
Increased flexibility in long-range IoT deployments
with transparent and light-weight 2-hop LoRa

approach
Mamour DIOP

University of Pau, France – Gaston Berger University, Senegal
mamour.diop@univ-pau.fr, serigne-mamour.diop@ugb.edu.sn

Congduc PHAM
University of Pau, France

congduc.pham@univ-pau.fr

Abstract—LoRa is a recent low-power and long-range sub-
GHz radio technology where devices can communicate in 1-hop
to a gateway several kilometers away. Long-range radios typically
remove the complexity of maintaining a multi-hop network with
intermediate nodes for relaying information. Nonetheless, even
with the increased range, 1-hop connectivity can be difficult to
achieve in real-world deployment scenario, especially for remote
and rural areas where density of gateways is low and where
devices/gateway are usually deployed for a specific application.
This article describes a 2-hop LoRa approach to seamlessly
extend a deployed LoRa network in order to reduce both packet
losses and transmission cost. We introduce a smart and battery-
operated relay-device that can be added after a deployment
campaign to transparently provide an extra hop between the
remote devices and the gateway. Field tests are conducted to
assess network reliability by dynamic insertion of a relay-
device between the remote end-devices and the gateway, without
advertising its presence. Energy consumption is also discussed.

Index Terms—LoRa, Low-power IoT, Low-cost IoT, Multi-hop,
Rural applications

I. INTRODUCTION

LPWAN standing for Low-Power Wide Area Networks is
becoming a de-facto standard when deploying IoT infrastruc-
tures. Under this broad term, there are a variety of radio
technologies for wireless communication over very long dis-
tances with battery-operated small devices. The most popular
LPWAN technologies (SigFox, LoRa) can achieve more than
20km in line-of-sight (LOS) conditions.

The H2020 WAZIUP project (http://www.waziup.eu) pro-
poses a generic IoT platform using low-cost Arduino board
(e.g. Arduino ProMini) and LoRa radios for deploying smarter
rural applications in developing countries [1]. From the generic
platform, WAZIUP proposes 4 Minimum Viable Product
(MVP) on Cattle Rustling, Smart Agriculture, Water-Fish
Farming and Waste Management, that have already been
deployed in Ghana (Fish Farming, Agriculture-Weather), Togo
(Agriculture-Urban), Senegal (Cattle Rustling, Agriculture-
Irrigation) and Pakistan (Agriculture-Irrigation). Feedbacks
from these pilots highlighted the fact that even with the longer
range offered by LoRa, many of these deployment campaigns
suffer from connectivity issues with the gateway as clear LOS
communication is hardly the case as illustrated by Fig. 1 in
maize crop fields. Reasons are numerous. For instance, there
are constraints on gateway and gateway’s antenna placement:

can be limited to the farm office where power supply and wired
Internet are available. Some devices can also become very
isolated from the vast majority of deployed devices because
of field configuration. Regarding the transmission power, there
can also be severe limitations in many countries.

Fig. 1: Real-world deployment with NLOS conditions

In this work, a 2-hop LoRa approach is proposed to extend
the LoRa network coverage. However, in doing so, the key
objective is to design a smart, transparent and battery-operated
intermediate node – relay-device – that can be added after
a deployment campaign to seamlessly provide an extra hop
between the remote devices and the gateway. The rest of the
article is organized as follows. Section II reviews existing
multi-hop LoRa approaches. Section III describes our pro-
posed approach based on low-power relay nodes. Performance
evaluation, experimental measurement results are presented in
Section IV while discussions are presented in Section V. We
conclude in Section VI.

II. RELATED WORKS

In a multi-hop network, intermediate nodes provide routing
and relaying facilities. In exploring the limits of LoRaWAN,
the authors in [2] addressed the use of TDMA and multi-hop
solutions to reduce transmission power and limit the number
of collisions. From there, an extension of LoRaWAN protocol
enabling relay-based communication to extend the coverage
area without the need of additional gateways is proposed in
[3]. There is also LoRaBlink [4] which is a protocol on top of



