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Abstract—In this paper, we propose a RSSI-based distance
estimation scheme for localization of cattle collars communicating
with long-range LoRa radios. Cattle localization is designed to
prevent theft in livestock. The proposed solution decreases the
cost of cattle localization by minimizing the number of collars
with GPS and allows accurate localization of collars without
GPS. We propose a RSSI-based distance estimation using real-
time adjustment of RSSI-distance mapping taking advantage of
communication between collar nodes and gateway. Log-distance
path-loss model is also used as rescue when the map does not
provide accurate correspondence. Experimentation results show
the validity of the approach with highly accurate localization of
non-GPS collars.

Index Terms—Localization, LoRa, RSSI Distance Estimation,
GPS, Cattle Rustling, Kalman filter, Path-loss

I. INTRODUCTION

Internet of Things (IoT) is recognized as one of the most im-
portant areas of future technology. In Africa, it is becoming the
most important solution for many sectors in rural and farming
activities such as agriculture, livestock, fish farming and so on.
In livestock, farmers are confronted with the devastating cattle
theft phenomenon. In a previous work [5], we showed that
cattle theft can be prevented using IoT solution and particularly
using the Semtech’s LoRa radio technology belonging to so-
called LPWAN (Low Power Wide Area Network) network
category more suitable for IoT deployment. In that work, we
proposed a GPS-collar-based localization and alerting system.
Although this GPS solution is energy efficient, it remains a
costly localization way for livestock tracking with hundreds of
cows. Hence, in this paper, we study energy and cost efficient
LoRa-based localization solution for livestock tracking in wide
rural areas.

There are some challenges of using LoRa for localization
because in some way its novel features constitute weakness
points to achieve accurate localization. In fact, even though
existing localization techniques give some accurate results
in traditional wireless networks (ZigBee, WiFi, Bluetooth,...),
they are practically unviable generally for LPWAN and spe-
cially for LoRa. For instance, most of ranging-based localiza-
tion techniques lack of accuracy because of long distances

and low bandwidth. Angle of Arrival (AoA) solutions, for
example, are very weak in accuracy in long range because
errors may increase with distance from the anchor points.
In the same way, Time of Arrival (ToA) technique in tri-
lateration approach, where distances between a device and
each anchor node are estimated through time of arrival,
requires the use of precise clock to synchronize with the
network. This implies additional communication overheads
and higher cost, therefore not ideal for low-power and low-
cost LoRa device. Fingerprinting technique is also difficult
to perform in long range and outdoor conditions because the
offline phase requires more effort and time to cover wide areas.
These approaches are unsuitable in livestock tracking when
animals are grazing in areas much larger than the considered
area during the offline phase. However, Choi et al. proposed
in [2] an outdoor fingerprint positioning algorithm in LoRa
network using interpolation technique to complete zones of
the service area that were not covered in the offline phase.
The average accuracy was about 28.8m but the considered
area was very limited in size: 340mx340m.

A widely use and promising technique for LoRa network
is multilateration using Time Difference of Arrival (TDoA) as
introduced in [4], [6], [10]. This method consists of finding
differences in distance from each gateway, instead of anchor
node, to the device by calculating time difference of arrival
of a signal from a device to gateways. There is no need for
a device to be synchronized with the network. However, it
requires tight time synchronization of the gateways to achieve
the desired accuracy – since radio signal travels about 300
meters in free space over a time duration of 1µs, a time-
stamping of 0.3ns is needed to get a 10 meter level of
resolution. LoRa Alliance™ relates in [3] that localization
has been performed with TDoA method. To achieved meter-
level ranging, each gateway uses GPS to provide nanosecond
time-stamping accuracy. In addition to the very tight time
synchronization constraints, the LoRa Alliance solution is
based on licensed gateway and the multi-lateration solver is
not open-source. Nevertheless, we can find in the literature
some studies using the same technique combining with some



filtering or machine learning methods that provide acceptable
accuracy. In [10] Podevijn et al. achieved 200m of accuracy.
Fargas and Petersen improved the accuracy to about 100m
with an iterative algorithm and an outliers detection method
[6]. Lam et al. [8] adopted RSSI-based method to study
LoRa localization in very noisy environment. They proposed
algorithms to handle background, blocking and multi-path
noise but no clear accuracy assessment is given. Kalman
filter and machine learning methods are also studied for LoRa
localization in respectively [1] and [7].

