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Abstract

A Wireless Video Sensor Network (WVSN) consists of a

set of sensor nodes equipped with miniaturized video cam-

eras. Unlike omni-directional sensors, the sensing region

of a video node is limited to the field of view of its camera.

Power conservation and coverage is an important issue in

such wireless video networks, especially in the context of

surveillance applications which is the focus of the article.

In this paper, we address the area coverage problem

of scheduling the activity of randomly deployed nodes

to extend the network lifetime. We present a distributed

algorithm for area coverage (no known targets). Moreover,

we show that our approach reduces inherent ambiguities

when it is necessary. Simulation results are also presented

to verify the performance of the proposed approach.

I. Introduction

A Wireless Video Sensor Networks (WVSN) consists of

a set of sensors nodes equipped with miniaturized video

cameras. This type of networks covers a very large field of

applications. In this paper, we are interested more partic-

ularly on WVSN for surveillance applications. Traditional

vision systems for surveillance applications are built essen-

tially from distributed high resolution video cameras and

powerful processing units which communicate in general

with central servers via a high bandwidth network. The

target application of these systems is mainly infrastructure-

oriented surveillance applications where deployment is

performed manually on place of particular interest which

are well-identified: parking lots, building entrances, hos-

pitals, airports,. . . Using autonomous and small wireless

video nodes can add a much higher level of flexibility,

therefore extending the range of surveillance applications

that could be considered and, more interestingly, can

support dynamic deployment scenario even in so-called

object and obstacle-rich environments or hard-to-access

areas. These are the main advantages of using wireless

video sensor nodes which can in addition be thrown in

mass to constitute a large scale surveillance infrastructure.

In these scenarios, hundreds or thousands of video nodes of

low capacity (resolution, processing and storage) of a same

or similar type can be deployed in an area of interest. These

nodes would use collaboration mechanisms to ensure a

surveillance task according to a given application and to

transmit, via an ad-hoc network (mostly wireless), useful

video data to one or more base stations. Desired features of

such a surveillance infrastructures are high reliability and

availability, largest coverage, disambiguation capabilities

to name a few [1].

Central to the WSN research domain is the organization

of sensor nodes to ensure correct coverage. The problem

of coverage in many-robot system or WSN was largely

studied and very interesting results were published. Most

of the recent existing works on the connected coverage

problem in sensor networks [2], [3], [4], [5] typically

assume omnidirectional sensors with disk-like sensing

coverage. To preserve coverage due to dynamical network

topology changes, redundancy is introduced, so-called k-

coverage [6], to ensure fault-tolerance and to increase

network lifetime. Thus, two scalar nodes are likely to

be redundant if they are close to each other. However,

in wireless video sensor networks, video nodes possess

”limited” sensing coverage area (sector coverage) due to

the camera constraints and its Field of View (FoV). A

number of studies have considered the directional sensor

category in which video sensors fall into [7], [8], [9], [10].

In this paper, we propose a distributed approach dedicated

to save energy and reduce ambiguities in WVSN. The



main contributions are: (a) a video sensing model that

allows us to simply define the redundancy of a FoV based

on geometric computations. Based on this method every

node can compute the set of nodes that cover its FoV.

(b) a new distributed algorithm to manage the activity of

randomly deployed video nodes while ensuring the whole

area coverage. The novelty of this algorithm comes from

the fact that it allows nodes to construct non-disjoint cover

sets. (c) a disambiguation feature based on the availability

of multiple cover sets that allows the WVSN infrastructure

to take into account the surveillance application criticality.

The rest of this paper is organized as follows: in the next

section we present a review of some previous related work.

Section III presents a video sensing model. Section IV

discusses the details of the proposed coverage scheme

for video surveillance. A simple FoV coverage model

is introduced for the purpose of building multiple cover

sets. Then we describe the scheduling algorithm and the

ambiguity reduction method based on the availability of

cover sets. In section V, we describe simulation and results

of simulation experiments. Finally, we end the paper by

conclusions.

II. The Coverage and Scheduling problem

The coverage problem for wireless video sensor net-

works can be categorized as:

• Known-Targets Coverage Problem, which seeks to

determine a subset of connected video nodes that

covers a given set of target-locations scattered in a

2D plane.

• Region-Coverage Problem, which seeks to find a

subset of connected video nodes that ensures the

coverage of the entire region of deployment in a 2D

plane.

