
Communication performance of low-resource sensor
motes for data-intensive applications

Congduc Pham
University of Pau, LIUPPA Laboratory

Email: Congduc.Pham@univ-pau.fr

Abstract—We study the communication performance of low-
resource sensor motes that are commonly found in smart cities
test-beds or used by the research community. We focus here on
802.15.4 radio and we present a performance study of sending
and receiving capabilities of Libelium WaspMote, Arduino-
based motes, Telosb-based motes and MicaZ motes when a
large number of packets needs to be streamed from sources
to sink node. We provide measures for the minimum time
spent in send procedure, minimum time needed to read data
into application memory space and maximum sender/receiver
throughput. We highlight the main sources of delays assuming
no flow control nor congestion control to determine the best case
performance level. Our contribution is therefore in determining
the maximum realistic level of performance for commonly found
mote platforms in order to predict end-to-end performances
for data-intensive applications such as multi-hop multimedia
streaming for surveillance.

I. INTRODUCTION

This article considers data-intensive applications with Wire-
less Sensor Networks (WSN) such as those involving multi-
media nodes where sensor nodes can provide images and/or
acoustic data to a sink. The domain of multimedia WSN is
becoming more and more important as it can be observed by
the increasing number of scientific contributions in the last
years [1], [2], [3], [4] to name a few. As images and acoustic
data usually require a much larger amount of packets to be
transferred, and most likely with some time constraints, they
perfectly fit into the so-called data-intensive sensor network
category. In this paper, we are focusing on the communication
performance of low-resource sensor motes that are commonly
found in smart cities test-beds or used by the research com-
munity. We therefore present a performance study of sending
and receiving capabilities of Libelium WaspMote, Arduino-
based motes, Telosb-based motes and MicaZ motes when a
large number of packets needs to be streamed from sources to
sink.

There have been previous works on image/multimedia
sensors but few of them really specifically study the com-
munication capabilities or limitations of realistic hardware
and software API for sending/receiving packets. Recent work
presented in [3], [4] are probably the closest work to ours with
real experimentations on sensor motes such as iMote2 and
TelosB sensors. However, their focuses were more on global
performances than on a detailed study of the hardware and API
limitations. There have also been some works on performance
evaluation of radio technologies for multimedia traffic such
as the works reported in [5], [6] but, once again, they did

not investigate the communication overheads in a synthetic
manner. Some studies on 802.15.4 radio performances are also
available from radio module manufacturers [7], [8] but these
studies remain at a very high-level and do not take into account
software overheads. In this paper, we present experimentations
with real sensor boards and real radio modules to transmit a
large amount of packets in a streamed fashion. We use traffic
generators and programming API timing to highlight the main
sources of delays assuming no flow control nor congestion
control to determine the best case performance level. One
usage for this study could be to use these real performance
measures in simulation models to provide more realistic per-
formances for large-scale multimedia sensor networks deploy-
ment for instance. Although it is not possible to address the
large variety of existing sensor boards (see [9] for a survey
on image sensor platforms) we however provide measures for
UART-based and SPI-based sensors that could be adapted to
other type of sensors to determine the performance level that
can be expected. Also, we address motes based on 2 well-
known and well-used programming environments: Arduino-
like IDE (cc.arduino.org) and TinyOS (www.tinyos.org). We
will not address the capture process, i.e. how to capture image
or acoustic data, nor the compression overheads, as these 2
components can be optimized in many various ways such as
dedicated daughter boards with hardware optimizations. This
paper focuses on the communication performances of motes
using the IEEE 802.15.4 technology.

The paper is then organized as follows. Section II presents
real measures on sensor hardware and radio modules of what
could typically be expected with 802.15.4 communication
stacks at the application level for WaspMote, Arduino, TelosB
and MicaZ motes. API send time and minimum time between
2 packet generation, as well as maximum sender and receiver
throughput will be presented. We will also show the perfor-
mance of relaying mode for multi-hops communication sce-
narios in Section III. Conclusions will be given in Section IV.

II. COMMUNICATION PERFORMANCES ON REAL SENSORS

We consider Libelium WaspMote [10] that are used in a
number of Smart Cities and environmental monitoring projects
[11], [12], Arduino MEGA 2560 [13] (Libelium WaspMote
IDE is largely based on Arduino), TelosB motes from Advan-
ticSys [14] and Crossbow MicaZ motes. The last 2 platforms
being well-known to the WSN research community.

A. Hardware

1) Libelium WaspMote & Arduino: Libelium WaspMote
use an IEEE 802.15.4 compliant radio module called XBee
manufactured by Digi [15] which offers a maximum appli-
cation level payload of 100 bytes. By default, the XBee
module uses a macMinBE value of 0 therefore the effective
maximum throughput roughly corresponds to the 102-bytes
payload case presented in the previous section. The WaspMote
has an Atmega1281 running at 8MHz. The XBee module and
the micro controller communicate through an UART, and for
the WaspMote the default data rate is set to 38400bps by the
Libelium API. In a first step we investigate the off-the-shelves
performance of the WaspMote. However we use a modified
version of the ”light” Libelium API provided by Libelium.
Compared to the ”full” Libelium API that additionally handles
long packets with fragmentation/reassembly support, the light
Libelium API is much faster and our modified version further
reduces the complexity of the send operation. As WaspMote
is very similar to the well-known Arduino boards the results
presented in this section also apply to the Arduino MEGA
2560 board which features an ATmega2560 running at 16MHz.
This Arduino board is one of the fastest Arduino boards in
the market and is quite representative of UART-based sensor
boards. On the Arduino, we also use a very lightweight
communication library[16] and our modified API for the
WaspMote achieves the same level of performance than the
Arduino’s API. Both motes use the Arduino programming
environment that offers a C++-like programming language.
Various libraries are available for the Arduino and they can
be used on the WaspMote with very little changes.

