of packets within each data stream. In particular, we tested
that the inter-arrival time between consecutive packets within
a data stream being transmitted to a VM is not altered by the
hypervisor with significant packet jitter.
The remainder of this paper is structured as follows:

Section II briefly introduces the system architecture already
presented in [1], showing a more detailed description of the
admission control models. Section III describes case studies
where variable and unexpected rates of data injection may
occur, which motivate the need for our proposal. In Section IV,
an OpenNebula based implementation of our model is de-
scribed. Section V presents our evaluation scenario, analysing
the overhead due to the use of virtualisation technologies.
In Section VII, related work is briefly discussed. Finally,
conclusions and future work are given in Section VIII.

II. AUTONOMIC STREAMING SYSTEM ARCHITECTURE
The system architecture and its corresponding Reference net

based models were presented in [1], [2]. The Reference net for-
malism [3] was used to specify the architectural components.
Reference nets is a particular class of high-level Petri net that
uses Java as an inscription language and extends Petri nets with
dynamic net instances, so-called net references, and dynamic
transition synchronization through synchronous channels. Our
system architecture consists of a pipeline of autonomous
computational stages. Each stage consists of a combination
of data admission control & regulation, computation, data
transfer capability and a rule-based controller component.
The data admission control & regulation component is

based on a token bucket model, whose main objective is to
isolate data streams, and to regulate access to the subsequent
computational stage. At each control period, the access for
stream i is accomplished at a rate of Ri data elements, the
choice of this parameter is based on the average incoming
rate from historical information for i. Additionally, it also
allows for a configurable maximum burstiness b i, above Ri

for each data stream i. The data admission control component
guarantees that there will not be starvation, and that the

established QoS per stream will be enforced. The computation
stage consists of an elastic pool of computational resources
that can be switched on and off at runtime, based on the
incoming rate of data streams at each node. This is equivalent,
for instance, to the provisioning of a VM (from a pool of
available VMs) at runtime. Incoming data are buffered after
the admission control stage and before the computational
stage. The buffer occupancy is monitored by the computational
stage controller, in order to adjust the computational capacity
(i.e. computational nodes are added / removed) on demand
based on the accumulation of data in the buffer – requiring
additional processing capacity to be made available to prevent
buffer overflow. We consider: (i) the average throughput per
stream, and (ii) the maximum allowed burst per stream, as QoS
parameters. Finally, the transmission component monitors the
processing capability of the next node in the pipeline as well as
the network bandwidth and autonomically adjusts the transfer
rate accordingly to avoid data loss.
For simplicity, for each data stream i, initial values of b i

and Ri parameters are selected based on previous runs, and
it should be emphasised that the number of allocated compu-
tational resources are dependent on b i and Ri, as the buffer
occupancy between both components impacts computational
resource allocation. Therefore, it is crucial to select b i and
Ri appropriately; initially they are both based on average
values. Nevertheless, a characterisation for bi and Ri for
scenarios in Section III would require an estimate for Ri and
a maximum allowed burstiness bi. Consequently, the token
bucket-based data access component in the architecture will
not succeed in its objective of isolation of flows: in case of
significant bursty behaviour of one data stream, there would be
performance degradation for the the remaining data streams,
as the computational resources would all be consumed for
processing data from the burst.
Moreover, even when rates of incoming data streams are

predictable/ regular, data transformations at an intermediate
stage of processing may lead to data inflation / deflation [ 1].
What may not be known apriori, therefore, is whether for
a particular combination of inputs and data sources larger
volumes of intermediate output data may be generated, thereby
leading to data inflation in the pipeline. Conversely, data
deflation at a node may lead to an inefficient use of available
resources.
The challenges of data inflation/deflation are summarized in

Figure 1, which illustrates the various steps involved, starting
from SLA negotiation based on the application’s data injection
rate (step 1). For simplicity, the figure only shows one flow
instance. Step 2 involves data access and control based on
the R parameter. Steps 3 and 4 show how incoming data
gets processed by the first stage leading to data inflation.
Subsequently, step 5 identifies the impact on a subsequent
stage, where the rate is limited by the token bucket parameters
of the stage. This may lead to either data loss or an inability
to meet an application’s end-to-end QoS constraints. Again,
pre-defined values of R and buffer sizes cannot overcome
effects of data inflation/deflation on resource management or



workflow QoS.