Most of the aforementioned solutions for LoRa localization
need a large number of gateways as anchor nodes therefore a
quite large infrastructure is needed. In rural areas, private LoRa
deployments are the most common scenario with generally a
very small number of gateways due to cost and deployment
constraints.

In this paper, we propose an RSSI-based distance estimation
in LoRa networks for cattle localization when both collar
with and without GPS are deployed. We propose an original
solution with only 1 gateway and, in order to improve the
distance estimation scheme, an adaptive RSSI-distance map-
ping algorithms is run between end-devices (the collars) and
the gateway. The rest of the paper is organized as follows.
Section 2 presents thoroughly our proposed scheme. Section
3 details experimental results. Section 4 concludes the paper
and gives some perspectives.

II. PROPOSED APPROACH

A. Problem formalism

A first solution to prevent theft in livestock has been
established using LoRa-based collar attached to animal’s neck
that allows accurate localization with an embedded GPS [5].
This solution had some limits as herds can consist in about a
hundred animals so full-GPS solution can quickly become very
expensive. For these reasons, we propose a new solution in
order to minimize the number of collars with GPS and improve
localization of collars without GPS by using GPS-collars as
mobile anchors. The main issues with anchor approaches are
generally (i) how to optimally use anchor nodes to localize
the other nodes and (ii) how to reach the minimum necessary
number of anchors to provide good accuracy? The use of the
LoRa technology and natural behavior of a herd of cows help
for the second issue: generally in a grazing herd, two animals
are never separated by more than 500 meters and therefore
with a transmission range of more than 1 km with LoRa in an
open environment, each node can communicate with all the
other nodes of the network. Therefore, reaching at least three
GPS collars is usually not difficult to provide good accuracy
to localize the other animals in the herd. Addressing the first
issue is more challenging especially as we chose localization
methods based on RSSI distance estimation technique because
it is more accessible and does not need additional hardware,
thus reducing greatly the cost of the whole system. Hence,
the question can be considered as follows: how GPS collars
can help to build an accurate RSSI-based distance estimation
scheme? The rest of the paper focuses on this issue and will

consider cows with GPS collar as GPS-node and cows with
no-GPS collar as Beacon-node.

B. RSSI-based distance estimation Phase
The method we propose for distance estimation is a dynamic

and continuous RSSI-distance mapping mechanism. The dis-
tance estimation is constantly improved with a weighted RSSI-
distance correspondence procedure to determine the level of
accuracy of an entry in the RSSI-distance map.

1) Network setup and RSSI considerations: The mechanism
we are going to describe here is based of a particular network
setup composed of a set of GPS-nodes and a set of Beacon-
nodes communicating with one gateway. GPS-nodes broadcast
their messages so both the gateway and Beacon-nodes can
receive from GPS-nodes (see Fig. 1). To explain better the
RSSI considerations in this particular network setup, we use
the following notations: GW as the Gateway, Bi the Beacon-
node i, Gi the GPS-node i, dRSSI(k)i,j the distance separating
node i from node j at step k estimated from RSSI values,
d
GPS(k)
i,j distance separating node i from node j at step k

obtained from GPS coordinates, and R
(k)
i−>j the RSSI of the

packet sent from node i to node j at step k.
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Fig. 1. Network communications with three GPS-node G1, G2 and G3, one
Beacon-node Bi, and the Gateway GW