2) AdvanticSys TelosB-based mote and Crossbow MicaZ
mote: AdvanticSys motes (we experimented on CM5000 and
CM3000) are based on TelosB/TmoteSky motes and therefore
are referred to as TelosB. Both TelosB and MicaZ motes are
built around an TI MSP430 microcontroller at 8MHz with
an embedded ChipCon CC2420 802.15.4 compatible radio
module. The original TelosB description and datasheet can be
found in [17]. Documentation on the AdvanticSys motes can
be found in [14]. MicaZ description can be found in [18]. The
CC2420 radio specification and documentation are described
in [19]. The important difference compared to the previous
Libelium WaspMote or Arduino is that the radio module is
connected to the microcontroller through an SPI bus instead
of a serial UART component. This normally would allow for
much faster data transfer rates.

TelosB and MicaZ are usually programmed under the
TinyOS system [20], although other OS can be used. In this
paper, we only study the communication performance under
TinyOS. The last version of TinyOS is 2.1.2 and our tests use
this version. The default TinyOS configuration use a MAC
protocol that is compatible with the 802.15.4 MAC (Low
Power Listening features are disabled). The default TinyOS
configuration also uses ActiveMessage (AM) paradigm to
communicate and interoperable frames (IFRAME) are used
to allow interoperability with non-TinyOS network. As we

are using heterogeneous platforms we will not use the default
MAC layer of TinyOS but rather the TKN154 IEEE 802.15.4
compliant API. However, we verified the performances of
TKN154 against the TinyOS default MAC and found them
similar (TelosB) or greater (MicaZ). Therefore, in all cases,
the results that will be presented are the best case results that
we could obtained with our tests.

TinyOS a component-based and event-driven operating sys-
tem that has more elaborated control than Arduino or Libelium
systems. One main difference resides in the sending process
where a packet send may be posted by an application (send
request) and the system will issue a sendDone event when
the send is completed. A busy flag should be used to indicate
that a sending is undergoing. This flag should then be released
when the sendDone event is process. Nevertheless, we can
use the same methodology than for the qualification of Wasp-
Mote and Arduino boards and measure the time between the
post of the send request and the sendDone event notification
as the ”time in send()”. The time between 2 packet generation
will also measure the minimum time between 2 send requests.

B. Sending performances

One of the main objectives of our work in this paper is to
take into account the real overheads and limitations of realistic
sensor hardware. Most of simulation models or analytical
studies only consider the frame transmission time as a source
of delay. However, before being able to transmit a frame, the
radio module needs to receive the frame in its transmission
buffer. In many low cost sensor platforms, the bottleneck
is often the interconnection between the microcontroller and
the radio module. Many sensor boards use UARTs (serial
line) for data transfer which data transfer rate lies somewhere
between 38400bps and 230400bps for standard bit rates. Non-
standard baud rates are usually possible, depending on the
microcontroller master clock, and also, depending on UARTs,
higher speed can be achieved. Nevertheless, in addition to
the radio transmission time, one has to take into account
the time needed to write data into the radio module’s buffer.
This time is far from being neglectible as most of serial
communications also adds 2 bits of overhead (1 start bit and
1 stop bit) to each 8-bit data. Therefore, with a serial data
transfer rate 230400bps, which is already fast for a sensor
board UART, writing 100 bytes of application payload needs
at least 100 ⇥ 10/230400 = 4.34ms if the 100 bytes can be
passed to the radio without any additional framing bytes. In
many cases, one has to add extra framing bytes, making the
4.34ms a sort of minimum overhead to add to each packet
transmission in most of UART-based sensor boards. If we
consider an image transmission that requires sending the image
in a multitude of packets, we clearly see that the minimum
time before 2 packet generation is the sum of the time to
write frame data to the radio and the time for the radio to
transmit the frame. According to the 802.15.4 standard, if
we consider a unicast transmission with the initial backoff
exponent BE set to 0 (default is 3), we typically need a
minimum of 5.44ms + 4.34ms = 9.78ms to send a single

100-byte packet if there is no error. Now, in more advanced
hardware architecture the radio module can be connected to
the microcontroller through a high-speed bus (SPI for instance)
which allows for much higher data transfer rates, in which
case a unicast transmission of a single 100-byte packet with
the same MAC parameter would take 5.44ms + ✏. However,
as we will show later on, not only the sending side should be
taken into account and sending fast is usually not reliable.

To highlight the importance of the time needed to write
to the radio on some hardware, we measure on real sensor
hardware and communication API the time spent in a generic
send() function (most communication APIs have a function to
send a packet), noted tsend, and the minimum time between 2
packet generation, noted tpkt. tpkt typically takes into account
various counter updates and data manipulation so depending
on the amount of processing required to get and prepare the
data, tpkt can be quite greater than tsend. With tsend, we can
easily derive the maximum sending throughput that can be
achieved if packets could be sent back-to-back, and with tpkt

we can have a more realistic sending throughput. In order to
measure these 2 values, we use a traffic generator that sends
packet back-to-back with a minimum of data manipulation
needed to maintain some statistics (counters) and to fill-in
data into packets, which is the case in a real application.
When possible, we also add non-intrusive accurate timing of
the programming API.