Fig. 1. Example of data inflation at the 2nd stage

A solution to these problems were proposed in [1], and
consists of supporting an adaptive Ri token bucket parameter
and a fixed bi for an allowed burst of around 10% to 15%.
In the example of Figure 1, there is a data inflation at stage
S2 that requires an increase of parameter R i at this stage.
The controller monitors the incoming rate at each node, and
when there is a income rate that is following an increasing or
decreasing tendency, the Ri parameter is updated accordingly.

A. Reference net-based models
Reference net models to support multiple stages in the

architecture, as illustrated in figure 1 are provided in [1], [4].
In this subsection, we provide a more detailed description of
the traffic shaping model used in our system.
Each node contains three different components: a token

bucket manager, a Processing Unit (PU) manager and an
Autonomic Data Steaming Service (ADSS). When a data
stream enters a node, a tuple with reference to the data stream
is generated, leading subsequently to the transfer of data to
the token bucket manager component. If constraints in the
token bucket manager are met, data elements are passed to
the PU manager, followed by the ADSS which forwards these
(depending on the network characteristics) to the next node.
Figure 5 shows the traffic shaping component modeled by the
TBMng reference net and the QoS provisioning component
that acts in coordination with it. The QoS provisioning compo-
nent includes a monitor, controller and an adapter to manage
computational resources according to the admission control
rates. The PU and ADSS nets description has been removed
for simplicity – but are discussed in [4].
Whenever the token bucket manager allows a data element

to proceed to the PU component, it enters first into a FIFO
buffer, waiting for any available computational resources. The
number of computational resources at the PU is regulated
by the autonomic controller depending on this FIFO buffer
occupancy. A long term (defined in terms of application
characteristics) buffer size increase indicates that the number
of computational resources must be increased, and vice versa
for a decrease in the buffer occupancy.
The Reference net in Fig. 2 shows the token bucket

(TokenBucket) net which receives data elements arriving

Fig. 2. Token Bucket and Clock nets

in input Transition tb1 and leaving at output Transition tb3.
Once a data element enters into the token bucket it is stored in
the bf buffer, implemented in this case as a FIFO list, in Place
DataBuffer. The output Transition is only enabled when
there is simultaneously an element in the buffer and a mark
in Place TokenBucket. A mark in Place TokenBucket will
be added by the clock shown in the bottom right part of the
figure at the rate R. Thus, irrespective of the arrival rate of data
elements into the token bucket from previous stages, they will
only be allowed to proceed to the PU at a constant rate of R.
Transition : update(R) modifies the parameter R. Transition
tb7 updates the token bucket parameters, and Transition tb8
drops n data elements from the FIFO list/buffer.
Fig. 3 depicts the token bucket manager (TBMng) com-

ponent. The upper part of the net forwards incoming data
elements to the corresponding token bucket. Each time a data
element is injected into a data stream, a reference to the data
stream with the agreed values (b, R) arrives in Transition t1.
If it is the first stream data element, Transition t3 will be
enabled and Transition t2 disabled. Otherwise, the contrary
occurs. In the former case, the new token bucket instance
for the data stream will be created in Transition t5 and the
data element will be added to it when Transition t6 fires.
In the latter case, the data element will be added to its
corresponding tokenbucket instance when Transition t4 fires.



Fig. 3. The Token Bucket Manager (TBMng) net.

Once a data element is allowed to proceed, Transition t7 is
fired and the data element moves to the PU component via
synchronous channel : end(ds) in Transition t7. Transitions
t8 and t9 update token bucket parameters and the number of
data elements in the associated buffers respectively.