Fig. 1 shows 3 GPS-nodes communicating with the Gateway
(links highlighted in red color) and providing 3 RSSI-distance
mapping based on GPS. Beacon-node Bi also receives these
messages and will get 3 RSSI values: R(k)

G1i−>Bi , R
(k)
G2i−>Bi

and R
(k)
G3i−>Bi . When Bi sends a beacon to GW , it will

piggyback these RSSI values which will get at the same
time R(k)

Bi−>GW . The RSSI-distance mapping based on GPS
will help determining the distance from the Beacon-node to
GW but also its distance to each of the GPS-node. Once
these distances are estimated, it becomes straightforward to
determine the position of the Beacon-node. Our contribution
in this work is to propose a mechanism to continuously update
and improve the distance estimation procedure. In addition,
as animals are continuously moving in the grazing area, the
number of RSSI-distance pairs based on GPS will increase,
thus improving further the RSSI-distance estimation procedure
over time.



2) Communication model: Nodes in the network commu-
nicate as depicted in Fig. 1. Messages exchanged between
nodes will allow RSSI computation at the receiver side to
enable RSSI-distance mapping. Two type of messages can be
distinguished, those from a Beacon-node and those from a
GPS-node. Beacon nodes unicast their messages to GW while
GPS-nodes broadcast their messages so that both Beacon-
nodes and GW can capture messages from GPS-nodes.

Communications follow a cycle of sleep and wake-up
phases. We assume that all end-devices are synchronized for
the sleep/wake-up cycle. As a tight synchronization is not
necessary, it is easy to have a guard time for opening a
received window based on a defined periodic wake-up value.
We explain below the 3 steps of a communication cycle
between a GPS-node Gi, a Beacon-node Bi and GW . These
steps are repeated for at least 3 GPS-nodes.

1) Step 1: At each wake up from sleep mode all the Bi
are listening for message coming from at least 3 GPS-
nodes as illustrated in Fig. 2. In Fig. 2(a) G1 broadcasts
a message which is received by both B4 and GW. Note
that each GPS-node has a different transmission time to
avoid packet collisions between GPS-nodes.

(a) (b)

Broadcast message

MSGG1->_
G1

B4

GW

B4

G1

MSGG1->_: NT/1/BC/10/RSSI/-65/
LAT/43.31419/LGT/-0.36336

MSGB4->GW: NT/0/BC/20/RSSI/-89/
GID/G1/GBC/10/GRSSI/-65

Fig. 2. Message sent by GPS-node G1

2) Step 2: The Beacon-node that received the GPS-node’s
message will build and send a message to GW . This
message contains the node type (NT), the Beacon Counter
(BC), the RSSI of the message from the GPS-node
(GRSSI), the id of the GPS-node (GID) and the Beacon
Counter (GBC) of the GPS-node. This is illustrated in
Fig. 2(b). Note that Beacon-node uses randomization
when transmitting beacons to avoid packet collisions.
Moreover, Listen-Before-Talk and CSMA-like backoff
procedure is used to recover from packet collisions [9].

3) Step 3: The Gateway receiving these messages (from
both GPS-nodes and Beacon-nodes) stores the different
RSSI values and keeps a RSSI-distance mapping table
with the estimated distance obtained from the GPS coor-
dinates of the GPS-nodes and the Gateway.

3) Mapping and adjustment algorithm: According to the
communication model, at each wake-up phase, GW first
receives a packet from a GPS-node and can determine an
RSSI-distance correspondence which will be used to up-
date the RSSI-distance map. We consider Mk−1 as the
state of the map at wake-up phase k − 1. Its format
is Mk−1 = [mk−1

1 ,...,mk−1
Nk−1

] where each entry mk−1
i =

(<dk−1i ,Rk−1i >,wk−1i ). di is the distance, Ri is the RSSI

associated with di and wi is the weight of the RSSI-distance
pair. Nk−1 is the length of the map at step k − 1.