1) Libelium WaspMote & Arduino, sending side: Figure 1
shows the time in send() breakout for the WaspMote (data
transfer rate is 38400) where we can especially see the time
required to write to the radio. Each value for a given payload
size is an average value over 20 measures. The sum of all the
timing represents what we called tsend. We can see that the
bottleneck here is the time to write to the radio as the data
transfer rate is only 38400bps.

6.17%
7.37% 9.57% 10.29%

11.91%
12.91% 13.57% 15.26%

16.54% 17.11% 18.97%
20.66% 21.74% 22.66%

24.66% 24.86% 26.86%
28.49% 29.95%

0%

5%

10%

15%

20%

25%

30%

35%

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Ti
m
e%
in
%m

s%

XBee%payload%in%bytes%

Time%in%send()%breakout,%WaspMote%

-me%before%radio% -me%wri-ng%to%radio%

Fig. 1. Time in send() breakout, WaspMote

Figure 2 shows both tsend and tpkt for the Waspmote.
The maximum realistic throughput could be obtained from
tpkt. On the Arduino, the communication API has similar
performances: for a 100-byte packet tsend is about 29.8ms
and tpkt is about 33.45ms.

9.17% 10.26%
11.8%

13.2%
15.31% 16.17%

17.83%
19.71%

21.14%
23% 23.91%

26.14% 27.2%
27.69%

30.11% 31.09%
32.69%

33.86%
35.23%

6.17%
7.91%

10.2% 10.29%
12.37%

14.51% 14.49%
16.29%

18.6% 18.6%
20.31%

22.71% 23% 23.74%

26.8% 26.74%
27.91%

30.94% 31.78%

0%

5%

10%

15%

20%

25%

30%

35%

40%

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

!m
e$
in
$m

s$

XBee$payload$in$bytes$

Time$between$2$packet$genera!onand!meinsend(),$WaspMote$

-me%between%2%pkt%genera-on% -me%in%send()%

Fig. 2. Time between 2 packet generation and time in send(), WaspMote

We then increased the UART data transfer rate that is set by
default to 38400bps. However, increasing the baud rate cannot
be done without taking into account some timing constraints
that may make the serial communication unreliable [21]. The
WaspMote microcontroller runs at 8MHz while the XBee mod-
ule has an 16MHz clock and requires that the frequency is 16
times the baud rate. It means that for a baud rate of 38400, the
actual operating frequency need to be 16⇥38000 = 614400Hz.
For reliable communication, the WaspMote clock should also
produce a frequency close to 614000Hz. Since it runs at
8MHz, the dividing factor is 8000000/614000 = 13.020833.
Using the nearest integer dividing factor of 13, the actual
baud rate is 8000000/16/13 = 38461, 54 which is 1.0016026
times greater than the target baud rate. The error is about
0.1602% which allows for reliable communication between
the microcontroller and the XBee module. Actually, 38400,
which is the value chosen by the Libelium API is the fastest
standard baud rate that provides acceptable errors between the
target baud rate and the actual baud rate. Using 57600 or
115200 baud rates would generate too many errors, making the
communication very unreliable and therefore not functioning
at all. Even on the XBee, 57600 and 115200 baud rates can
not accurately be achieved with the 16MHz clock. Using these
constraints, the perfect dividing factors for the WaspMote are
10, 5, 4, 2 and 1 which correspond to 50000, 100000, 125000,
250000 and 500000 baud rates respectively. As we showed
that the maximum 802.15.4 effective throughput is roughly
166666bps in broadcast mode when there are no errors, there is
no point to consider 500000 baud rate that would additionally
overflow the transmission buffer. On the Arduino, as the clock
runs at 16MHz, there is no problem in getting these baud rates
with a dividing factor of 20, 10, 8, 4 and 2 respectively.

With a serial transmission of 8 data bits, 1 start bit and 1 stop
bit that gives 10 bits per byte, Figure 3 shows the estimated
time to write to radio if baud rates up to 250000 were applied.
If we assume that reducing the time to write to radio does not
change the other overheads, we can estimate the new t

B
send for

a baud rate B higher than 38400 as follows:

t

B
send = t

38400
send � timeToWriteToRadio

38400

+timeToWriteToRadio

B

0"

5"

10"

15"

20"

25"

30"

35"

10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70" 75" 80" 85" 90" 95" 100"

!m
e$
in
$m

s$

XBee$payload$in$bytes$

Timetowritetoradioatvarious$baud$rates$

38400,"measured"4me" 38400,"es4mated" 50000" 57600" 100000" 115200" 125000" 250000"

Fig. 3. Time to write to radio at various baud rates

Then, assuming that the overheads between 2 packet gen-
eration are also independent from the time to write to radio,
we can estimate the new t

B
pkt for a baud rate B higher than

38400 as follows:

t

B
pkt = t

38400
pkt � t

38400
send + t

B
send

To verify our assumption we set the baud rate of the
XBee module to 125000 and 250000 and ran again the traffic
generator on the WaspMote after having changed the default
data transfer rate of the Libelium communication API from
38400 to 125000 and 250000. Figure 4 shows the estimated
and measured time between 2 packet generation for data
transfer rates of 125000 and 250000 with the WaspMote.

