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Abstract—In a wireless network, understanding the spatio-
temporal propagation of a radio signal and its attenuation over
distance has always been a great concern. However, to set up an
efficient network with these needs, it is imperative to have a good
characterization of the signal propagation over the deployment
environment. The contribution of this paper is twofold. First, we
study, select and test some of existing signal propagation models
on a LoRa network in order to see which model best fits LoRa
signal propagation behavior. Second, we empirically optimize the
best model from the first phase. The resulting model is then tested
and validated in another real-world environment and compared
to other models already experimented for LoRa networks. The
Hata model is found in the first phase to show more accurate
results and is therefore adapted using real measured data. The
adapted model from Hata is then tested and validated with
another and larger data set. Comparisons with Lee and Oulu
models that have been used in previous real LoRa networks
studies show that our adapted model can provide more accurate
predictions to assist LoRa network deployment campaigns.

Index Terms—LoRa, path loss model, LPWAN, Internet-of-
Thing,

I. INTRODUCTION

In a wireless network, understanding the spatio-temporal
propagation of a radio signal and its attenuation over distance
has always been a great concern. However, to set up an
efficient network with these needs, it is imperative to have
a good characterization of the signal propagation over the
deployment environment. A way to characterize signal prop-
agation is to model path-loss over distance in all direction
of the propagation environment. A path-loss is the power
loss involved in transmission between a transmitter and a
receiver. In a real deployment scenario, a good path-loss
model can increase the efficiency of a number of services,
reduce undesirable power losses, increase coverage area and
determine the best arrangement of gateways

Since Friis’s model [1] that defines signal behavior in free
space, there are myriad of schemes that attempt to model
signal propagation over different scenarios. These existing
propagation models can be housed in three categories. The
first category contains theoretical models that are purely an-
alytical models derived from the theory of ideal propagation
of the electromagnetic wave. In this category, we can have
models such as free-space path loss (FSPL) and plane earth
propagation model [1], [2]. The problem with these models is
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that the ideal assumptions they make never happen in a real
deployment. The second category includes empirical models
based on measurements and the use of statistical properties.
These models are not very accurate, but they are simple to
set up. As examples, we have Okumura [3], Hata [4], Cost-
Hata [5], Ericsson [6], and ECC-33 [7]. The third category is
for deterministic models that can be very accurate but usually
require accurate geometry information about the deployment
environment. Hence, they are very computational and take time
to design and set up. Ikegami model [8] and Ray Tracing [9]
are part of this category. For more details the readers can refer
to [2] which gives an overview of existing propagation models
and propose new taxonomy for path-loss models.

All these models are well studied and most of them are
implemented in many network simulators but mainly for
the traditional wireless network. Some recent works aim at
studying and adapting existing propagation models or design
new ones for LoRa networks. The most studied model for
LoRa is the log-distance path-loss model. It is implemented
in many LoRa simulators developed recently such as LoRaSim
by Voigt in [10] for studying LoRa inter-network interferences
and the one developed by Rahmadhani and Fernando in [11]
for studying LoRaWAN frame collision. However, the log-
distance model is not very accurate for LoRa, especially in
outdoor conditions. In [12], Hosseinzadeh et al. developed a
new model for LoRa in outdoor-indoor scenario. The model
proposed by the authors is a hybrid model that comprises an
Artificial Neural Network (ANN) and an optimized Multi-Wall
Model (MWM). They compare their model to log-distance
and COST231 models. They conclude that log-distance and
COST231 models do not yield an accurate estimation of propa-
gation characteristics for outdoor-indoor scenarios. Petajajarvi
et al. deduct a model using a linear polynomial fitting approach
on measurements realized in the city of Oulu in Finland on
an 868MHz LoRa network [13]. The model is only compared
with Free Space Path Loss (FSPL) which is not a very proper
evaluation. Nevertheless, the same model is experienced in
Dortmund, Germany on both 433MHz and 868MHz LoRa
networks and compared to five other models (Hata, 3GPP,
ITU, FSPL, Winner+) but few discussions were given about
this comparison [14]. Linka et al. in [15] study the Oulu model
with Longley-Rice Irregular Terrain Model compared to FSPL.