Most of the previous works have considered the known-

targets coverage problem [10], [11], [12], [13]. The ob-

jective is to ensure at all-time the coverage of some

targets with known locations which are deployed in a two-

dimensional plane.

Concerning the area coverage problem, the most ex-

isting works focus on finding an efficient deployment

pattern so that the average overlapping area of each sensor

is bounded. The authors in [7] analyze new deployment

strategies for satisfying given coverage probability re-

quirements with directional sensing models. A model of

directed communications is introduced to ensure and repair

the network connectivity. Based on a rotatable directional

sensing model, the authors in [8] present a method to

deterministically estimate the amount of directional nodes

for a given coverage rate. A sensing connected sub-graph

accompanied with a convex hull method is introduced to

model a directional sensor network into several parts in

a distributed manner. With adjustable sensing directions,

the coverage algorithm tries to minimize the overlapping

sensing area of directional sensors only with local topology

information.

Different from the above works, our paper mainly

focuses on the area coverage problem (no known targets

a priori) and more precisely on scheduling for randomly

deployed video sensor nodes. The objective is to schedule

video nodes in a way to guarantee the coverage of the

initial covered area and the network connectivity. A high

number of video nodes are randomly scattered in a deter-

mined region. We assume the sensing region (FoV of the

camera) of each node to be a sector of the sensing disk

centered at the sensor. However, the algorithm proposed

in this paper does not assume rotation capabilities to put

restrictions on the overlaps between nodes. Our approach

is based on a distributed algorithm that helps each node

to organize its neighbors into non-disjoint subsets, each of

which being a cover set that overlaps its FoV. Then, based

on neighbors activity, a node decides to be active or in

sleep mode. In a next step, our algorithm re-organizes the

active nodes in a manner to reduce images ambiguities and

to improve the detection capabilities.

III. Video Sensing Model

A video sensor node v is represented by the FoV of

its camera. In our approach, we consider a 2-D model

of a video sensor node where the FoV is defined as a

sector denoted by a 4-tuple v(P,Rs,
−→
V , α). Here P is the

position of v, Rs is its sensing range,
−→
V is the vector

representing the line of sight of the camera’s FoV which

determines the sensing direction, and α is the offset angle

of the FoV on both sides of
−→
V . Figure 1a illustrates the

FoV of a video sensor node in our model.
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Fig. 1. Video sensing and coverage model

A point P1 is said to be in the FoV of a video sensor

v if and only if the two following conditions are satisfied:

1) d(P, P1) ≤ Rs, where d(P, P1) is the Euclidean

distance between P and P1.

2) The angle between
−−→
PP1 and

−→
V must be within

[−α,+α].



In other words, this two conditions are met if:

‖
−−→
PP1‖ ≤ Rs and

−−→
PP1.

−→
V ≥ ‖

−−→
PP1‖cosα. (1)

In the reminder of this paper, we consider that all video

nodes have the same characteristics: same sensing range

Rs and same offset angle α.

IV. Coverage and nodes scheduling

As we mentioned before, our approach is completely

distributed and every video node computes its local solu-

tion for coverage. Each node v covers a sector area thanks

to its FoV, which we call v’s FoV area. Then, its local

coverage objective is to ensure, at all time, the coverage

of this area either by itself (if it is active) or by a subset

of its neighbors. If every video node ensure that its local

coverage objective is satisfied then the global coverage is

also satisfied.

A. Area coverage and sensors cover set

In our approach we consider that video nodes are

randomly deployed in a given area (called area of interest).

Finding the optimal pattern to cover a 2D plane with video

nodes (with sector sensing area) still an open problem. It

usually needs a large number of video nodes ensuring com-

plete coverage. Hence, this can lead to redundant nodes

(nodes that monitor the same region) and overlaps among

the FoV areas. In this section, we present a simple FoV

coverage model. It allows every video node v to compute

non-disjoint subsets of nodes, each subset covering its FoV

area.

Definition 1: We define a cover Coi(v) of a video

node v as a subset of video nodes such that:⋃
v′∈Coi(v)(v

′’s FoV area) covers v’s FoV area.

Definition 2: Co(v) is defined as the set of all the

covers of node v.