0,00#

5,00#

10,00#

15,00#

20,00#

10# 15# 20# 25# 30# 35# 40# 45# 50# 55# 60# 65# 70# 75# 80# 85# 90# 95# 100#

!m
e$
in
$m

s$

XBee$payload$in$bytes$

Es!matedandmeasured$!me$between2packet$genera!on$
light$Libelium$API,125000&$250000bps$microcontrollerD>radio$

es/mated#/me#between#2#packet#genera/on#125000bps#

measured#/me#between#2#packet#genera/on#125000bps#

es/mated#/me#between#2#packet#genera/on#250000bps#

measured#/me#between#2#packet#genera/on#250000bps#

Fig. 4. Estimated and measured for t125000pkt and t250000pkt

We can see that the estimated and the measured curves are
very close each other, thus validating our estimation method
of the time to write to radio and the constant overheads of
the communication API. In summary, when using a 100-byte
payload, we can have t

125000
pkt ⇡ 16ms and t

250000
pkt ⇡ 12ms for

both the WaspMote and the Arduino. These results can be seen
as the minimum time between 2 packet generation that could
be achieved for sensor nodes with a similar architecture using
UART lines for communications between microcontroller and
radio module. Figure 5 shows maximum sending throughput
that have been measured at various baud rates. However, we
observed many transmission errors between the microcon-
troller and the radio module at 250000 baud rate that make
the whole transmission very unreliable. Therefore, in practice,
WaspMote and the Arduino can not really be used with a serial
data transfer rate higher than 125000bps.

11299$
15979$

19560$21739$
26002$

28836$31220$
33676$35619$

38294$39344$
41434$42618$

44313$46276$
47420$47904$49001$48840$

12966$
17570$

24133$
27137$

32215$34653$
39555$

43796$46189$
49383$

52004$
54795$

57613$58309$
61836$64030$

66482$
69982$67454$

0$

10000$

20000$

30000$

40000$

50000$

60000$

70000$

80000$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$ 11$ 12$ 13$ 14$ 15$ 16$ 17$ 18$ 19$

Th
ro
ug
hp

ut
)in
)b
ps
)

XBee)paylod)in)bytes)

Maximum)expected)throughput)at)125000)&)250000)baud)rates)
WaspMote)&)Arduino)

measured$xbee$max$sending$throughput$250000bps$

measured$xbee$max$sending$throughput$125000bps$

Fig. 5. Maximum sending throughput at various baud rates

2) TelosB and MicaZ, sending side: Again, we use a traffic
generator to send packet back-to-back at the sender side. We
then measure the time in send() (tsend) and the minimum the
time between 2 packet generation (tpkt) under TinyOS. The
so-called ”fitted” curve is a linear approximation and the label
values on the curves correspond to the fitted curve. Figure 6
and Figure 7 show the measures for the TelosB and MicaZ
respectively.

13,7% 14,1% 14,5% 14,8% 15,2% 15,6% 15,9% 16,3% 16,7% 17,0% 17,4% 17,8% 18,1% 18,5% 18,9% 19,2% 19,6% 20,0% 20,3%

18,6% 19,0% 19,4% 19,7% 20,1% 20,5% 20,9% 21,2% 21,6% 22,0% 22,3% 22,7% 23,1% 23,4% 23,8% 24,2% 24,6% 24,9% 25,3%

0%

5%

10%

15%

20%

25%

30%

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Ti
m
e%
in
%m

s%

Payload%in%bytes%

Time%in%send()%and%2me%between%2%packet%genera2on%
Advan2cSys%TelosB%

-me%in%send()% -me%in%send(),%fi7ed% -me%between%send()% -me%between%send(),%fi7ed%

Fig. 6. Time in send() and time between 2 packet generation, TelosB

6,0$ 6,3$ 6,5$ 6,8$ 7,1$ 7,3$ 7,6$ 7,9$ 8,1$ 8,4$ 8,6$ 8,9$ 9,2$ 9,4$ 9,7$ 9,9$ 10,2$ 10,5$ 10,7$

7,2$ 7,4$ 7,7$ 7,9$ 8,1$ 8,4$ 8,6$ 8,9$ 9,1$ 9,3$ 9,6$ 9,8$ 10,1$ 10,3$ 10,6$ 10,8$ 11,0$ 11,3$ 11,5$

0$

2$

4$

6$

8$

10$

12$

14$

10$ 15$ 20$ 25$ 30$ 35$ 40$ 45$ 50$ 55$ 60$ 65$ 70$ 75$ 80$ 85$ 90$ 95$ 100$

Ti
m
e%
in
%m

s%

Payload%in%bytes%

Time%in%send()%and%2me%between%2%packet%genera2on%
MicaZ%

-meinsend()$ -meinsend(),$fi7ed$ -me$between$send()$ -me$between$send(),$fi7ed$

Fig. 7. Time in send() and time between 2 packet generation, MicaZ

Figure 8 shows the corresponding maximum sending
throughput and the maximum realistic throughput at the sender
side. Once again, we differenciated the maximum sending
throughput case when only the time in send() is considered

from the case the time between 2 packet generation is used,
which is a more realistic scenario.

19098%
24448%

29388%
33962%

38211%
42167%

45860%
49315%

52555%
55598%

58463%
61165%

63717% 66131%
68418% 70588%

72650% 74611%

25322%
29484%

33406%
37109%

40609%
43924%

47067%
50052%

52890%
55592%

58168% 60625%
62973% 65217%

67366% 69424%

17987% 20084%
22086% 24000%

25832% 27586%
29268% 30882%

32432% 33922%
35355% 36735%

38063% 39344%

4292% 6313% 8257% 10128%
11930% 13668%

15344% 16961%
18523% 20033%

21493% 22905%
24272% 25595%

26878% 28122% 29328%
30498% 31634%

0%

10000%

20000%

30000%

40000%

50000%

60000%

70000%

80000%

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Th
ro
ug
hp

ut
)in
)b
ps
)

Payload)in)bytes)

Maximum)sending)throughput)
Advan9cSys)TelosB)&)MicaZ)

send()%throughput%MicaZ% realis?c%throughput%MicaZ%

send()%throughput%TelosB% realis?c%throughput%TelosB%

Fig. 8. Maximum sending throughput for TelosB and MicaZ

We can see that the MicaZ platform has the best perfor-
mance level, both in terms of time in send() and time between
2 packet generation: it can realistically send one 100-byte
packet in about 11ms. The resulting maximum realistic send-
ing throughput is close to 70kbps. Compared to the previous
WaspMote and Arduino platforms pushed at 125000baud/s,
MicaZ motes are still much more performant while TelosB
has the lowest maximum realistic sending throughput at about
32kbps.