LoRa’s physical layer designed to support reliable and energy
efficient multi-hop communications. Time synchronization is
used to define slotted channel access and, while downlink
messages are distributed through flooding, nodes use a directed
flooding approach for uplink communications. In [5], the
author analyzed the impact of introducing a forwarder node
between an end device and a gateway to improve the range
and quality of LoraWAN communications. As the forwarder
aims to reduce the power consumption on end-nodes, the work
mainly focused on an energy analysis. However, the device
receive window must be increase to manage downlink packets.
In [6], the authors investigated the combination of LoRa and
concurrent transmission (CT) – a recently proposed multi-hop
protocol that can significantly improve the network efficiency
– to realize a reliable CT-based LoRa multi-hop network.
On one hand, the long transmission range of LoRa ensures
coverage and reduces the number of redundant relay nodes. On
the other hand, the CT protocol helps to realize a simple but
efficient one-to-any fast packet broadcast by introducing syn-
chronized packet collisions. [7] proposed a multi-hop uplink
solution compatible with LoRaWAN specification, which can
act as an extension to already deployed gateways. End nodes
transmit data messages to intermediate nodes, which relay
them to gateways by choosing routes based on a simplified
version of Destination-Sequenced Distance Vector (DSDV)
routing.

These works propose centralized approaches controlled by
the gateway, the network server or the initiator, which con-
figure both the relay nodes and the device nodes through
MAC commands. In addition, the synchronization mechanism
requires many message exchanges. In most of these works,
end-devices act as relay depending on the needs. [7] introduces
routing nodes (RNs) for relaying uplink packets from leaf
nodes. However, RN are assumed to be not energy constrained.
The purpose of this work is not to use the multi-hop concept
to propose a new LPWAN protocol, or an extension of
LoRaWAN, to solve the aforementioned problems. In rural
applications context for developing countries, gateways cannot
act as relays as in [8] where more gateways are deployed
to ensure multi-hop communication. This would lead to ad-
ditional deployment cost since a gateway (a) usually needs
an unlimited power source, (b) requires an IP connection to
operate and (c), is the most expensive component, even in our
low-cost context. End-devices also don’t act as relays because
they run very specific sensing template code and must be
placed according to sensing needs.

III. SMART 2-HOP RELAYING MODE

A. Principle

Our 2-hop LoRa relay approach consists in a post deploy-
ment addition of an extra hop between some end-devices and
the gateway in a non-LOS scenarios. This approach works only
for periodic traffic with low data rate applications, and not
event-based traffic. We propose to have relay-devices which
are dedicated low-power nodes with behavior different from

the end-devices. However, similar to the end-devices, relay-
devices are built from the generic hardware IoT platform but
their unique feature is to extend the network coverage by
performing data receive and forward operations. It does not
take part in any data sensing, data processing nor aggregation
tasks. One of the major considerations of a relay-device should
be its appropriate location to cover areas where connectivity
is either lost or unstable after the network deployment. We
designed the relay-device with the following requirements:

• Low-cost, low power: a relay-device should use exactly
the same hardware used for low-cost end-devices (i.e.
Arduino Pro Mini, see Fig. 2) with no additional hardware
such as Real-Time Clock which would add complexity
and impose different hardware setting. The objective is to
make the relay-device only different by software means:
an end-device can be ”recycled” and reprogrammed to
act as a relay-device. As it is also desirable that relay-
devices run on battery, their longevity must be similar
to the longevity of end-devices. Being battery-operated
they must not listen continuously, which basically would
make them gateways and this is not what we wanted.

LoRa RFM95W

Arduino Pro Mini @3.3V

Fig. 2: Low-cost hardware

• Smart : relay-devices must be designed to remain in low-
power mode most of the time. Obviously, they have to
wake-up at appropriate moments to catch uplink transmis-
sions from specific devices in order to perform the relay
operation. This is the major consideration of this work
since missing uplink packets would make the network
less reliable than it was. Therefore, a relay-device must
be able to switch from sleep to active mode by smartly
analyzing the uplink pattern from end-devices.

• Transparent: relay-device nodes must be transparent to
the rest of the network: (a) no change in hardware or
software for end-devices or gateway to support the new 2-
hop approach; (b) no additional signaling traffic between
relay-devices and end-devices or gateway. Therefore, end-
devices should not be aware of the 2-hop relay mode,
nor to perform any discovery and binding process to a
nearby relay-device. A relay-device also does not need
to exchange parameters with the gateway for advertising
its presence. And, on the gateway side, no scheduling
mechanism for end-devices and relay-devices is required.
The presence of a relay-device should not be detected
although it is possible to indicate its presence with a



specific flag in the packet header if it is desirable for
the gateway (or network server) to have this information.
Our approach is not centralized, neither at gateway nor
network server as in related works. Furthermore, with-
drawal or failure of a relay-device leaves the network as
functional as before its integration in the network.