Their study concludes that there is no perfect model and it
is then necessary to assess whether false positives or false
negatives are more important for the deployment of LPWANS.
In [16], Dobrilovi¢ et al. analyse Lee propagation model
adaptability on LoRa and propose an optimization tested on
an 868MHz LoRa network in an urban area. They do tests
in different environments and conclude that Lee propagation
model is accurate enough to be used for LoRa, but they have
not made any comparison with other propagation models.

The contribution of this paper is twofold. First, we study,
select and test of some existing signal propagation models on
a LoRa network in order to see which model best fits LoRa
signal propagation behavior. Second, we empirically optimize
the best model from the first phase. The resulting model is
then tested and validated in another real-world environment
and compared to other models already experimented for LoRa
networks.

The rest of this paper is organized as follows. Section II
discusses on the applicability to LoRa of existing models and
define some model selection guidelines. Section III describes
the experiment and measurement setup. An analysis and a dis-
cussion on the results of the experiments are provided. Section
IV presents the empirical optimization process and tested the
resulting model in another different real-world environment.
Conclusions and future works are given in Section V.

II. EXPERIMENTED PROPAGATION MODELS

The following statements can be derived from the existing

works:

o Log-distance model is the most used model in simula-
tions. To the best of our knowledge, there is no study in
a real LoRa network deployment;

« among the well-known existing model only Lee propaga-
tion model has been tested on a real LoRa network, but
no comparison with other models has been made;

o until now, the only model derived from LoRa signal
measurements is the Oulu model [13] and it has only
been compared to the free space model.

Therefore, we adopt the following approach to try to find

the model that best fits LoRa signal behavior:

1) first, identify among existing propagation models those
that can be applied to a LoRa network based on some
criteria according to the models’ assumption parameters;

2) second, perform experiments to compare the selected
models and find which one provides the best estimations
compared to the measured data;

3) third, try to optimize the best fit model from measured
data;

4) finally, test the optimized model in different environments
and compare it with Oulu and Lee models.

A. Applicability of models and selection guidelines

All existing signal propagation models cannot be repre-
sented here. We try to consider the most studied and most
used in existing network planning tools and simulators. In
addition, as the most common deployment scenarios for LoRa

is an outdoor scenario, we only select model suitable for an
outdoor deployment. Then, most importantly, as each model
uses parameters and assumptions, we select models whose
parameters and assumptions are compatible with an outdoor
LoRa scenario. The most important parameters being the
frequency, the distance, the height of the gateway and the
height of the end-device’s antenna.

1) Frequency remains a critical parameter for models appli-
cability. As current LoRa networks only operate in sub-
GHz unlicensed band (e.g. 433, 868, and 915 MHz) only
models with compatible frequency interval are selected.
Note that some models can take into account a frequency
correction factor.

2) Distance is also a key parameter as most existing mod-
els define a distance validity range. For example, for
Okumura and Hata, the minimum distance between the
gateway and the end-device must be 1 km. As the main
advantage of LoRa being long-range, typical deployments
are usually well over 1 km. However, in [17], the author
showed that the Hata model can also predict path-loss
over distances less than 600 m. Their study was for
frequency 1800 MHz but a frequency correction factor
can be used for other frequencies. Nisirat et al. [18] also
proposed a modified Hata model when distances are less
than 1 km.

3) Height of the Gateway in most of existing models needs
to be above 10 m. This is usually the case for large-
scale LoRa network deployment scenarios (e.g. smart
cities). However, as LoRa is also deployed in smaller
scale scenarios such as farms the gateway is rarely located
above 10 m. It can be interesting to see if these models
can provide meaningful results for heights below 10 m.

4) Height of the end-device is not too critical since most
models consider the height of the device’s antenna be-
tween Im and 3m which is the case in most common
scenarios.

Taking into account these aspects, we select four models:
Log-distance, Hata, SUI, and Ericsson; the details of these
models can be found respectively in [4], [6], [19], [20].