C. Receiver performances

In the next set of experiments, we use the traffic generator
to send packets to a receiver. In general, flow control and
congestion control can be implemented but any control would
slow down the transmission anyway. Therefore, we are not
using flow control nor congestion control but rather send
packets as fast as possible, measure the number of received
bytes at the receiver and compute the receiver throughput each
time the payload size is increased. Prior to this test we also
wanted to measure the time needed by the mote to read the
received data into user memory or application level, noted
tread. Normally, the receiver throughput is linked to tread

following a simple producer-consumer model: if packets arrive
faster than they can be made available to the application they
are dropped by the limited receiver buffer.

1) Libelium WaspMote & Arduino, receiver side: Figure
9 shows for both the WaspMote and the Arduino the time
needed to read a packet into the application memory space.
Actually, we found that tread is quite independent from the
communication baud rate between the microcontroller and
the radio module. In all our experimentations, for baud rates
of 38400, 125000 and 250000, tread remains constant and
depends only on the data size. The reason why tread only
depends on the data size, at least at the application level,
is as follows: most of communication APIs use a system-
level receive buffer and when a packet arrives at the radio, a
hardware interrupt in raised and appropriate callback functions
are used to fill in the receive buffer that will be read later on
by the application. Therefore, the baud rate has only an impact

on the time needed to transfer data from the radio module to
the receive buffer. When in the receive buffer, the time needed
to transfer the data from the receive buffer to the application
depends on the speed of memory copy operations, therefore
depending mainly on the frequency used to operate the sensor
board and the data bus speed. As we can see in figure 9, tread
on the WaspMote is about 50ms and tread on the Arduino
is about 35ms, for a 100-byte packet. Figure 10 shows the
maximum receiver throughput for both the WaspMote and
Arduino motes.

16# 18#
22#

26#
30#

34#
38#

41#
45#

50#

11#
14#

17#
20# 22#

25# 27# 29#
32#

35#

0#

10#

20#

30#

40#

50#

60#

10# 20# 30# 40# 50# 60# 70# 80# 90# 100#

Ti
m
e%
in
%m

s%

XBee%payload%in%bytes%

Read%3me%

Read#0me,#WaspMote# Read#0me,#Arduino#

Fig. 9. Minimum read time on WaspMote and Arduino

11299$
19560$

26002$
31220$

35619$ 39344$ 42618$ 46276$ 47904$ 48840$

16000$ 18182$ 19200$ 20741$ 22069$ 22500$ 22857$

12308$ 13333$ 14118$ 14737$ 15610$ 16000$ 16000$
0$

20000$

40000$

60000$

10$ 20$ 30$ 40$ 50$ 60$ 70$ 80$ 90$ 100$

Th
ro
ug
hp

ut
)in
)b
ps
)

XBee)payload)in)bytes)

Sender)throughput)and)receiver)throughput)
WaspMote)&)Arduino,)125000bps)

measured$xbee$max$sending$throughput$125000bps$

Rcv$throughput,$Arduino$

Rcv$throughput,$WaspMote$

Fig. 10. Maximum sending throughput and maximum receiver throughput
on WaspMote and Arduino

2) TelosB and MicaZ, receiver side: Following the same
methodology applied for WaspMote and Arduino, Figure 11
shows for both the TelosB and the MicaZ the time needed to
read a packet into the application memory space. Compared
to values for WaspMote and Arduino shown in figure 9, we
can see that the more advanced architecture using in part an
SPI bus for the communications between the microcontroller
and the radio module offers very small data read time. We
therefore plot in Figure 12 the maximum receiver throughput
on TelosB and MicaZ based on these values. Then Figure 13
shows the maximum measured receiver throughput for these
platforms using the MicaZ traffic generator.

2" 2"

3" 3" 3"

4" 4" 4"

5" 5" 5"

6" 6"

7" 7" 7"

8" 8" 8"

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70" 75" 80" 85" 90" 95" 100"

Ti
m
e%
in
%m

s%

Payload%in%bytes%

Packet%read%3me%
Advan3cSys%TelosB%and%MicaZ%

Packet"read"4me,"MicaZ" Packet"read"4me,"TelosB"

Fig. 11. Minimum read time on TelosB and MicaZ

80000#

120000#

160000#

200000#

120000#

140000#

160000#

180000#

133333#
146667#

160000#
173333#

186667#

150000#
160000#

170000#
180000#

190000#

160000#

40000#

60000#
53333#

66667#
80000#

70000#
80000#

90000#
80000#

88000#
96000#

86667#
93333#

85714#91429#
97143#

90000#95000#
100000#

0#

50000#

100000#

150000#

200000#

250000#

10# 15# 20# 25# 30# 35# 40# 45# 50# 55# 60# 65# 70# 75# 80# 85# 90# 95# 100#

Th
ro
ug
hp

ut
)in
)b
ps
)

Payload)in)bytes)