n3

GatewayRelay-device

End-device

Fig. 3: Long-range 2-hop connectivity architecture

Fig. 3 depicts our proposed architecture for providing a
transparent 2-hop LoRa connectivity. The red link means no
direct connectivity while the orange link means unstable con-
nectivity. The green links means high quality, stable connectiv-
ity. The main advantage of our smart relaying mode is related
to the relay-devices’ ability to adapt in complete autonomy
and transparency to their deployment environment. This is
realized with an autonomous and asymmetric synchronization
approach. It does not require any time synchronization be-
tween the nodes, e.g. end-devices behavior remain unchanged
as indicated previously. It is asymmetric in the sense that the
synchronization work is done by the relay-device: only the
relay-device has to learn wake-up periods of the end-devices.

B. Proposed algorithm

In a typical telemetry LoRa network, end-devices period-
ically measure environmental parameters and transmit data
packets mostly at regular intervals, being most of the time
in deep sleep mode where they are unable to send nor
receive packets. We assume here that end-devices wake-up
at least once every 60 minutes – from their local time as
there is no synchronicity between end-devices. When inserted
in an existing LoRa network, relay-devices are responsible
for forwarding data packets from end-devices with no prior
knowledge of how end-devices will wake up. Once deployed,
a relay-device discovers end-devices in its vicinity and will
build a wake-up table. When powered-on a relay-device first
runs an observation phase and then a data forwarding phase.

1) Observation phase: The observation phase consists in
observing network traffic for a specified duration Dobs to
learn the traffic pattern. At start-up, a relay-device usually
does not know when it will receive an uplink packet, so
it needs to be in receive mode during all the observation
duration. This observation duration must be long enough to
catch the various uplink packets from end-devices. Assuming
that end-devices wake-up at least once every 60 minutes, an
observation duration longer than 60 minutes is sufficient. In
the observation phase a relay-device receiving an uplink packet
from an end-device will (a) records relevant information of the

uplink packet such as the source address, the timestamp, etc.
and, (b) forwards the packet to the gateway by keeping the
original packet header.

Note that packet forwarding from a relay-device to the
gateway during this phase can also allow for transmission qual-
ity comparison if the original packet also reach the gateway.
This process, detailed in Figure 4, is repeated throughout the
observation duration. When the observation phase is over the
relay-device switches to the data forwarding phase.

Fig. 4: Observation phase

2) Data forwarding stage: With the collected information
during the observation phase, the relay-device is now able to
determine wake-up time of the end-devices in its vicinity. It
can determine its own activity schedule in each round to wake-
up at appropriate moment to catch and forward uplink packets
and remain in low-power mode the rest of the time. Algorithm
1 shows how the sleep period is computed.

Algorithm 1 Computing sleep period
Input:

devices: an array of bound devices to relay device, sorted in receiving
packet order.

Output:
sleep period

1: min time ← devices[0].timestamp + devices[0].reception interval −
devices[0].toa

2: for i = 1 to devices.size() do
3: tmp time ← devices[i].timestamp + devices[i].reception interval −

devices[i].toa
4: min time ← min(min time, tmp time)
5: end for
6: sleep period ← min time − current time
7: return sleep period

In the data forwarding phase the relay-device determines
the wake-up time T (using computed sleep period) to wake
up to catch the next uplink packet from device i. Once awake,
the relay-device enters in receive mode waiting for the next
uplink packet for a bounded amount of time. When receiving
the uplink packet it simply forwards the packet to the gateway.
Note that upon reception of the uplink packet from device i the
relay-device updates the wake-up time of device i accordingly
to take into account any clock drift.



3) Handling downlink messages: A relay-device may re-
ceive downlink packets from the gateway to specific devices.
Usually, an end-device needs to open a receive window after
its uplink transmission to wait for an incoming downlink
transmission. Here each protocol can define its own timing
to make sure that both gateway and end-device are somehow
synchronized for the downlink transmission. For instance, in
the LoRaWAN specification [9], the end-device opens two
receive windows after 1s and 2s after an uplink transmission.
In our proposition the relay-device should be transparent and
should not add additional delays compared to the original
configuration. Therefore, in both the observation and data
forwarding phase, when receiving a downlink packet, the
relay-device stores this packet and will forward it at the next
uplink transmission from the corresponding end-device instead
of directly forwarding the downlink packet to the device.
The reason is because the end-device receive window does
not probably take into account the receive&forward delay
introduced by the relay-device.

IV. EXPERIMENTATIONS

We performed field tests to assess the performance of the
proposed 2-hop approach for increasing network reliability.