B. Selected models

1) Hata model: Hata model is derived from Okumura
model [3]. It establishes empirical mathematical relationships
to describe the graphical information given by Okumura. It
extends Okumura model for urban, suburban and also open
rural areas. Hata model is applicable only over quasi-smooth
terrain. The base model of Hata is built for an urban area. The
suburban and open rural areas are derived from this model. The
following equations present Hata model formulas [4]:

e Urban area
Lurban =A- a(hed) + Blogl[)(d) (l)

where



— small and medium town:

a(heq) = 0.8+ (1.1log1o(f) — 0.7)heq — 1.56log(f)

2
— large town:
e 8.29(log,((1.54h.q))* — 1.1
a(hea) = if 150< <200
)7 e 3.2(log,(11.75heq))? — 4.97
if 200< <1500
and

A = 69.55 + 26.16log(f) — 13.82log;o(hgw) (3)
B = 44.9 — 6.55log(hgw) 4)
e suburban area

Lsuburban = Lurban - 2(10g10(f/28))2 —-54 (5)

« open rural area

Lopen = Lurban — 478(10g10(f))2 +
18.33(log o (f)) — 40.94 ©6)

a(heq) in suburban and rural areas is the same as for urban
areas (small and medium city). Lyrpan, Lsuburban and Lopen
are in dB, f in MHz, hg,, and hcq in m, and 4 in km.

2) Log-distance path loss model: Log-distance path loss
is a theoretical and measurement-based propagation model. It
indicates that the average received signal power decreases log-
arithmically with distance in radio channels [19]. This model
is derived from Friis’s model FSPL. While FSPL is for line-
of-sight (LoS) path loss in a free space environment, the log-
distance model is used to accommodate different environments
taking into account all other losses due to signal blockage like
trees, buildings, hills, etc. The following equation defines the
model.

PLyp = m + 107}10g10(d/d0) + Xo 7

Where PL;p is the loss incurred by the transmitted signal
during the propagation (expressed in dB). PLy denotes the
path loss at the reference point dy which can be between 1
and 10 m in a micro area or 1 km in larger areas. PLy can be
deducted from Friis’s model or by a regression fitting of the
data from measurements in the deployment environment. 7 is
the path loss exponent with a value between 2 to 6 depending
on the deployment environment. d is the distance between
the gateway and the end-device. X, represents noises due to
signal fading caused by the presence of obstacles between the
transmitter and the receiver. If there is no signal fading X, is
zero and the model is called log-distance path loss propagation
model. However, if there is signal fading caused by large
obstacles (mountains, buildings, etc.) known as shadow fading
or slow fading, then X, has Gaussian distribution with o
standard deviation in dB. In this case, the model is known
as log-normal shadowing. For fast fading that are due to
multipath propagation effects, the corresponding gain can be

modeled as random variable with Ricean or Rayleigh distri-
bution depending on whether the LoS component dominates
the other components (multipath) of the signal or not.

3) SUI model: Stanford University Interim (SUI) model
is developed under the Institute of Electrical and Electronics
Engineers (IEEE) 802.16 Broadband Wireless Access Working
Group [19], [20]. In this propagation model, three different
types of terrains or areas, A, B or C, are considered. Terrain
A represents an area with highest path loss typical of very
densely populated region. Terrain B represents an area with
moderate path loss found in suburban environments. Terrain
C is suitable for flat terrains with rare vegetation where path
loss is the lowest [6], [21].

PL = A+ 10ylogyo(d/do) + Xy + Xn + s (8)

Where d (in meter) is the distance between the base station
and the receiving antenna, dy=100 m is the reference distance,
Xy is a correction factor for frequency above 2 GHz, X}, is
a correction factor for the receiver antenna height and s is
a correction factor for shadowing because of trees and other
clutters on the propagation path. Parameter A is the free space
path loss at the reference point dy.

The path loss exponent 7y is given by

’}/:a—th-‘rC/hB (10)

The following table presents SUI parameters for the differ-
ent terrain type.

TABLE 1
SUI MODEL’S TERRAIN TYPE
Model parameter Terrain A | Terrain B | Terrain C
a 4.6 4.0 3.6
b(m~T) 0.0075 0.0065 0.005
b(m) 12.6 17.1 20

The following equations give the correction factors for the
operating frequency and for the receiver antenna height of the
model.

X = 6.0log,(f/2000) (11)

and,

Xpn, = —10.8log;(h,-/2000) for terrain type A and B (12)

Xpn, = —20log((hr/2000) for terrain type C (13)

f is the frequency in MHz and h, is the receiver antenna
height in meter. The SUI model is used for path loss prediction
in rural, suburban, and urban environments.