III. CASE STUDIES: HIGHLY, UNEXPECTED DATA
GENERATION RATES

We describe two different case studies which involves
streaming data being generated at different, highly variable and
unexpected rates. The first scenario focuses on data generation
from energy meters (measuring energy consumption and for-
warding this to utility companies) in Smart Grids. The second
scenario corresponds to energy usage in Electric Vehicles
(EVs), which will be connected to smart grids in order to
charge their batteries, and therefore represent a variable (and
unpredictable) load on an energy network. Charging of EVs
is dependent on a number of factors, such as road congestion,
pricing, driving behaviour of a user etc.

A. Case Study 1: Smart Metering in Smart Grids
Power networks are currently evolving to Smart (energy)

Grids, a promising solution for improved energy efficiency,
manageability and controllability of available resources in
electricity networks. From an architectural point of view [5],
smart grids consists of three layers: (i) the physical power
layer for transmission and distribution of electricity – the smart
physical power layer consists of a wide variety of Distributed
Energy Resources (e.g. generation, controllable loads and
storage) and power consumers. (ii) The Advanced Metering
Infrastructure (AMI), providing a bidirectional communication

capability by connecting the electric generators and power
consumers. (iii) The application layer, which includes a num-
ber of applications for managing power networks such as the
automatic gathering of metering information from consumer
premises, support for interaction with third-party vendors
by the inclusion of customer equipment for monitoring and
control, demand response (influencing consumer electricity
consumption patterns – i.e. by altering electricity prices),
load monitoring & forecasting of energy demand, etc. Energy
meters used in AMI are essential for a number of smart
grid functionalities such as in monitoring the influence on
consumer electricity consumption patterns (demand response).
The data that smart meters transmit can be bursty in

nature as these devices are not synchronised and send data
independently of each other, a characteristic that may lead to
instantaneous peaks in data traffic [6]. As proposed in [6],
the transmission of data at a constant rate from the meters
may also result in inefficient usage of network bandwidth
and computational resources. The rationale behind this is
based on the premise that as the total power usage within the
utility approaches total available capacity, usage information
is required more frequently to detect and forecast a peak load
event with low latency to allow a timely response. Therefore,
smart meters need to transmit data with a dynamic frequency
within each geographic area. energy demand and its .

B. Case Study 2: Electric Vehicle Charging Process
There is an gradual inclusion of Electric Vehicles (EVs) into

production facilities and marketing plans of all car manufactur-
ers. These vehicles are anticipated to gain an important market
share over conventional Internal Combustion Engine (ICE)
powered vehicles. Nevertheless, in order to re-charge their
batteries, EVs will have to be connected to Smart Grids [7].
According to recent studies [8], by 2030, in case the charging
of EV batteries is left uncontrolled, a significant increase in
the electricity demand peaks is to be expected. Moreover, the
impact of EVs is anticipated to be at the local level where
hotspots will be created that depend on how EVs will cluster
within a particular geographical location, creating a possible
overload on the low voltage distribution network within that
area.
From an electricity infrastructure perspective, EVs can be

considered as: (i) mobiles devices expected to be able to
connect at various locations at different times, and when they
connect, they draw a continuous current from the electricity
network; (ii) flexible loads that may allow electricity compa-
nies to interrupt or coordinate their charging procedure; (iii)
storage devices that may allow electricity companies to request
power injections from their batteries back to the energy grid
(called Vehicle to Grid V2G). Energy companies will need to
process consumption data coming from meters at the smart
grid AMI layer. Therefore, the challenge that EVs rise is
to determine over what period of the day EV drivers are
likely to request charging; as this activity first requires a plan
for charging the EVs that meets drivers’ preferences, battery
constraints and electricity (peak) constraints at the minimum



economic cost [7]. Any charging request (demand) from a
consumer needs to be considered along side other demand
profiles, requiring a suitable schedule to be found that does
not violate the energy Grid capacity and consumer charging
profile constraints. It is therefore essential to understand real
usage of charging infrastructures and drivers’ behaviour.
This real usage can be anticipated from The EV Project