ED2

GW

ED3

ED1

ED2

GW

RD

ED3

ED1

(a) (b)

End-Device
Gateway

Relay-Device No direct connectivity
Very weak connectivity
High quality connectivity

Fig. 5: Deployment scenarios

The university campus with many vegetation and sparse
buildings represents our rural environment of deployment. We
deployed at first a network consisting of 3 soil humidity end-
devices (ED1, ED2, ED3) and one gateway (GW ), as shown
in Fig. 5(a). GW was placed in the car park of the Faculty of
Science and Technology, two meters above the ground. End-
devices have different transmission intervals: ED1 sends a
data packet every 3 minutes, ED2 every 7 minutes, ED3 every

11 minutes. LoRa parameters of the experiments were chosen
as follows: spreading factor of 12, bandwidth of 125kHz and
coding rate of 4/5, which is the usual setting that provides the
longest range. The transmission power for all tests has been
set to 14dBm and all measurements were done in none LOS
conditions. Two relevant metrics have been identified: packet
error rate and power consumption.

A. Network reliability in 1-hop

In our first set of experiments, we use the classical 1-hop
LoRa communication scheme as depicted in Fig. 5(a). In order
to determine the network reliability, we simply measured the
number of correctly received packets by the gateway GW .
Results are as follows: high quality for ED1 (100% success),
weak for ED2 (40% success), no connectivity for ED3.

B. Network reliability with 2-hop

In order to assess our 2-hop approach, we introduced a
relay-device (RD) in the network so as to obtain stable
connectivity between the isolated nodes (ED2, and ED3) and
RD, but also between RD and the gateway. Fig. 5(b) shows
this deployment scenario. We first tested the network reliability
by adopting our 2-hop approach with the relay-device in
continuously listening mode waiting for uplink packets. As
expected, results validated that adding an extra hop between
isolated end-devices and gateway can significantly increase the
link reliability in high packet error rate conditions. Indeed, all
packets sent by end-devices have been correctly received on
the gateway side. That means packets from ED2 and ED3

were catched by RD and forwarded to the gateway.

C. Investigating end-device/relay synchronization

We also conducted tests to assess the relay-device’s ability
to automatically synchronize with the rest of the network.
Here, the relay-device is not in continuous listening mode
anymore and is put in deep sleep mode between 2 expected
transmissions from end-devices. The observation phase is set
to 25 minutes and at least two packets per end-devices are
expected to be catched. We ran each test during 1 hour: the first
25 minutes for the observation phase and the remaining time
for the data forwarding phase where the relay-device wakes
up from deep sleep mode at various moments T .

We added a guard time, Tguard, to investigate the synchro-
nization level between end-devices and the relay-device to
catch the next uplink packet. Therefore, instead of waking up
exactly at time T , a relay-device will wake up at T − Tguard.
We expect Tguard to be small, less that 1s for instance, as the
observation phase should provide the relay-device with wake-
up schedule informations. We varied Tguard from 0s to 5s we
measured the ratio of correctly received packets at the gateway,
i.e. uplink packets catched and forwarded by RD to GW .

As shown in Fig. 6, we observed a total desynchronization
of the relay-device with the rest of the network when Tguard ≤
2s. When Tguard ∈ [3, 4], synchronization is partial: at least
50% of packets can be correctly received but not more than
70%. 100% can be reached when Tguard = 5s.



0

20

40

60

80

100

0s 1s 2s 3s 4s 5sC
or
re
ct
ly
re
ce
iv
ed
pa
ck
et
s
%
)

Tguard

Fig. 6: Percentage of received packets, data forwarding phase

Although a guard time of 5s is tractable, we were quite
surprised by these results as we really expected a better level
of synchronization even with the native Arduino ProMini
millisecond counter. As clock drift is definitely not the reason
for the desynchronization, we started investigating this issue
in more details.

D. Improving end-device/relay synchronization

First, we have to explain how the deep sleep mode works
without the help of an external RTC module. The Arduino’s
microprocessor (ATMega328P) can be put into a sleep mode
with its internal watchdog timer triggering a wake-up after
a pre-defined period of time. In doing so, the power savings
are impressive in power-down sleep mode (deep sleep) as the
board only draws about 5µA. However, as opposed to an RTC
which can be programmed to generate a wake-up interrupt
for an arbitrarily long period of time, the ATMega328P can
only sleep for a maximum of 8s (options are 15ms, 30ms,
60ms, 120ms, 250ms, 500ms, 1s, 2s, 4s and 8s) when using
the internal watchdog timer. If we need to sleep for a longer
period, which is actually the case, then we need to use a loop
to sleep for several 8s periods.