4) Ericsson model: This model has been implemented by
Ericsson as an extension of the Hata model with adjustable
parameters according to a given deployment scenario [19]. The
path loss is described as follows:

PL = ag + a1logyy(d) + azlog,o(hp) +

azlog,o(hp)logyo(d) — 3.2(logo(11.75h,))% 4+ g(f)  (14)
Where g(f) is given by :
g(f) = 44.491og,(f) — 4.78(log4(f))* (15)

Parameters ag, a1, as and as are constants that can be
changed to better reflect specific propagation conditions. De-
fault values are: ag=36.2, a;=30.2, a>=-12.0 and a3=0.1.

III. EXPERIMENT AND MEASUREMENT SETUP
A. Network setup and measurements

For the experiments, we set up a LoRa network based on our
low-cost LoRa IoT platform [22] that has also been deployed
in many agriculture pilot applications in the context of the EU
H2020 WAZIUP project in many African countries, as well as
for other researches on LPWAN [23]-[26].

Fig. 1. Deployed gateway in University of Pau

TABLE II

GATEWAY AND END-DEVICE CONFIGURATIONS
Parameters Gateway End-device
LoRa module SX1301-based RFM95W
Transmission N/A 14dBm
Power
LoRa SEBW SFI12BW125 SFI2BW125
Frequency 865.2MHz 865.2MHz
Antenna height 15.6m 1.10m
Antenna gain 5dBi 2dBi
Board RaspberryPi 3B Arduino Pro Mini
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Fig. 2. Measurement points and Heatmap of RSSI (dBm) variations in PAU

of the gateway and the end-device for the experiment setup.
Fig. 2 shows all the collected points.

To remove noise from the raw RSSI values which are mainly
due to multipath effects, we filter the raw data with a Moving
Average (MA) filter implemented using convolution. Fig. 3
shows the raw RSSI data and the filtered one.
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Fig. 3. Filltered raw RSSI data using moving average filter (convolution)
(Pau experiment)

B. Result analysis and discussion

With the measured data, we tested 4 models: Hata, Log-
distance, SUI, and Ericsson models. According to the experi-
ment environment (Pau city), we chose specific values for the
path loss parameters for each model, as shown in Table III.

The measurement campaign is realized in Pau city (France)
around the university. The environment is a urban-like area.
A gateway with a 5 dBi antenna is placed on the roof of the
science department building of the university at 15.6 m height
(see Fig. 7). An end-device with a GPS module and a small
2 dBi quarter-wave antenna sends its position to the gateway
every 5 seconds. The gateway stores both RSST and SNR of all
received messages. The table II summarizes the configuration

TABLE III
SELECTED MODELS’ PARAMETERS

Mdels

Parameter chosen values

Log-distance

PL exponent = 3.5 / PLg = Friis at dp = 1 km

Hata

Urban version / A = Friis at 1 km

SUI

Terrain type B / Standard deviation s = 8.2

Ericsson

Default values

We computed the path loss from measured data and the one
predicted by each model. The results are shown in Fig. 4.
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Fig. 4. Path loss measures in urban (University Pau)

Among the selected path loss prediction models the Hata
model’s predicted values has the smallest Root Mean Square
Error (RMSE) of 10.63 while the log-distance model shows
the largest RMSE of 44.88. SUI and Ericsson models have
RMSE of 19.21 and 24.85 respectively. We will therefore try
to adapt and optimize the Hata model for LoRa networks.

IV. PATH LOSS MODEL ADAPTATION AND VALIDATION

A. Hata adaptation and optimization

The Hata model depends on three basic parameters: the
initial offset parameter, the initial system design parameter and
the slope of the model’s curve. The system design changes
from a deployment to another because it depends on the
installation: frequency, the height of the antenna, etc.