[9] 1, which is one of the largest electric vehicle infrastructure
demonstration projects. This project focuses on examining
the various activities and situations involving EV drivers’
behaviour and charging infrastructure usage. For all these
reasons, it can be considered as one of the most realistic
deployments available. Data gathered by “The EV Project” is
reported on a quarterly basis and accessible online. It includes
information of interest such as probability distributions for the
hourly average usage of charging points, the aggregated hourly
charging demand, the average energy requested per charging
event (a charging event is defined as the period when a vehicle
is connected to a charging unit, during which period some
power is transferred), the average recharging time, etc. By the
2nd quarter of 2013, over 2.9 million charging events had been
recorded from project participants in the US: approximately
8,300 Nissan Leaf, Chevrolet Volts and Smart ForTwo EVs [9].
These EVs made use of an infrastructure that consisted of
nearly 8,200 residential electric vehicle supply equipment
(EVSE) charging stations, over 3,750 commercial (publicly
available, workplace, and fleet) EVSE charging stations and
87 DC Fast Chargers (DCFC). To support data privacy, each
data set provided aggregates values for a whole participant
electricity network area in the US, namely residential, private
non-residential, and public.
Using this data, we are interested in identifying when EV

drivers are likely to request charging and the duration of
this process. Before “The EV Project” began collecting data,
common wisdom had been that 80% of charge events for a
typical driver would be at home. Data collected from this
project validates this: the percentage of home charging for
all regions appeared to stabilize at about 74% of all events for
the Leaf and 80% for the Volt. Another important metric is
that EVs averaged 1.1 charging events (or requests) per day.
For the Volt driver, the average was 1.5 charging events per
day. Although Volt drivers charge their vehicles more often,
they tend to charge at home.
These metrics are also related to the use of the charging

points within the transport/energy infrastructure. Considering
only residential areas, Figure 4 illustrates the availability
distribution of charging points for weekdays. This graph shows
the maximum and minimum percentage of charging units
connected across all days for all EVSE for weekdays. A drop
in the graph indicates that some EVs disconnected and a
rise means that an EV is charging. The behaviour is highly
associated with the arrival and departure times of EV drivers
at their homes, but it is also influenced by the electricity tariff,
in this case, the minimum electricity demand is observed at

1http://theevproject.com

Fig. 4. Aggregated Charging Availability for Weekdays in Residential Areas

6am approximately. This is directly related to the time at which
many EV owners go to work and therefore need to stop the
charging process. The opposite is happening at night as EV
owners prefer to charge at a period of lower energy tariff. In
“The EV Project”, a charging event is defined as the period
when a vehicle is connected to a charging unit, during which
period some power is transferred. For Smart Grid management
purposes, smart meters submit data about charging patterns
at regular intervals (i.e. every 15mins., half-hourly, etc.).
Nevertheless, according to Figure 4, it can be concluded that
data flows generated for the EV re-charging processes can be
highly bursty in reality (a maximum variability of up to 300%
in Figure 4 can be observed), which can make any anticipation
or prediction of the expected computational demand very
difficult.

IV. OPEN NEBULA BASED-IMPLEMENTATION
Each node within our system architecture consists of a node

with co-located computational resources (processing units),
thereby reducing the communication latency and overheads
between processing units. We replace the subnet of the PU
component at each node by an adapter component that inter-
acts with OpenNebula, so that OpenNebula in turn will allow
us to manage a number of virtual machines (VMs). Therefore,
as the Reference nets can be interpreted by Renew [10] (a
Reference net interpreter), our Reference net-based model
becomes executable. This provides a natural way to map a
previously developed model into a physically realised system.

A. OpenNebula Functionality and Architecture
OpenNebula exposes user and administrator functionality

for creating and managing private or hybrid heterogeneous
Clouds. In particular, OpenNebula provides virtualization net-
working, image and physical resource configuration, manage-
ment, monitoring and accounting [11]. Services can be hosted
in VMs, and then submitted, monitored and controlled in the
Cloud by using Sunstone or any of the OpenNebula system
interfaces, namely Command Line Interface (CLI), XML-RPC
API, OpenNebula Ruby and Java Cloud APIs. Additionally, it
also supports two main Cloud interfaces, namely Amazon’s
EC2-Query API – whereby an OpenNebula Cloud can be
accessed by an EC2 query; and OCCI-OGF interface to
enable multi-Cloud capability to be realised. The hypervisors



supported to run VMs are Xen, KVM and VMware, and in
order to enable message-based communication between them,
physical and virtual network links can be used. OpenNebula
supports the creation of Virtual Networks by mapping them
on top of the physical ones.
In order to facilitate the creation of VMs and to manage

and share data, the storage system of OpenNebula is pro-
vided to create disk images. These images can be shared
among OpenNebula Cloud users and used by several VMs.
The images are stored at a template repository system with
controlled access. Once a VM is instantiated, OpenNebula
also provides different methods to customize the VM and
adapt it tby passing contextual information such as network
configuration for the VM, user credentials, etc.