The relay-device sleep period between 2 wake-up (to
catched uplink transmissions) is therefore divided into a num-
ber of sleep cycles of 8s. We use another Arduino board con-
nected to the relay-device to measure the exact duration of an
8s-sleep cycle that includes the wake-up of the microcontroller
and the few instructions needed to operate the loop (the second
Arduino is needed as the internal timer is disabled in deep
sleep mode). Our measurements showed that the wake-up time
after each cycle of 8s is increased by 158ms: instead of a sleep
period of 8s, the relay-device is actually sleeping for 8.158s.
The overhead on an 8s-period is not negligible as accumulation
effect is enough to create complete desynchronization: for
a sleep period of 6 minutes (i.e. 45 8s-cycles), there is an
overhead of 45∗0.158s = 7.11s! Of course the same overhead
also applied for end-devices but it is already taken into account
in the observation phase. The issue here is when the relay-
device itself determines its sleeping period (period between
2 wake-up to catched uplink transmissions) this overhead has
not been taken into account.

After identifying this issue, it is easy for the relay-device
to sleep for the exact amount of time by taking into account

the sleep overhead: the number n of 8s-period is obtained
by dividing T by 8.158s and not by 8s. Then, if n is not
an integer, the remaining waiting time (which is less than
8.158s) will be handled by a combination of smaller deep-
sleep durations (e.g. 250ms, 500ms, 1s, 2s, 4s and 8s) and also
taking into account the additional overheads. After correcting
the deep-sleep duration in the relay-device implementation,
new tests and measurements indicate a tight synchronization
between end-devices and the relay-device where only a safety
guard time of 500ms is introduced.

V. DISCUSSIONS

A. Radio duty-cycle

In some countries the transmitter can be constrained by
duty-cycle limitations. In Europe, following the ETSI EN300-
220-1 recommendations [10], a transmitter is limited to 1%
duty-cycle (i.e. 36s/hour) in the general case, even if it can
change to another frequency channel. A relay-device forward-
ing uplink packets from n end-devices will have to transmit at
least n packets/hour. Assuming each transmission takes about
1.5s (approximatively the time-on-air of a 20-byte payload
packet – header included) then a relay-device can relay 24
packets/hour which is quite sufficient in most cases.

B. Energy consumption

The Arduino Pro Mini (in its 3.3v and 8MHz version) with
the LoRa module draws about 40mA when active (taking a
measure) and transmitting. The whole process takes about 2s.
In deep sleep mode, the board draws 5uA. Therefore an end-
device sending 1 measure/hour consumes in the average (2 ∗
40mA+ 3598 ∗ 0.005mA)/3600 = 0.0272mA. We have real
devices running on AA batteries that have been functioning
for more than 2 years at time of writing.

Number of relayed packets

14,8

14,9

15

15,1

15,2

15,3

15,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1h 2h 3h

Av
er

ag
e

co
ns

um
pt

io
n

(m
A)

Fig. 7: Average consumption of the observation phase

1) Observation stage consumption: In the observation
phase, a relay-device must remain in continuous receive mode
for a specified duration Dobs. The Arduino ProMini running
at 3.3v consumes about 15mA in receive mode. Then, it
has to forward the packet. Energy consumption is similar to



the transmission from an end-device, i.e. 40mA during 2s.
At the relay-device level, managing 3 isolated end-devices
by relaying for example 3 packets for a duration Dobs=60
minutes, consumes in average ((3∗2s)∗40mA+(3600s−3∗
2s) ∗ 15mA)/3600s = 15.04mA. Figure 7 shows the average
consumption of a relay-device when relaying n packets during
1 hour, 2 hours and 3 hours. Results shows that 1 hour of
observation has little impact on the battery lifetime even when
relaying the maximum number of packets per hour allowed by
the ETSI radio duty-cycle (n=24).