L = 69.55 + 26.16log, () — 13.82l0g,( (hgw) —

a(heq) + 44.9 — 6.5510g10 (hgw)logo(d)  (16)
From Eq. 16 we can derive the three basic parameters:
Loffset = 69.55 17)
Lgsystem = 26.16log(f) — 13.82log;o(hgw) — a(heq) (18)
Liope = 44.9 — 6.5510g(hgw) (19)
Hence, Eq. 16 can be rewritten as follows:
L = Logfset + Loystem + Lsiopelogyo(d) (20)

As Lgystem depends on the frequency (f) and the antenna
heights (end-device: h.q, gateway: hg,,) and therefore changes
from a setup to another, it is suggested for tuning to adapt the
offset which does not depend on the deployment and the slope
of the model’s curve. We use least square (LS) fitting method
on the measured data to find the optimum values of these
parameters. First, Eq. 20 can be rewritten as follows:

L=a+bX (21)

Where a = Loffset + Lsystem, b = Lgiope and X = log4(d).

LS optimization consists in finding the optimum values a and

b of a and b that minimize the following equation:
min LS(a,b) = > (yi — (a + bx;))?

i=1

(22)

Where y; is the measured path loss at distance z;, (a + bx;)
the estimated path loss at distance T, and n the size of the
experiment set. After finding a and b we can then derive the
optimum offset and slope:

Loffset =a-— Lsystem;

Latope = b (23)

We then use limited-memory BFGS optimization algorithm
to minimize the least square function (LS(a,b)). After fitting
with data from the experiment in Pau, we find: a = 122 and
b=16. By replacing ioffset and Zslope in Eq. 20, we obtain
the following simplified model that we name Hatal.oRa:

HataLoRa(dB) = 122 + 16log(d/do) (24)

where d is the distance in km and dj the reference point at
1 km.

B. Test and validation

To test our adapted model derived from Hata model, we
compare it with measurements obtained from a more complex
and wider environment test campaign performed in Saint-
Louis (Senegal). We will then also compare the results with
Oulu and Lee models that have been previously used in studies
based on real LoRa networks as previously mentioned.

1) Network setup and measurements: The test and vali-
dation experiment is realized in Saint-Louis, Senegal, at the
Gaston Berger University. The university is located at about
14 km north from Saint-Louis city and the test area can
be considered as suburban with administrative and teaching
buildings, student residential areas and some unbuilt areas with
trees. The university is surrounded on its south and south-
east part by a suburban area with small houses and business
building; and on its north and Northwest part by a rural area
with farms, fields, villages, and hilly terrains. The gateway is
placed on the highest location of the university which is the
top of the library tower at 44.6m (see Fig. 5).

Fig. 5. Deployed gateway in Saint-Louis

The end-device is attached on a car driving at about 30 km/h
and it is programmed to send its position to the gateway every
5 s. Fig. 6 shows in a map all the collected positions. Except



for the gateway’s height, all parameters are similar to those
shown in Table II.
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Fig. 6. Measurement points and Heatmap of RSSI (dBm) variations in Saint-
Louis

As in the previous experiment, the raw RSSI values are first
filtered before applying the proposed models.

—— Filtered RSSI (moving average, convolution)
Raw RSS!
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Fig. 7. Filltered raw RSSI data using moving average filter (convolution)
(Saint-Louis experiment)

2) Results and discussion: Our adapted model is now com-
pared to Lee and Oulu models. Lee model has been studied
on an 868MHz LoRa network in Zrenjanin city in [16]. Oulu
model is derived from measurements in a LoRa network in the
city of Oulu (car version) using linear polynomial fitting. The
result illustrated in Fig. 8 shows that the path loss in all three
models goes far beyond the measured path loss. However, the
RMSE:s for all the three models are relatively small making
them suitable for LoRa network deployment planning. Our
adapted model (HatalLoRa) computed the smallest path loss
values with an RMSE of 10.84 against 13.02 for Oulu model
and 16.62 for Lee model.

From the observed shape of the curves, we can see that (i)
the path loss in all three models goes far beyond the measured
path loss and (ii) the measured path loss does not seem to
increase much with distance. Regarding the last observation it
is usually assumed that the power of a signal decreases with
distance. However, this assumption is not always observed
because it is derived from the theory of ideal propagation of
the electromagnetic wave. In real deployment, the variation of
the signal is influenced by many factors of the environment in
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Fig. 8. Path loss measures in sub-urban (GB University)

which the signal propagates therefore predicting the behavior
of a signal in complex environments is very difficult. In our
test, the gateway is located at the highest point inside the
university which is surrounded by buildings, amphi-theaters,
offices, trees, and people. As the transmitting device moved
around, the signal between the device and the gateway has to
go through various area types, as illustrated in Fig. 9, that can
have a severe impact on the signal quality at the gateway.