B. Integration with OpenNebula
We are utilising OpenNebula for the creation and manage-

ment of the pool of computational resources for our Processing
Unit (PU) components. At every node, for each PU, we assume
that there are a number of computational resources that can
accomplish the same functionality with similar performance.
We, utilise VMs for implementing computational resources,
which will be linked with the PU controller by a physical
network. We utilise the OpenNebula template repository for
storing the OS image to be used for each VM with the required
executables already installed. The hypervisor is KVM [12]
(Kernel-based Virtual Machine) which is an open-source hy-
pervisor for Linux OS on x86 hardware. It is fully integrated
into the Linux kernel and supports the execution of multiple
VMs running unmodified Linux OS or Windows OS images.
Each VM has private virtualized hardware: a network card,
disk, graphics adapter, etc. For the purposes of this paper,
we run 64-bit Scientific Linux OS VM on an x86 virtualized
hardware
Once the VMs are all set up, they are ready for the oper-

ational purpose of the PU component: they can be switched
on & off depending on the processing requirements. A rule
engine controller monitors buffer occupancies and triggers
actions such as changing token bucket admission rates and
consequently stopping or running new VMs. The OpenNebula
adapter component is also responsible for switching on & off
the VMs by using of the OpenNebula CLI interface or ssh.
Each ready VM establishes a TCP/IP socket connection with
the PU component interpreted by the Java-based Reference net
interpreter Renew. A token representing this socket connection
is used by the PU for managing the VMs. This way, the place
that contains tuples, with references to TCP/IP connections
and metadata, plays the role of a tuple space that is use for
managing resources. VMs can be at the same or different site
than PU and traffic shaping components.
Data injection rates to the PU component is regulated by the

token bucket manager component for each data stream entering
the system. Whenever a data element arrives it is stored in a
FIFO buffer until there is a free VM. Once a VM is ready for
processing and there are available data in the FIFO buffer, the
PU sends the data element to the available VM as depicted in

20 VMs receiving packets
packet size MEAN (msecs) STDV MADV
8Kb 2,00 0,42 0,30
16Kb 2,00 3,09 0,56
33Kb 3,00 12,98 1,93
65Kb 3,00 21,45 4,15

40 VMs receiving packets
packet size MEAN (msecs) STDV MADV
8Kb 2,00 4,93 0,54
16Kb 2,00 19,55 2,39
33Kb 3,00 27,22 4,72
65Kb 2,00 36,16 7,72

TABLE I
JITTER MEAN, STANDARD DEVIATION AND MEDIAN ABSOLUTE

DEVIATION WITH VMS RECEIVING PACKETS AT 400 PACKETS PER SEC

Figure 5. The PU interpreter recovers the TCP connection and
data, sends the data element through TCP/IP and waits for the
result of the processing.
In case, the local site has not enough resources, the

controller can incorporate TCP/IP socket connections with
external VMs. In this case, controller must consider the impact
of lower data transfer rates on WANs. If throughput of each
data stream can be maintained, it is not required to distinguish
LAN and WAN socket connections. In the case, some QoS
constrains can not be supported by WAN socket connections,
the pattern matching mechanism in traditional high level
interpreters and tuple spaces provide an expressive way to
discriminate connections.