Maximum)receiver)throughput)
Advan:cSys)TelosB)and)MicaZ)

Max#Rcv#throughput,#MicaZ# Max#Rcv#throughput,#TelosB#

Fig. 12. Maximum receiver throughput on TelosB and MicaZ

11152$
16183$

20897$
25322$

29484$
33406$

37109$
40609$

43924$
47067$

50052$
52890$

55592$
58168$

60625$ 62973$
65217$ 67366$

69424$

4292$ 6313$ 8257$ 10128$ 11930$
13668$ 15344$

16961$ 18523$
20033$ 21493$

22905$ 24272$
25595$ 26878$

28122$ 29328$
30498$ 31634$

11005$
14789$

20703$
23405$

27586$
31042$

34261$
37723$

42448$ 43247$
45458$ 46578$

52623$ 53583$
56766$ 58127$

60973$
63928$

66845$

0$

10000$

20000$

30000$

40000$

50000$

60000$

70000$

80000$

10$ 15$ 20$ 25$ 30$ 35$ 40$ 45$ 50$ 55$ 60$ 65$ 70$ 75$ 80$ 85$ 90$ 95$ 100$

Th
ro
ug
hp

ut
)in
)b
ps
)

Payload)in)bytes)

Sender)and)receiver)throughput)
Advan8cSys)TelosB)and)MicaZ)

sender$throughput$MicaZ$ Rcv$throughput$MicaZ$

sender$throughput$TelosB$ Rcv$throughput$TelosB$

Fig. 13. Maximum sending throughput and maximum receiver throughput
on TelosB and MicaZ

Our first experiments on the TelosB did use a TelosB sender
which sending throughput was found around 31.6kbps for a
100-byte packet. Then, we found the receiver throughput very
close to the sender throughput which showed that the limiting
factor was at the sender side. We then use a MicaZ sender
which is the fastest sending mote available to us and ran the
experiments again. The measured receiver throughput on the

TelosB in figure 13 is for this last case where we can see
that TelosB and MicaZ have similar receiving performances
(the labels for the receiver throughput are for the MicaZ
motes). Figure 13 also shows the maximum realistic sending
throughput on the TelosB and MicaZ motes previously shown
in Figure 8 for comparison purposes.

As we do not have the possibility to send packets faster than
1 packet every 11ms (maximum performance of the MicaZ
platform), even with a 802.15.4 bridge plugged into a desktop
workstation, at this point of our experimentation, we can not
state for sure whether the receiving performance is much
smaller than the theoretical maximum receiver throughput
as depicted in Figure 12, or could be close to theoretical
values based on tread. However, we can see in Figure 13
that the receiver throughput starts to diverge from the sender
throughput for large packet sizes. Therefore our opinion is
that the maximum realistic receiver throughput will be well
below the theoretical maximum receiver throughput because
of various overheads of the reception operations: hardware
interrupts, tasks handling, memory copies, bus transfers,. . .

III. MULTI-HOP ISSUES

In data-intensive WSN such as multimedia motes, a large
amount of data are sent from sensor nodes to a sink or base
station. This sink is not always the final destination because
it can also transmit the data to a remote control center, but
it is generally assumed that the sink has high bandwidth
transmission capabilities.

Multi-hop transmissions generate higher level of packet
losses because of interference and contention on the radio
channel (uplink, from the source; and downlink, to the sink). In
this case, when the minimum time between 2 packet generation
is too small, there are contention issues between receiving
from the source and relaying to the sink. However, as we
found that the minimum time between 2 packet generation is
much greater than the radio transmission time (about 5ms for
a 100-byte packet), multi-hop transmissions in this case will
most likely rather suffer from high processing latencies than
from contention problem. Upon reception of the packet from
the source node, a relay node needs an additional delay to get
data from the radio before being able to send it to the next
hop. This delay was referred to as the time to read data, tread,
and was found to be quite large in simple mote architecture
such as the WaspMote and Arduino (see figure 9).

In total, when adding additional data handling overheads, we
measured that a relay node based on a WaspMote needs about
108ms to process the incoming packet and to relay it to the
next hop, once again for a 100-byte packet. The Arduino can
do it in about 94ms, see Figure 14, red (WaspMote) and purple
(Arduino) curves. In case the next packet from the source node
arrives before the previous packet has been read, the reception
buffer may overflow quite quickly.

16# 18# 22# 26# 30# 34# 38# 41# 45# 50#53# 56# 61# 67#
75# 80#

88# 94#
102# 108#

11# 14# 17# 20# 22# 25# 27# 29# 32# 35#

43# 49# 54# 60#
67# 72# 76# 81# 86#

94#

0#

20#

40#

60#

80#

100#

120#

10# 20# 30# 40# 50# 60# 70# 80# 90# 100#

Ti
m
e%
in
%m

s%

XBee%payload%in%bytes%

Read%3me%&%processing%w/relay%3me%

Read#0me,#WaspMote# WaspMote#processing#w/relay#0me#

Read#0me,#Arduino# Arduino#processing#w/relay#0me#

Fig. 14. Measured time to read and relay data on WaspMote and Arduino

11299$

19560$

26002$

31220$

35619$

39344$
42618$

46276$
47904$ 48840$

1509$
2857$ 3934$ 4776$ 5333$ 6000$ 6364$ 6809$ 7059$ 7407$1860$
3265$

4444$ 5333$ 5970$ 6667$ 7368$ 7901$ 8372$ 8511$

0$

10000$

20000$

30000$

40000$

50000$

60000$

10$ 20$ 30$ 40$ 50$ 60$ 70$ 80$ 90$ 100$

Th
ro
ug
hp

ut
)in
)b
ps
)