2) Data forwarding stage consumption: Regarding the
relay-device, it has to wake-up and forward uplink packets.
For each wake-up, there will be a continuous receive for a
maximum of 1s, then it has to forward the packet during 2s.
Therefore, for each uplink packet, the relay-device consumes
in the average (1s∗15mA+2s∗40mA)/3s = 31.66mA. If we
assume that a relay-device is used to relay a very small number
of isolated end-devices, e.g. 3 end-devices, then the number
of wake-up can be limited. For instance, with 3 end-devices,
the relay-device has to wake-up 3 times per hour resulting in
an average consumption of (3 ∗ 3s ∗ 31.66mA + (3600s −
3 ∗ 3s) ∗ 0.005mA)/3600s = 0.084mA which still allows
for more than 3 years of operation. As illustrated in Fig. 8,
results are even better when the relay-device has to wake-up 3
times every 2 hours (more than 6 years of operation) or every
3 hours (more than 9 years of operation). For about 1 year
of operation, a relay-device can relay 11 packets if it has to
wake-up every hour, 22 packets every 2 hours,. . .

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1h 2h 3h

Number of relayed packets

Av
er

ag
e

co
ns

um
pt

io
n

(m
A)

Fig. 8: Average consumption of the data forwarding phase

C. Insertion of new isolated end-devices
The insertion of new isolated end-devices is done by

simply resetting the relay-device which will go through a
new observation phase. Although this approach will require
a new observation phase where the relay’s radio will be in
continuous receive mode, it appears to be the most transparent
approach, avoiding control message exchanges between end-
devices, gateway and relay-device. When assuming that the
insertion of new isolated devices is also a very rare event,
the cost of the observation phase as discussed above has little
impact on the relay-device’s longevity.

D. Desynchronization due to packet collisions

In the unlikely event of packet collision (because it is
assumed that the number of isolated end-devices is small), and
if there are some CSMA-like mechanisms implemented, end-
devices involved in the collision will have their transmission
delayed. Actually the receive window at each wake-up can
be set to several seconds as a packet reception will close the
window. As indicated previously, upon reception of an uplink
packet from device i at time t the relay-device updates the
wake-up interval for device i accordingly to take into account
any clock drift. In case no packets is received from device i
for several consecutive periods, the relay-device will initiate a
new observation phase.

VI. CONCLUSION

We presented a 2-hop LoRa approach to increase reliability
in real-world deployment scenarios. We proposed a smart,
transparent and low-power relay-device that can be added
seamlessly into an existing LoRa network, between some
isolated end-devices and the gateway. Both end-devices and
gateway are unchanged and can work with or without the
relay-device. The experimental tests demonstrate the effective-
ness of our approach, especially validating the relay-device’s
ability to synchronize in an automatic and asymmetric manner
with the rest of the network. Using low-cost hardware for the
relay-device, the experimental tests also show that a safety
wake-up of 500ms prior to the expected time of receiving an
uplink packet is sufficient to significantly increase the network
reliability.

ACKNOWLEDGMENTS

This work is supported by the WAZIUP project funded by
EU Horizon 2020 research and innovation program under grant
agreement No 687607.

REFERENCES

[1] C. Pham, A. Rahim, and P. Cousin, “Low-cost, long-range open iot for
smarter rural african villages,” Proceedings of the IEEE International
Smart Cities Conference (ISC2), Trento, Italy, 2016.

[2] F. Adelantado, X. Vilajosana, P. Tuset, B. Martinez, J. MELIA-SEGUI,
and T. Watteyne, “Understanding the Limits of LoRaWAN,” IEEE
Communications Magazine, 2017.

[3] A. Sanfratello, “Enabling relay-based communication in lora networks
for the internet of things: design, implementation and experimental
evaluation,” Master’s thesis, University of Pisa, Italy, 2016.

[4] B. Martin, V. John, and R. Utz, “Lora for the internet of things,” In
Proceedings of the International Conference on Embedded Wireless
Systems and Networks (EWSN), pp. 361–366, 2016.

[5] B. V. D. Velde, “Multi-hop lorawan: including a forwarding node,” 2017.
[6] C.-H. Liao, G. Zhu, D. Kuwabara, M. Suzuki, and H. Morikawa, “Multi-

hop lora networks enabled by concurrent transmission,” IEEE Access 5,
pp. 21 430–21 446, 2017.

[7] J. Dias and A. Grilo, “Lorawan multi-hop uplink extension,” Computer
Science 130, pp. 424–431, 2018.

[8] D. Lundell, “Ad-hoc network possibilities inside lorawan,” Master’s
thesis, Lund University, Sweden, 2017.

[9] LoRa-Alliance, “Lorawan specification, v1.0.2,” 2016.
[10] ETSI, “Electromagnetic compatibility and radio spectrum matters (erm);

short range devices (srd); radio equipment to be used in the 25 mhz to
1 000 mhz frequency range with power levels ranging up to 500 mw;
part 1: Technical characteristics and test methods,” 2012.