An example of FoV coverage is shown in Figure 1b,

where nodes v1, v2 and v3 cover the FoV area of node

v, represented by abc. In the case of an omnidirectional

sensing, a node can simply determine what parts of the

coverage disc is covered by its neighbors [14]. For the FoV

coverage the task is more complex. Therefore, to compute

Co(v), we propose a simple model based on four distinc-

tive points: a, b, c and g (the center of gravity of (abc)) to

represent the FoV of v as shown in Figure 1b. Then, we

say that v’s FoV is covered by a set Coi(v) ∈ Co(v) if

the two following conditions are satisfied1:

1this assumption allows us to construct the set of covers in order to
apply the scheduling algorithm

1) ∀ v′ ∈ Coi(v), v′ covers the point g and at least one

of the points {a, b, c}
2) a, b, c and g are covered by the elements of Coi(v).

In other terms, to compute Co(v), a node v finds the

following sets, where N(v) represents the set of neighbors

of node v:

• A = {v′ ∈ N(v) : v′ covers point a of the FoV}
• B = {v′ ∈ N(v) : v′ covers point b of the FoV}
• C = {v′ ∈ N(v) : v′ covers point c of the FoV}
• G = {v′ ∈ N(v) : v′ covers point g of the FoV}
• AG = {A ∩ G}, BG = {B ∩ G}, CG = {C ∩ G}

Then, Co(v) is set to the Cartesian product of sets AG,

BG and CG ({AG × BG × CG}). Note that, the set-

intersection function generates n + m recursive calls in

the worst case. Therefore, the intersection of 2 sets can

be done with complexity of O(n + m), where m and n
are the cardinals of the two sets respectively. As the size

of sets A,B,C and G is limited, a video node can easily

computes the intersections.

In the example illustrated by Figure 1c, v’s FoV is

represented by (abcg). To find the set of covers, node

v finds the sets: AG = {v2, v3}, BG = {v1, v4} and

CG = {v1, v5}. Then, following the above method, the

set of possible covers for v is: Co(v) = {{v}, {v2, v1},

{v3, v1}, {v2, v4, v5}, {v3, v4, v5}}.

This model allows a node v to construct Co(v) of

its FoV area. Hence, in some cases (e.g. when there are

occlusions), it can occur that a cover does not ensure

the complete FoV coverage. For example, it can happen

that a cover satisfies the above conditions but it does not

ensure the coverage of the entire FoV. In this case, one

could consider more points in the previous model such

as the midpoints of segments [ab], [ac] and [bc]. On the

other hand, doing so will reduce the number of covers

and consequently increase the number of active nodes.

Once again, the main contribution here mainly relies on

the dynamic scheduling of cover sets and the coverage

model we proposed in this paper is a simple way to obtain

such cover sets.

B. Scheduling randomly deployed nodes
with cover-sets

We consider that all video nodes have the same commu-

nication range modeled by a disc of radius Rc. Two video

nodes are called neighbors if there exist an edge between

them in graph G.

Our framework for video surveillance operates in three

phases. The first is a setup phase where each node v
constructs its set of covers Co(v). The second phase is the

scheduling phase where each node decides to be active or

in sleep mode. Our objective is to minimize the number of

active nodes while ensuring the whole coverage area. The



third phase is devoted to reduce the inherent ambiguities

in case of intrusion detection.

1) Construction of Co(v): At this step, each video

node v constructs all possible covers (Co(v)) that satisfy

its local coverage objective (e.g. covering its FoV area).

These sets are constructed by considering all the commu-

nication graph neighbors. Each node diffuses its position

P and its direction
−→
V to its neighbors and receives their

informations. According to equation (1) each node con-

structs the sets A,B and C as explained in section IV-A.

Then, it computes Coi(v) that overlap its FoV and ensure

its coverage (cf section IV-A).

In the literature, most of existing omni-directional

sensing coverage works try to construct disjoint sets of

active nodes [2], [3], [4], [5]. In our case, we have the

possibility that two or more covers have some video nodes

in common. This dependency must be taken into account

in the scheduling phase. Hence, selecting one cover also

reduces the life time of the sensor it has in common

with another cover. In this case we can consider the level

of energy as a criteria while choosing the active cover.

The energy level of the lowest node in Coi(v) determines

Coi(v)’s energy level.

2) Video node scheduling: The activity of video sensor

nodes operates in rounds. For each round, every node

decides to be active or not based on the activity messages

received from its neighbors. Every node orders its sets of

covers according to their cardinality, and gives priority to

the covers with minimum cardinality. If two sets or more

in Co have same cardinality, priority is then given to the

cover with the highest level of energy. Note that, another

criteria can be defined.

A video node v receives the activity decisions of its

neighbors. Then, it tests if the active nodes belongs to a

cover Coi(v). If yes, it goes in sleep mode after sending

its decision to its neighbors. In the case where no Coi(v)
is satisfied, node v decides to remain in active mode and

diffuses its decision.