Fig. 9. Various area types around the gateway (Saint-Louis)

Therefore, in Fig. 8, the fact that the path loss does not seem
to increase when distance goes higher can be explained by a
very high path loss for measured data in locations close to the
gateway. The path loss distribution plotted in Fig. 10 shows
that 80% of the values, for distances under 1km, are between
110dB and 113dB which is very high for these distances. From
Fig. 11 which links the RSSI variation to the Fresnel zone and
the elevation of obstacles between a location and the gateway,
we can observe that obstacles are very high and most of them
reside in the 60% of the Fresnel zone that need good clearance
in order to have good signal. At locations beyond lkm, Fig.
11 shows better LoS condition and compared to measurements
reported in [13] and [16], at same distances (between 2 and 5
km), the signal similarity is high.



120
120.0
118
175
116

114 115.0

12 125

110 110.0

Measured Path Loss (dB)
Measured Path Loss (dB)

108 107.5

106 105.0
104

102.5

-0.25 0.00 025 0.50 075 100 125 1 2 3 4 5
Distance (km) Distance (km)

(a) Distance between 0 and 1Km (b) Distance between 1 and 5Km

Fig. 10. Measured path loss distribution over distances (Saint-Louis)

—— Fresnel zone radius 60% clear+height of the earth curvature _
Max Evevation (Path from each point to the GW) _— 1

|
o
3

Height (m)

-105

RSSI (dBm)

)

-110
\/ I2

-115

WL g
i O‘H\/ J
l ’}f ’J ¢\ r\\er ); ¥, J

Dlslance (km)

Fig. 11. RSSI variation vs link path elevation and Fresnel zone radius 60%
clear+height of the earth curvature

V. CONCLUSIONS

In this paper, we study LoRa signal propagation models.
We conducted real measures in Pau city to compare selected
signal propagation models that can be applied to a LoRa
network: Hata, log-distance, SUI, and Ericsson. As Hata model
showed more accurate predicted values, we then try to adapt
and optimize the Hata model by taking into account the
real measures of Pau city. The adapted model is then tested
and validated with another data set. Comparisons with Lee
and Oulu models that have been used in previous real LoRa
networks studies show that our adapted model (Hatal.oRa)
can provide more accurate predictions to assist LoRa network
deployment campaigns. In future works, the adapted model
will be used to obtain better RSSI-based localization estimates
for low-cost cattle localization applications.

VI. ACKNOWLEDGMENTS

WAZIUP project has received funding from the EU H2020
research program under grant agreement No 687607. The
authors also acknowledge the support of both CEA MITIC
(The African Center of Excellence in Mathematics, Computer
Science and ICT) and the IRD Sense-South GDRI.

REFERENCES

[1] H. T. Friis, “A note on a simple transmission formula,” Proceedings of
the IRE, vol. 34, no. 5, pp. 254-256, 1946.

[2] C. Phillips, D. Sicker, and D. Grunwald, “A survey of wireless path
loss prediction and coverage mapping methods,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 1, pp. 255-270, 2013.

[3] Y. Okumura, “Field strength and its variability in vhf and uhf land-
mobile radio service,” Rev. Electr. Commun. Lab., vol. 16, pp. 825-873,
1968.

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

M. Hata, “Empirical formula for propagation loss in land mobile radio
services,” IEEE transactions on Vehicular Technology, vol. 29, no. 3,
pp. 317-325, 1980.

G. F. Pedersen, “Cost 231-digital mobile radio towards future generation
systems,” in Cost 231-Digital Mobile Radio Towards Future Generation
Systems. EU, 1999, pp. 92-96.

J. Milanovic, S. Rimac-Drlje, and K. Bejuk, “Comparison of propagation
models accuracy for wimax on 3.5 ghz,” in 2007 14th IEEE International
Conference on Electronics, Circuits and Systems. 1EEE, 2007, pp. 111-
114.

E. C. C. E. within the European Conference of Postal and T. A. (CEPT),
“The analysis of the coexistence of fwa cells in the 3.4 - 3.8 ghz band,”
tech. rep., ECC Report 33, 2003.