XBee)payload)in)bytes)

Sender,)receiver))&)relay)throughput))
WaspMote)&)Arduino,)125000bps)

measured$xbee$max$sending$throughput$125000bps$

Rcv$throughput,$Arduino$

Rcv$throughput,$WaspMote$

Rly$throughput,$Arduino$

Rly$throughput,$WaspMote$

Fig. 15. Maximum sending throughput, receiver throughput and relay
throughput on WaspMote and Arduino

On more elaborated OS and processors, it is possible to have
a multi-threaded behavior to processed the received packet
earlier but in this case contention on serial or data buses need
to be taken into account. In all cases, we clearly see that in the
best case the next packet will not be sent before the return of
the last send. We can see that multi-hop transmission on this
type of platform adds a considerable overhead that put strong
constraints on data-intensive sending applications. Figure 15
shows the measured relay throughput for both WaspMote and
Arduino. We also plot the sending throughput (WaspMote and
Arduino have same level of performance) and the receiver
throughput previously shown in Figure 10 for comparison
purposes.

On the TelosB and the MicaZ we also measured the time
needed to receive a packet from the time the frame delimiter
was received by the radio and to the time when relay has been

performed (when the packet is notified to be sent). For each
packet size, we receive and relay 20 packets, then the packet
size increases by 5 bytes, starting with an initial size of 10
bytes. The relay time for each packet is then shown in Figure
16.

0"

10"

20"

30"

40"

50"

0" 20" 40" 60" 80" 100" 120" 140" 160" 180" 200" 220" 240" 260" 280" 300" 320" 340" 360" 380"

Ti
m
e%
in
%m

s%

Packet%number,%size%starts%at%10%bytes%and%increases%every%20%pkts%by%5%bytes%

Time%to%forward%(read+send)%
AdvanAcSys%TelosB%and%MicaZ%

Time"to"forward,"MicaZ" Time"to"forward,"TelosB"

Linéaire"(Time"to"forward,"TelosB)" Linéaire"(Time"to"forward,"MicaZ)"

Fig. 16. Measured time to relay data on TelosB and MicaZ

Figure 17 compares the theoretical relay time computed by
adding tread and tsend to the measured relay time obtained
by averaging the 20 values for each packet size, for both the
TelosB and the MicaZ. We also show tread for comparison
purposes.

15,7% 16,1%
17,5% 17,8% 18,2%

19,6% 19,9% 20,3%
21,7% 22,0% 22,4%

23,8% 24,1%
25,5% 25,9% 26,2%

27,6% 28,0% 28,3%

16,2%
17,9% 17,4%

18,7%
20,5% 20,0% 20,7% 20,6%

21,9% 22,5% 22,7%
24,3% 25,0% 24,8%

25,5% 26,3%
27,9% 27,8% 28,1%

2% 2% 3% 3% 3% 4% 4% 4% 5% 5% 5% 6% 6% 7% 7% 7% 8% 8% 8%

1% 1% 1% 1% 2% 2% 2% 2% 3% 3% 3% 3% 3% 4% 4% 4% 4% 4% 5%

7,0% 7,3% 7,5% 7,8%
9,1% 9,3% 9,6% 9,9%

11,1% 11,4% 11,6% 11,9% 12,2%
13,4% 13,7% 13,9% 14,2% 14,5%

15,7%

6,7% 6,7% 7,5% 7,7%
9,7%

8,5% 9,0% 9,8%
11,0%

12,2% 11,5% 11,0% 11,4%
12,4% 13,3% 13,2%

13,5% 13,7%
15,7%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Ti
m

e%
in

%m
s%

Payload%in%bytes%

Packet%read%3me%&%packet%relay%3me%
Advan3cSys%TelosB%and%MicaZ%

Packet%relay%6me%(th),%TelosB% Packet%relay%6me%(measured),%TelosB%

Packet%relay%6me%(th),%MicaZ% Packet%relay%6me%(measured),%MicaZ%

Packet%read%6me,%TelosB% Packet%read%6me,%MicaZ%

Fig. 17. Measured time to read and relay data on TelosB and MicaZ

!!!"#$
!%!&'$

#(&)*$
#"'##$

#)+&+$
''+(%$

'*!()$
+(%()$

+')#+$
+*(%*$

"(("#$
"#&)($

""")#$
"&!%&$

%(%#"$%#)*'$%"#!*$%*'%%$%)+#+$

($

!(((($

#(((($

'(((($

+(((($

"(((($

%(((($

*(((($

&(((($

!($!"$ #($ #"$ '($ '"$ +($ +"$ "($ ""$ %($%"$*($ *"$ &($ &"$)($)"$!(($

!"
#$

%
&

"'%
()

*+
),

'-)

./01$/2)*+),0(3-)

43+23#5)#363*73#)8)#31/0)("#$%&"'%()
927/+:640-)!31$-;)/+2)<*6/=)

,-./-0$12034526417$89:;<$ =:>$12034526417$89:;<$

=:>12034526417?-@3,A$ =-@;B1203452641CD-;,40-/E7$89:;<$

,-./-0$12034526417$?-@3,A$ =-@;B1203452641CD-;,40-/E7$?-@3,F$

Fig. 18. Maximum sending throughput, receiver throughput and relay
throughput on TelosB and MicaZ

Finally, Figure 18 shows the various throughput for the
TelosB and MicaZ: sending, receiver and relay throughput.
For the TelosB, as expected, the relay throughput is limited
by the sending throughput and we can see that both curves
are very close. On the MicaZ, the relay throughput stay close
to the receiver throughput for packet size smaller than 45
bytes. In all our experiments, the MicaZ motes appeared to
be the most performant mote for sending, receiving, and thus
relaying, operations.