At wake-up phase k, Mk is constructed by updating Mk−1

with a new pair pk =< d
GPS(k)
Gi,GW

, R
(k)
Gi,GW

> built by GW
with packets from GPS-nodes.

Algorithm 1 Weight-based RSSI-Distance Mapping
Input: Pair (dGPS(k)

Gi,GW , R(k)
Gi,GW) and Mk−1

Output: Mk

for all (c,w) in Mk−1 do
{c is a (distance,RSSI) pair and w its weight}
if c[1] = d

GPS(k)
Gi,GW then

if c[2] = R
(k)
Gi,GW then

updateWeight(Mk−1, dGPS(k)
Gi,GW , R(k)

Gi,GW)
{updateWeight increments the weight of the pair by 1}

else
{addPair adds a new pair to the map and initializes its weight to 1}
addPair(Mk−1, dGPS(k)

Gi,GW , R(k)
Gi,GW, 1)

{At this stage we can have in the map several pairs with the same distance but with different RSSI

values}
{search searches all pairs that contains this distance and return a list of all RSSI mapped with this

distance}
LdRSSI , Ldweight = search(Mk−1, dGPS(k)

Gi,GW )
{λ is the minimum number of RSSI values judged enough to be filtered. The filtering process is done

using Kalman method}
if length(LdRSSI ) = λ then
Frssi = kalmanFilter(LdRSSI )
addPair(Mk−1, dGPS(k)

Gi,GW , mean(Frssi), mean(Ldweight))
end if

end if
else

addPair(Mk−1, dGPS(k)
Gi,GW , R(k)

Gi,GW, 1)
end if

end for

The algorithm updates Mk−1 by performing the following
actions:

1) Update the entry in Mk−1 that contains exactly pk by
incrementing its weight by 1.

2) If Mk−1 does not contain exactly pk, add pk to Mk−1

and initialized its weight to 1.

As a result of action 2, for a given distance dGPS(k)Gi,GW there
may be several pairs in Mk due to the fluctuation nature of
RSSI. Therefore Mk will be filtered to reduce the number of
pairs. With d = d

GPS(k)
Gi,GW , LdRSSI = r1,r2,...,rn is the list of the

various RSSI associated to d and this list will be filtered using
a Kalman filter. All entries where the RSSI is in LdRSSI will
be purged in the map and replaced by a single entry where
distance d will be associated to the mean RSSI computed
on all the filtered RSSI values Frssi. Noting Ldweight as the
list of the weights of all the purged entries, the weight of
< d,mean(Frssi) > will be initialized with the mean weight
computed on Ldweight.

We chose the Kalman filter because its filtering process
considers noise in data as a function of time. Therefore, a
Kalman filter can efficiently handle the fluctuation (noise) in
collected RSSI values. In addition, as LdRSSI contains only
single value elements, the one-dimension version of Kalman
filter depicted in Fig. 3 can be used.

The error in the estimation (e0E) and the error in mea-
surement (e0M ) are initialized with the standard deviation
obtained from a pre-deployment phase (in this paper we use
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Fig. 3. One-dimension Kalman Filter flow chart

σ = 1 deduce from first experiment values, see subsection
III-A) and the starting value is the first value r1 of LdRSSI :
e0E = σ, e0M = σ,E0 = r1. To filter LdRSSI , the three
operations depicted in Fig. 3 are successively applied on all ri.
Then at each step i (1 < i < n, n being the size of LdRSSI )
Kalman Gain Gi, Current State (current estimation) Ei and
Error in the Estimate eiE are calculated using the following
equations.