F. Ikegami, S. Yoshida, T. Takeuchi, and M. Umebhira, “Propagation fac-
tors controlling mean field strength on urban streets,” IEEE Transactions
on Antennas and Propagation, vol. 32, no. 8, pp. 822-829, 1984.

J. W. McKown and R. L. Hamilton, “Ray tracing as a design tool for
radio networks,” IEEE Network, vol. 5, no. 6, pp. 27-30, 1991.

T. Voigt, M. Bor, U. Roedig, and J. Alonso, “Mitigating inter-network
interference in lora networks,” arXiv preprint arXiv:1611.00688, 2016.

A. Rahmadhani and F. Kuipers, “When lorawan frames collide,” in
Proceedings of the 12th International Workshop on Wireless Network
Testbeds, Experimental Evaluation & Characterization. ACM, 2018,
pp. 89-97.

S. Hosseinzadeh, M. Almoathen, H. Larijani, and K. Curtis, “A neural
network propagation model for lorawan and critical analysis with real-
world measurements,” Big Data and Cognitive Computing, vol. 1, no. 1,
p. 7, 2017.

J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pet-
tissalo, “On the coverage of lpwans: range evaluation and channel
attenuation model for lora technology,” in ITS Telecommunications
(ITST), 2015 14th International Conference on. 1EEE, 2015, pp. 55-59.
P. Jorke, S. Bocker, F. Liedmann, and C. Wietfeld, “Urban channel
models for smart city iot-networks based on empirical measurements
of lora-links at 433 and 868 mhz,” in Personal, Indoor, and Mobile
Radio Communications (PIMRC), 2017 IEEE 28th Annual International
Symposium on. 1EEE, 2017, pp. 1-6.

H. Linka, M. Rademacher, O. G. Aliu, and K. Jonas, “Path loss models
for low-power wide-area networks: Experimental results using lora,”
2018.

D. Dobrilovi¢, M. Mali¢, D. Mali¢, and S. Sladojevi¢, “Analyses
and optimization of lee propagation model for lora 868 mhz network
deployments in urban areas,” Journal of Engineering Management and
Competitiveness (JEMC), vol. 7, no. 1, pp. 55-62, 2017.

N. Mansour, “Rf predictions and modeling for microcells and pcs cell
design,” in Vehicular Technology Conference, 1994 IEEE 44th. 1EEE,
1994, pp. 1745-1749.

M. A. Nisirat, M. Ismail, L. A. Nissirat, and S. A. Alkhawaldeh, “A
terrain roughness correction factor for hata path loss model at 900 mhz,”
Progress In Electromagnetics Research, vol. 22, pp. 11-22, 2011.

P. K. Sharma and R. Singh, “Comparative analysis of propagation
path loss models with field measured data,” International Journal of
Engineering Science and Technology, vol. 2, no. 6, pp. 2008-2013, 2010.
V. Erceg, “Channel models for fixed wireless applications,” IEEE 802.16.
3c-01/29r1, 2001.

N. Shabbir, M. T. Sadiq, H. Kashif, and R. Ullah, “Comparison of
radio propagation models for long term evolution (Ite) network,” arXiv
preprint arXiv:1110.1519, 2011.

C. PHAM, “A diy low-cost lora 2016,
http://cpham.perso.univ-pau.fr/lora/rpigateway.html and
https://github.com/congducpham/lowcostloragw,” accessed Sept 26th,
2019.

C. Pham, “Investigating and experimenting csma channel access mecha-
nisms for lora iot networks,” in Wireless Communications and Network-
ing Conference (WCNC), 2018 IEEE. IEEE, 2018, pp. 1-6.

, “Low-cost, low-power and long-range image sensor for visual
surveillance,” in Proceedings of the 2nd Workshop on Experiences in
the Design and Implementation of Smart Objects. ACM, 2016, pp.
35-40.

O. Dieng, B. Diop, O. Thiare, and C. Pham, “A study on iot solutions for
preventing cattle rustling in african context.” in ICC, 2017, pp. 153-1.

C. Pham, “Qos for long-range wireless sensors under duty-cycle regu-
lations with shared activity time usage,” ACM Transactions on Sensor
Networks (TOSN), vol. 12, no. 4, p. 33, 2016.

gateway,”’