IV. CONCLUSIONS

We presented experimentations with various sensor boards,
radio modules and software API to highlight the main sources
of delays assuming no flow control nor congestion control.
The motivation of our work is to determine the best case
performance level that could be expected when considering
IEEE 802.15.4 multi-hop connectivity for data-intensive ap-
plications such as those involving multimedia sensor nodes
for image and acoustic surveillance systems. We showed that
there are incompressible delays due to hardware constraints
and software API that limit (i) the time between 2 successive
packet send and (ii) the receiver throughput. We found that
typical sending throughput is about 50kbps for the WaspMote
and Arduino motes, and about 32kbps and 70kbps for TelosB
and Micaz motes respectively. Even if WaspMote and Arduino
motes can send data faster than a TelosB, both are much
more limited for data reception. TelosB and MicaZ have
reception throughput of about 67kbps while WaspMote and
Arduino merely reach 16kbps and 23kbps respectively. In all
our experiments, the MicaZ motes appeared to be the most
performant mote for sending, receiving, and thus relaying,
operations.

Our contributions can also be used for building more realis-
tic simulation models by taking into account the real commu-
nication overheads and not only the radio transmission time.
Also, by identifying the limitations and the bottleneck, more
suitable control mechanisms could be studied and proposed.
For instance, while flow control and congestion control are of
prime importance we believe that traditional approaches based
on buffer management or rate control are not efficient because
they will add to much latency that is not compatible with data-
intensive surveillance applications. Our further works, based
on the results presented in this paper, will rather propose to
have scheduling mechanisms to explicitly prevent nodes from
sending flows of packets at the same time in the same area.

ACKNOWLEDGMENT

This work was partially supported by the Aquitaine-Aragon
OMNIDATA project.

REFERENCES

[1] V. Berisha, H. Kwon, and A. Spanias, “Real-time acoustic monitoring
using wireless sensor motes,” in International Symposium on Circuits
and Systems (ISCAS 2006), 2006.

[2] R. Mangharam, A. Rowe, R. Rajkumar, and R. Suzuki, “Voice over
sensor networks,” in Proceedings of the 27th IEEE Real-Time Systems
Symposium (RTSS 2006), 2006.

[3] S. Paniga, L. Borsani, A. Redondi, M. Tagliasacchi, and M. Cesana,
“Experimental evaluation of a video streaming system for wireless
multimedia sensor networks,” in Proceedings of the 10th IEEE/IFIP
Med-Hoc-Net, 2011.

[4] P. Chen et al., “A low-bandwidth camera sensor platform with applica-
tions in smart camera networks,” ACM Trans. Sen. Netw., vol. 9, no. 2,
pp. 21:1–21:23, Apr. 2013.

[5] T. F. Abdelzaher, S. Prabh, and R. Kiran, “On real-time capacity limits
of multihop wireless sensor networks,” in Proceedings of the 25th IEEE
Real-Time Systems Symposium (RTSS 2004), 2004.

[6] D. Brunelli, M. Maggiorotti, L. Benini, and F. L. Bellifemine, “Analysis
of audio streaming capability of zigbee networks,” in Proceedings of
EWSN 2008, 2008.

[7] Jennic, “Application note: Jn-an-1035. calculating 802.15.4 data rates.
http://www.jennic.com/files/support files/jn-an-1035 calculating 802-
15-4 data rates-1v0.pdf,” accessed 4/12/2013.

[8] Digi, “Sending data through an 802.15.4 network latency tim-
ing. http://www.digi.com/support/kbase/kbaseresultdetl?id=3065,” ac-
cessed 8/2/2013.

[9] B. Tavli, K. Bicakci, R. Zilan, and J. M. Barcelo-Ordinas, “A survey
of visual sensor network platforms,” Multimedia Tools Appl., vol. 60,
no. 3, pp. 689–726, Oct. 2012.

[10] Libelium, “www.libelium.com/,” accessed 4/12/2013.
[11] ——, “www.libelium.com/top 50 iot sensor applications ranking/,”

accessed 4/12/2013.
[12] SmartSantander, “http://www.smartsantander.eu,” accessed 4/12/2013.
[13] Arduino, “http://arduino.cc/en/main/arduinoboardmega2560,” accessed

4/12/2013.
[14] AdvanticSys, “http://www.advanticsys.com/,” accessed 4/12/2013.
[15] Digi, “http://www.digi.com/products/wireless-wired-embedded-

solutions/zigbee-rf-modules/,” accessed 4/12/2013.
[16] A. Rapp, “http://code.google.com/p/xbee-arduino/,” accessed 4/12/2013.
[17] CrossBow, “http://bullseye.xbow.com:81/products/product pdf files/

wireless pdf/telosb datasheet.pdf,” accessed 4/12/2013.
[18] ——, “http://bullseye.xbow.com:81/products/product pdf files/ wire-

less pdf/micaz datasheet.pdf,” accessed 4/12/2013.
[19] T. Instrument, “http://www.ti.com/lit/gpn/cc2420,” accessed 4/12/2013.
[20] TinyOS, “http://www.tinyos.net/,” accessed 4/12/2013.
[21] J. Foster, “Xbee cookbook issue 1.4 for series 1 (freescale) with

802.15.4 firmware, www.jsjf.demon.co.uk/xbee/xbee.pdf,” April 26th,
2011. Accessed 4/12/2013.