V. EVALUATION
Prior to deploying our Cloud service infrastructure, we

tested that QoS amongst the data streams can be enforced
with OpenNebula and KVM. A key mechanism for enabling
QoS (throughput) in our architecture is the token bucket-based
admission & regulation component. Therefore, we have to
guarantee that the use of virtualisation technologies does not
alter the original incoming rate of packets at each data stream.
In particular, we tested that the hypervisor is not introducing
significant packet jitter altering the packet inter-arrival time
defined by the token bucket controller .
Our tests use the cloudmip 2 platform of the Université Paul

Sabatier of Toulouse, France, which provides an OpenNebula
v4.4 platform with 32 physical nodes. Each node contains
32GB RAM and 8 cores. In the first test, 4 VMs sent packets
to 20 VMs and we recorded the jitter. Each sender VM runs
5 processes for sending packets at a speed of 400 packets/s.
We measured the jitter for various packet sizes: 8Kb, 16K,
33Kb and 65Kb. In the second test, we used 8 VMs sending
packets to 40 VMs for recording the jitter as well. In this
way, we generated a traffic that will exceed the maximum
traffic received from an external network (at a maximum of
100 Mbps). The way we measured jitter is by computing the
mean, standard deviation (STDV) of the sample and a robust
deviation metric such as median absolute deviation (MADV).

2http://cloudmip.univ-tlse3.fr/



Fig. 5. OpenNebula-based QoS Enforcement for several Data Streams

At a transmission speed of 400 packets per second, the jitter
is around 2.5 milliseconds on average. Table I shows that jitter
can be maintained in both tests for 8KB and 16KB packet sizes
while there is a slight degradation for higher packet sizes. It
should be noted that the Linux OS accuracy for timing is at
millisecond level. This is the reason why the jitter measured
was 2 milliseconds. Moreover, the STDV & MADV are higher
for the second test, but this test generates 4Gbps of traffic,
which exceeds the maximum allowed traffic from the outside.
Other sources of overhead may occur when trying to

schedule more VMs than available resources on a physical
machine. Two overhead issues with the hypervisor-VM inter-
action would be: (i) creating/forking a new VM dynamically;
(ii) scheduling between VMs – if there are not enough
resources to sustain all VMs concurrently. All these issues
will be part of the future work to be considered to deploy
our infrastructure in the cloud to enforce QoS in data stream
processing applications.

VI. LESSONS LEARNED

Data measured or collected by sensors can be typically
processed at the sink or “in-transit” over a shared distributed
computing infrastructure, where the computational power can
be adjusted to the required demand. On one hand, this guar-
antees an efficient usage of resources. On the other hand, QoS
mechanisms must be incorporated into the system in order to
guarantee and enforce a previously negotiated Service Level
Agreement (SLA) to each user. This is particularly challenging
for time critical applications and with highly variable and
unpredictable rates of data generation. In previous papers,
we proposed a Reference net based architectural model for
supporting QoS for multiple concurrent data streams being
processed (prior to delivery to a user) over a shared infras-
tructure, deployed as a sequence of distributed nodes. Each
nodes consists of a combination of data access and admission
control stage, a processing stage, and a data transmission stage
to the following node. In this paper, we describe how to
implement the processing stage with OpenNebula, an open
source Cloud platform. OpenNebula provides networking &
computing virtualization. Therefore, OpenNebula can support
elastic VM provisioning within our architecture. Nevertheless,
virtualisation technologies impose an overhead that can affect
performance for specific applications demanding critical real-
time response.

The main advantage of the approach is that the Petri net
models we develop can be directly executed. In this way, we
have an executable prototype from the beginning. Our previous
models simulated all the execution, and assumed that commu-
nications will be not a problem. In this paper, we have shown
that once deployed the traffic shaping component to regulate
data injection, and the PU component to control the data
processing and managing the resources, the Cloud hypervisor
does not introduce significant overheads in traffic. However,
simulations ignore other sources of overhead as previously
pointed, and does not consider a lot of administrative work
required to have a complete operative system. For example, the
deployment of services to process data at each VM. An early
deployment of the models in real infrastructures is required to
ensure correct assumptions have been made.
The case studies in section III introduce two scenarios of

data being generated at an unpredictable and bursty manner –
where processing needs to be carried out within a limited time
period. Hence, the computational requirement for processing
such data streams may not be known apriori. The token bucket-
based data access component guarantees that any exceptional
behaviour of one particular data stream does not affect another,
ensuring that data streams can be isolated. We also observe
that data volumes at intermediate stages may also not be
known apriori – due to issue of data inflation/deflation. In both
cases, the computational resources needed to provide particular
processing capability must be dynamically allocated across the
data streams entering a system, achieved in our system by
adding / removing VMs in the OpenNebula system.