A video node v orders the set Co(v) according to their

priorities. Then, it starts with the first cover Co1(v) ∈
Co(v) (which has the lowest cardinality) and tests if it is

satisfied. A cover is comprised by a set of video nodes and

if one of these switches off, this cover cannot be satisfied.

The node’s scheduling process is summarized in Al-

gorithm 1. Node v receives an activity message from its

neighbor v′, if v′ ∈ Co1(v) decided to be inactive, then

v goes to the next cover and so on until it finds an active

cover or decides to be active itself. If node v′ ∈ Co1(v) is

active then node v check whether all nodes of Co1(v) are

in active mode in order to go in sleep mode. This process

is repeated for each cover and at every round.

3) Reducing ambiguities: Some applications such as

surveillance and security applications, emergency detec-

Algorithm 1 Scheduling of node v

1: v is active
2: v orders its covers Coi(v) ∈ Co(v) i = 1, 2, ...|Co(v)|
3: i← 1
4: while i ≤ |Co(v)| do
5: v begins with the cover with highest priority Coi(v)
6: if neighbor v′ decides to go in sleep mode then
7: if v′ /∈ Coi(v) then
8: continue with Coi(v)
9: else

10: v chooses the next best priority cover Coi+1(v)
11: i← i + 1
12: if v′ decides to remain active then
13: if v′ ∈ Coi(v) then
14: continue with Coi(v)
15: if ∀v′, v′ ∈ Coi(v), v′ is active then
16: v becomes inactive and sends its decision to its neigh-

bors
17: if no Coi(v) is found then
18: v remains active and sends its decision to its neighbors

tion in clinical environments and intrusion detection and

tracking need more comprehensive interpretation of events

or gestures. Access to multiple sources of visual data often

allows for reducing ambiguities to allow for more accurate

interpretation. Multiview has several advantages. First,

the multi-view cameras can help circumvent occlusions.

Second, even without occlusions, the information obtained

from a single camera may be ambiguous for decision

making, whereas a combination of information from mul-

tiple views may convey a higher confidence interpretation.

Therefore, in our approach we allow collaboration among

multiple cameras to reduce ambiguities, by adapting the

activity nodes scheduling in a way to obtain more infor-

mation about a target when it is necessary. In other words,

to obtain multi-view of a target coming from more than

one video node. Our approach does not address the way

for processing data in a collaborative manner. For this task,

one can find multiple works in the literature for centralized

or distributed approaches [15].

The problem studied here is known in the literature as

the k-coverage problem [6]. Redundant sensing capabilities

are usually required in sensor network applications for

robustness, fault tolerance, or increased accuracy features.

At the same time high sensor redundancy offers the pos-

sibility of increasing network lifetime by scheduling sleep

intervals for some sensors and still providing continuous

service with help of the remaining active sensors. In

our approach, we use the k-coverage feature provided by

the availability of multiple cover sets in order to reduce

ambiguities by allowing video nodes to see the critical

object from different perspectives. When a node detects a

critical event (e.g. an intrusion) it sends an urgent message

to its neighbors to end the current round and begin a new

one with a new scheduling scheme. The new scheduling



must ensure that the target is covered by at least two or

more video nodes. Therefore, from Co(v), video node v
selects the cover that ensure the target’s multi-coverage to

be active. Then, it goes to sleep mode after sending its

decision to its neighbors which in their turn schedule their

activity, and a new round starts.

V. Experimental Results

To evaluate our approach we conducted a series of

simulations based on the discrete event simulator OM-

Net++ (http://www.omnetpp.org/). The results were ob-

tained from iterations with various densities on a 100 ∗
100m2 area. Nodes have equal communication ranges of

30m, an offset angle α of π/6, a battery of 100 units,

random position P and random direction
−→
V . A simulation

starts by a neighborhood discovery. Each node gathers

positions and directions of its neighbors and finds the sets

AG, BG and CG. Then, round by round each node decides

to be active or not. At the end of a round, active nodes

decrease their batteries by one unit. Simulation ends as

soon as the subset of nodes with power left is disconnected

(where all nodes don’t have anymore neighbors). We

run each simulation 15 times to reduce the impact of

randomness.