Gi =
eiE

eiE + eiM
(1)

Ei = Ei−1 +Gi(ri − Ei−1) (2)

eiE = (1−Gi) ∗ ei−1E (3)

4) Distance estimation: Distance estimation at step k is
performed when the gateway receives a packet from a Beacon-
node. As indicated previously, a Beacon-node Bi can receive
messages broadcasted from a GPS-node Gi and can therefore
know the RSSI of the last broadcasted message, e.g. R(k)

Gi−>Bi .
When Bi sends a beacon message to GW , it will indicate
this RSSI value in the message payload. GW will then run
algorithm 2 to determine the distance between Bi and (1)
GPS-node Gi (d(k)Bi,Gi

) and (2) itself (d(k)Bi,GW), using R(k)
Gi−>Bi

(in the message payload) and R
(k)
Bi−>GW (obtained from the

packet reception).
This algorithm takes 3 parameters in input: Mk, R(k), and

σ. Mk is the map at step k. R(k) can be either R(k)
Gi−>Bi

or R(k)
Bi−>GW . σ indicates which entry in the map has its

RSSI component closest to R(k). As explained previously,
the standard deviation of RSSI values determined in a pre-
deployment stage can be used here as initial value. To estimate
a distance from R(k), algorithm 2 finds in Mk the σ-closest
entries corresponding to R(k). σ-closest is defined by Eq. 4.

σ − closest(R(k)) = {pi =< (di, ri)|wi > /

pi ∈Mk, σi = |R(k) − ri| < σ,

σi = min{σj}, 1 < j < length(Mk)} (4)

If the set of σ-closest entries has only one entry, the entry’s
distance is retained as the estimated distance and the accuracy
of this estimation is the ratio of the entry’s weight, w, on the
number of occurrences of entry’s distance in the whole map,
N :

Algorithm 2 RSSI-based distance estimation and adjustment
Input: R(k) = R(k)

Bi−>GW or R(k)
Gi−>Bi

, Mk and σ

Output: d(k)Bi
= d(k)Bi,GW or d(k)Bi,Gi

and updated Mk

σ-closest= {pi = <(di, ri)|wi > / pi ∈Mk , σi=|R(k)-ri | < σ, σi=min{σj},
1<j<length(Mk)}
{The Path-Loss model (Eq. 6) is used to compute distance when the RSSI is not found and there is no σ-closest entry

in the map}
if σ-closest = NULL then

return pathLossRssiToDistance(R(k))
else

if length(σ-closest) = 1 then
d = σ-closest[0], r = σ-closest[1], w = σ-closest[2]
accuracy = w/(w + N)
return d

else
{Distance in the pair with the highest weight is returned}
max weight = {mi = <(di, ri)|wi > / mi ∈ σ-closest, wi=max{wj},
1<j<length(σ-closest)}
if length(max weight) = 1 then

d = max weight[0], r = max weight[1], w = max weight[2]
accuracy = w/(w + N)
return d

else
{At this state, the map has more than one closest entry to R(k) with different distances but with same

weight. In the next iterations the weighting procedure will discriminate them. Meanwhile the log-distance

path loss is used.}
return pathLossRssiToDistance(R(k))

end if
end if

end if

accuracy =
w

w +N
(5)

If the set of σ-closest entries contains more than one entry,
the one with the highest weight is considered and the entry’s
distance is returned as the estimated distance. The accuracy
of this estimation is determined as previously by Eq. 5. In
all other cases, the distance is determined using the Path-Loss
formula expressed in Eq. 6.

PLdB = PL0 + 10ηlog10(d/d0) + Xσ (6)

Where PLdB is the path loss in dB, d the distance between
the transmitter and the receiver in meter, η the path loss
exponent that varies from 2 to 6 depending to the environment,
d0 the distance at the reference point (1 meter) and PL0 the
path loss in dB at the reference point. Distances obtained from
the mapping table are preferred to those from the Path-Loss
model because they are based on real RSSI-distance samples.
However, as it can take some time to obtain a significant
number of accurate RSSI-distance samples, the Path-Loss
model is also needed.

The distances obtained in this stage will be used for the
cattle’s collar localization process described in the following
paragraphs.