VII. RELATED WORK

Research in Data Stream Management Systems (DSMS)
and Complex Event Processing (CEP) has evolved separately,
despite the fact that both communities share a number of
important similarities and challenges such as scalability, fault
tolerance and performance. Data Stream Management Systems
(DSMS) shifted the paradigm of Database Management Sys-
tems as the need for efficiently processing streamed data sets
in real-time arose. In general, DSMSs focus on performance
by restricting the language in which they can be programmed
to graphs of operators with well-defined semantics [13]. This
allows these systems to automatically rewrite or compile
the specified stream pipelines to a more efficient version.
Scalability and query distribution were considered in Au-



rora [14], Borealis [15] and Stream Cloud [16]. Additionally,
QoS support in DSMS has been a critical requirement [13]
and various scheduling strategies and heuristics have been
developed. When data streams arrives at an expected rate
with low variability, near optimal scheduling strategies have
shown to enforce QoS for multiple data streams successfully.
However, if the data streams arrive with unpredictable and
variable bursts, the scheduling heuristics comprise a combi-
nation of strategies that may not always show satisfactory
QoS enforcement [13]. These systems therefore employ load
shedding strategies – i.e. discarding of data elements from a
stream when the loss of some data elements is acceptable.
In our approach, we rely on estimations of average input
rates for data streams, a token bucket model for regulating
data access to the computational resources, on the elastic
Processing Unit Component (increase / decrease of the number
of computational resources) and on the autonomous behavior
of each node. Our approach focuses on the need to isolate data
streams, so that any exceptional behaviour in one stream does
not affect another. However, one limitation of our approach
is the inability to synchronise across streams – as the token
bucket will alter the order in which streams are subsequently
transmitted to the processing units.
DSMSs have little or no support to express events as the

outcome of continuous queries nor further support to form
complex events. CEP has seen a resurgence in the last few
years, though support for handling events, rules, and triggers
was accomplished more than two decades ago. Examples
of CEP are SPADE/IBM InfoSphere Streams, Esper and
DROOLS Fusion [17]. The main difference between existing
CEP and stream processing systems is that in the former each
event is processed at arrival time, while stream processing
systems involve accumulating a data set over a time (or
count – i.e. when a certain number of events have arrived)
window and processing it at once. Event processing systems
assume that the incoming events are not bursty and do not
generally consider the presence of queues/buffers between
event operators. Additionally, most CEP have little support
for QoS requirements, except for the MavEStream system [13]
that integrates CEP into a QoS-driven DSMS system. Again,
MavEStream system enforces QoS by complex scheduling
heuristics that may not always perform suitably under bursty
conditions. Additionally, this lack of QoS support in CEP has
also been recently considered in the literature: in [18] several
micro-benchmarks were proposed to compare different CEP
engines and assess their scalability with respect to a number
of queries. Various ways of evaluating their ability to respond
to changes in load conditions were also discussed. Scalability
has not received much attention in CEP, some event processing
languages extend production rules to support event processing
and provide run-time optimizations by extending the Rete [ 19]
or Treat [20] algorithms to scale with the number of queries.
In [21] the importance of scalability for CEP is recognised
and event processing is partitioned into a number of stages.
At each stage resources can process all of the incoming events
in parallel under peak input event traffic conditions. However

this approach does not provide a run-time adaptation, does not
involve queues and buffers and assumes the best-effort strategy
(as is usual in CEP).
Other related literature includes a survey on integration

of sensing data with Cloud infrastructure [22], where vari-
ous application scenarios and sensor platforms are outlined.
The survey does not specifically focus on streaming data
or particular requirements that such applications introduce,
however it provides a good overview of approaches that are
currently being used in the community. Other application
specific approaches include the Storm system [23], which
is used to process large volumes of data from the Twitter
streaming API. This is an open source system for supporting
real time computation and integrated with the Hadoop platform
(for batch mode computation). The “Bolt” concept in Storm
can be mapped to our processing stages and a “Spout” as
a source for an incoming data stream (although there is no
equivalent in Storm for managing flow rates of incoming data
streams).