A. Proportion of Active Nodes

In those series of experiments, we varied the deployed

nodes density from 50 to 200 nodes in a 100m ∗ 100m
area. We noted at each round the percentage of active

nodes, which is the average number of nodes involved in

the active set over initial number of deployed sensors. This

metric reflects, to a certain extent, the effectiveness of the

proposed scheduling approach. Figures 2 and 3 show the

evolution of this ratio, round by round, for each density

and for RS = 15m and 25m respectively.

Before the first drop at round 100, which corresponds to

the extinction of a subset of nodes (the nodes that initially

didn’t have redundant covers set), the number of active

nodes varies from less than 67%, for density 50, to 36% for

density 200. We notice that, increasing the sensing range

decreases the percentage of active nodes at each round and

increases the network lifetime.

B. Percentage of Area Coverage

The main objective of our approach is to maintain

a full area coverage at each round. We define the full

coverage area as the region covered initially by the whole

network (i.e when all the deployed nodes are active).

This area represents the union of all FoV areas of the

deployed nodes. Figures 4 and 5 show the percentage of

area coverage round by round for different nodes density

and for RS = 15m and 25m respectively. This percentage

is the ratio between the area covered by the set of active

nodes over the initial coverage area.

As we noticed, the initial sensing coverage is preserved

for 100 rounds which is equal to a node’s lifetime. At

round 100, as expected, a set of nodes run out of energy.

We can observe that in all the cases our algorithm guaran-

tees a sensing coverage of at least 67% of the deployment

area.

C. Disambiguation feature

To test the disambiguation feature, we consider a rect-

angular object which traverses the area of interest from left

to right. The objective of this experiment is to determine

the object trajectory and the identification time. In a

surveillance application, faster the identification is, faster

the interaction with the user is.

The rectangle as shown in Figure 6 is composed of 8
points, and is said to be fully identified when all 8 points

are identified. In figure 6, we observe that node v1 can

detect three points {b, d, h}, while node v2 detects only

{a}(considering that point a hides b and c) and v3 sees {e,

f} (g is not well detected). In our simulation, v2 and v3

consider the object as critical, so the first node that detects

the object enforces its neighbors to become active in order

to have multiple views of the object.

The rectangular object (4 × 2m2) traverses a 100m ∗
100m area where we have randomly dispersed 150 video

nodes. Then, we picked up the time taken by the network

to identify the object, while varying its velocity. Figure 7

shows the variation of the identification time over the

velocity of the object. Without the ambiguity reduction

scheduling the identification time greatly depends on the

velocity of the object while it is almost constant with the

ambiguity reduction scheduling.

VI. Conclusion

Scheduling algorithms to save energy and prolong the

network lifetime are of prime importance for sensor net-

works. However, algorithms designed for omni-directional

sensor networks may not be suitable for video sensor

networks. In this paper, we study the problem of coverage

by video sensors in randomly deployed WVSN. We first

present a model to find subsets of nodes that cover the

FoV area of a given node. Then, we provide a distributed

algorithm that allows nodes to decide to be active or in

sleep mode, in order to maximize the network lifetime.

Furthermore, to eliminate ambiguities and improve the

quality of intrusion detection, our algorithm enforces a new



 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e
 o

f 
a
c
ti
v
e
 n

o
d
e
s

round

Density 50
Density 100
Density 150
Density 200

Fig. 2. Rs = 15

 10

 20

 30

 40

 50

 60

 70

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e
 o

f 
a
c
ti
v
e
 n

o
d
e
s

round

Density 50
Density 100
Density 150
Density 200

Fig. 3. Rs = 25

 50

 60

 70

 80

 90

 100

 110

 120

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e
 o

f 
c
o
v
e
ra

g
e

round

Density 50
Density 100
Density 150
Density 200

Fig. 4. Rs = 15

 50

 60

 70

 80

 90

 100

 110

 120

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e
 o

f 
c
o
v
e
ra

g
e

round

Density 50
Density 100
Density 150
Density 200

Fig. 5. Rs = 25

v1

v2

a

b

c

d

f

e

g
h

v3

Fig. 6. Rectangular object in

the sensors field

 10

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5  6  7  8  9  10  11

ti
m

e
 (

s
)

velocity (m/s)

Reducing ambiguities
Only with active set

Fig. 7. Time of identification

scheduling. Finally, we evaluate the performance of the

proposed approach through series of simulations. We show

that our approach saves energy and improves the network

lifetime while ensuring the area coverage. For instance, in

high density networks our algorithm increases the network

lifetime of more than 2.5 times. On the other hand, we

showed that our proposed scheduling algorithm decreases

the time to identify an object.
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