C. Gateway algorithm for localization phase

In the localization phase, the Non-linear Least Square Fit-
ting (NLSF) method is used to determine the position PBi of
the Beacon-node with the estimated distances: dRSSIBi,G1

, dRSSIBi,G2
,

dRSSIBi,G3
and dRSSIBi,GW

between Beacon-node Bi and respectively
GPS-nodes G1, G2, G3, and Gateway GW. With NLSF, the
localization issue is to determine for any given point X how



well X can replace PBi . To do so, we calculate the distances
between X and all anchor nodes (GPS-nodes and GW ). If
those distances perfectly match with dRSSIBi,G1

, dRSSIBi,G2
, dRSSIBi,G3

and dRSSIBi,GW
, then X is considered to be a good estimation of

PBi . The more X deviates from these distances, the farther it is
assumed to be from PBi . Therefore, finding the position of PBi
is equivalent to minimizing the distance difference expressed
by Eqs. 7, 8, 9, and 10.

e1 = dRSSIBi,G1
− dX,G1 (7)

e2 = dRSSIBi,G2
− dX,G2

(8)

e3 = dRSSIBi,G3
− dX,G3

(9)

e4 = dRSSIBi,GW − dX,GW (10)

The estimated position of PBi is point X that minimizes the
Mean Squared Error (MSE), see Eq. 11. Practically, position X
must be somehow initialized. In our experiment, we initialize
X with the mean GPS coordinates computed on the coordinates
of the GPS-nodes and the Gateway.

mse =

∑4
i=1 e

2
i

4
(11)

III. EXPERIMENTATIONS AND RESULTS

A. Preliminary tests

We first set up an experiment to evaluate the accuracy of
distances obtained from GPS and distances from the Path-Loss
model. The deployment consisted in a Gateway and an end-
device with a GPS module in Line-of-Sight (LoS) condition.
The end-device is moved successively from 5m to 100m from
the gateway with an increment of 5m. 20 messages were sent
at each location, each one providing the GPS coordinates of
the end-device. This configuration design is motivated by the
fact that animals in the herd are usually close together and
so their collars are able to communicate on short distances in
LoS condition. We also assumed that most collars are in near
LoS condition with the Gateway because the animals usually
move in an open rural area. GPS positions have been recorded
as well as the corresponding RSSI values to perform distance
estimation. The variation over distances of the collected RSSI
are plotted in Fig. 4.

By nature the RSSI values fluctuate a lot because of their
sensitivity to obstacles and multi-path effects. The RSSI we
collected here are quite stable with a maximum standard
deviation of about 3 (Fig. 4). In addition, we can observe
in Fig. 4 that RSSI is quasi linear with regard to distance.
Therefore the correlation between RSSI and distance is quite
good and we can expect an accurate distance estimation
through RSSI values especially with our real-time adjustment
mechanism.

In Fig. 5 we can see the distance determined by the
GPS coordinates. The distance estimation through the GPS
coordinates is highly accurate (about 98%) with a very low
Root Mean Square Error (RMSE) of approximately 0.77.

Fig. 4. RSSI values variations with regard to distances

The log-distance Path-Loss model is used as a rescue model
when there is no correspondence in the RSSI-distance mapping
table. Its accuracy has been evaluated with the collected data.
The path loss at the reference point PL0 is determined in a
preliminary test using the Friis model [11] and its value was
found to be about 42dB. As the test is carried out in an area
that can be considered as suburban, we choose 4.2 as path loss
exponent. Observing the results, it appears that the path-loss
model does not accurately estimate the distance especially for
small distances as shown in Fig. 5. It can be seen in Fig. 5
that the accuracy of the model gets better when the distance
goes higher. Therefore, the Path-Loss model although not as
accurate as the RSSI mapping can be helpful for distances
above 100m.

The continuous error is also tracked visualize the confidence
area. For the distances estimated with the GPS coordinates,
errors are almost non-existent and values are well in the
confidence area. On the other hand, errors with log-distance
estimation are more important but 70% of values are still in
the confidence area. This is summarized in Fig. 5.