VIII. CONCLUSIONS

The increasing number of sensors and their software appli-
cations leads to greater challenges for processing, storing and
transmitting the large amounts of data generated. Moreover,
some application domains generate data in a highly bursty and
unpredictable rate, such as in Smart (energy) Grids. In this pa-
per, we propose an OpenNebula-based system architecture as
a scalable and economically viable solution for heterogeneous
surveillance & monitoring systems that involve changing data
generation patterns and processing requirements. We use token
bucket envelop process to enable running multiple data streams
over a shared Cloud infrastructure while providing each data
stream with a particular QoS requirement. We add a control
strategy at each computational stage to dynamically adjust
token bucket parameters to adapt the available resources in
order to provide QoS on an end-to-end basis, so that variations
in incoming rates can be self-configured by the application.
Experiments have shown that the overhead from virtualisation
technologies measured in terms of packet jitter is below 3ms,
therefore not altering significantly the token-bucket control on
packet inter-arrival time.
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[11] D. Milojičić, I. Llorente, and R. S. Montero, “OpenNebula: A Cloud
Management Tool,” Internet Computing, IEEE, vol. 15, no. 2, pp. 11–
14, March 2011.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM:
the Linux Virtual Machine Monitor,” in Proceedings of the Linux
Symposium, vol. 1, 2007, pp. 225–230.

[13] S. Chakravarthy and Q. Jiang, Stream Data Processing: A Quality of
Service Perspective Modeling, Scheduling, Load Shedding, and Complex
Event Processing, 1st ed. Springer Publishing Company, Incorporated,
2009.

[14] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik, “Scalable Distributed
Stream Processing,” in CIDR 2003 - First Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, January 2003.

[15] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-
H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik, “The Design of the Borealis Stream Processing
Engine,” in Second Biennial Conference on Innovative Data Systems
Research (CIDR 2005), Asilomar, CA, January 2005.

[16] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez,
“Streamcloud: A large scale data streaming system,” in Distributed
Computing Systems (ICDCS), 2010 IEEE 30th International Conference
on, june 2010, pp. 126 –137.

[17] O. Etzion and P. Niblett, Event Processing in Action, 1st ed. Greenwich,
CT, USA: Manning Publications Co., 2010.

[18] M. R. N. Mendes, P. Bizarro, and P. Marques, “A performance study of
event processing systems,” in TPCTC, ser. Lecture Notes in Computer
Science, R. O. Nambiar and M. Poess, Eds., vol. 5895. Springer, 2009,
pp. 221–236.

[19] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object
pattern match problem,” Artificial Intelligence, vol. 19, no. 1, pp. 17–37,
1982.

[20] D. P. Miranker, “Treat: A better match algorithm for ai production
system matching,” in AAAI, K. D. Forbus and H. E. Shrobe, Eds.
Morgan Kaufmann, 1987, pp. 42–47.

[21] G. T. Lakshmanan, Y. G. Rabinovich, and O. Etzion, “A
stratified approach for supporting high throughput event processing
applications,” in Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, ser. DEBS ’09. New
York, NY, USA: ACM, 2009, pp. 5:1–5:12. [Online]. Available:
http://doi.acm.org/10.1145/1619258.1619265

[22] A. Cuzzocrea, G.Fortino, and O. Rana, “Managing Data and Processes
in Cloud-Enabled Large-Scale Sensor Networks: State-of-the-Art and
Future Research Directions,” in Proceedings of IEEE/ACM CCGrid
conference, Delft, The Netherlands. IEEE Computer Society Press,
pp. 583–588.

[23] A. I. Project, “Storm: Distributed and fault-tolerant realtime computation
– http://storm.incubator.apache.org/,” [Online; accessed March 2014].