Fig. 5. Continuous errors for distance estimated with GPS and log-distance

B. In-situ deployment

We then evaluate our proposed dynamic and continuous
RSSI-distance mapping mechanism with an in-situ deployment



of 3 GPS-nodes (G1, G2 and G3), two Beacon-nodes (B1 and
B2) and one gateway (GW) as illustrated in Fig. 6. We sum-
marized below the results obtained on the deployed network
where the Path-Loss model is first used to determine distances
when there are few samples of collected RSSI-distance pairs.
The Beacon-nodes are represented by orange markers and their
estimated position by blue markers. The results show that
the accuracy of the Path-Loss model localization can greatly
diverge from the real position, see Fig. 6(left).

Fig. 6. Localization of two Beacon-nodes B1 and B2. (left) with Path-Loss
model, (right) with RSSI-distance pairs obtained at run-time

After more RSSI-distance samples are collected, we can
see in Fig. 6(right) that the estimated position of Beacon-
nodes B1 and B2 are greatly improved. Here, as we have
good LoS conditions, only a few number of true RSSI-distance
pairs are sufficient to populate the mapping table in order to
accurately determine the distances between the Beacon-nodes
and the GPS-nodes acting as anchors, allowing for a much
more accurate localization of those Beacon-Nodes.

C. Autonomy and Scalability

The collars are built from the low-cost and low-power
IoT framework developed in the H2020 EU WAZIUP project
which objective is to empower rural areas of African countries
with low-cost yet efficient IoT technology. Using an Arduino
ProMini (ATMega328P, 8MHz, 3.3v), a node draws about
40mA when transmitting (LoRa), 15mA when receiving and
5uA in sleep mode. With a beacon interval of 20mins and
waking up for 3 GPS-nodes, a Beacon-node draws on an hour
an average of (3 ∗ (3 ∗ 2s ∗ 15mA+ 1s ∗ 40mA) + (3600s−
3∗7s)∗0.005mA)/3600s = 0.1133mA, counting 2s for each
packet reception window (including guard time) and 1s for the
transmission of the beacon. With 2AA batteries (2500mA) the
autonomy is well above 2 years.

For the GPS-node, a GPS module is added to the node.
Power to the GPS module is provided through a small
MOFSET transistor in order to completely power it down.
In acquisition mode, the GPS consumes about 55mA (NEO
7M/M8N). The first GPS fix (when powering the collar for the
first time) is usually obtained in about 30s. Each time the GPS
is powered on again it can be considered as a cold start but a
GPS fix can usually be obtained in about 4s to 6s. Not taking
into account the first fix, an average fix time of 5s would give

an average consumption of (3 ∗ (5s ∗ 55mA+ 1s ∗ 40mA) +
(3600s − 3 ∗ 6s) ∗ 0.005mA)/3600s = 0.2673mA. The
expected autonomy can be more than a year. By reducing the
number of required GPS-node, the entire localization system
can be easily deployed and maintained. Regarding scalability, a
single gateway can easily handle more than a hundred collars,
especially with Listen-Before-Talk and CSMA-like backoff.
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V. CONCLUSIONS

In this paper, we proposed a dynamic and continuous RSSI-
distance mapping mechanism using LoRa networks to localize
cattle equipped with collars. The objective is to accurately
localize collars without GPS and minimizing the number of
collars with GPS. We proposed an original solution to improve
the distance estimation scheme with adaptive RSSI-distance
mapping algorithms that can refine the estimations at run-time
by using messages exchanged between collars and the gateway.
The advantage of the proposed approach is to seamlessly take
into account the impact of the physical environment as true
RSSI-distance mapping are continuously collected as animal
move in the grazing area. Preliminary experimentation results
with in-situ deployment showed the validity of the approach
with accurate localization of non-GPS collars after a few
rounds of true RSSI-distance mapping. Future work will test
the dynamic RSSI-distance estimation approach in a larger
variety of environments.
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