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Motivation 
¡  72% of global oil 

demand 
correspond to 
transportation. 

¡  Economic, 
security, and 
environmental 
pressures  to 
electrify 
transportation 



Impact on the grid 
¡ A single EV plugged into a fast 

charger can double a home’s 
peak electricity demand. 

¡ Most serious  concern utilities 
have is controlling when EV load 
is applied to their grid. 
¡  Most consumers will charge   

when they get home from work 
¡  Just one or two active (L2) 

charger could overload a 
transformer, creating reliability 
problems in 40% of US distribution 
transformers. 

 



Utility Challenges 
¡  Utilities can mitigate the impact of charging stations on the grid 
¡  Distributing charging requirements  over time, utilities can maximize 

the utilization of their infrastructure 

¡  Leverage EVSE communication investment for other energy initiatives. 

 



Transition to a Smart Grid 

¡ Smart meters 
¡ Bi-directional, realtime communication between utility & 

consumer 
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Hierarchical Division  



Data management and 
computation requirements 
•  Handling  concurrent heterogeneous data streams: Different rate, 

frequency and sample size.  For example: vehicle and charging point 
data, weather and traffic agencies, etc. 

•  Different data stream relevance, with behaviour of varying complexity, 
different computational complexity. 

•  Different Quality of Service (QoS) constraints to limit data loss and 
latency. 

•  Sharing computational resources in a elastic way in each node 
  



QoS on Clouds:  
General Picture Regulate the 

number of 
Processing 
Unints (PU) 

Sensor Net 

Camera Nets 



System Architecture 
b 
R 

Data injection rate 

SLA 

•  3 key components / node: Token Bucket, Processing Unit & output streaming 



Token Bucket (shaping traffic) 

•  A policer typically drops excess 
traffic.   

 
 
•  A shaper typically delays excess 

traffic using a buffer to hold data 
and shape the flow when the data 
rate of the source is higher than 
expected. 

Traffic shaping component allows  to control the traffic going 
out this component in order to match its flow to the processing 
speed of available resources and to ensure that the traffic 
conforms to policies contracted for it 



Token Bucket (shaping traffic) 

Two key parameters of interest:  
•  R: Also called the committed information rate (CIR), it specifies how much 

data can be sent or forwarded per unit time on average 
•  B: it specifies for each burst how much data can be sent within a given time 

without creating scheduling concerns 
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Token Bucket (shaping traffic) 



Each token bucket  
provides us tunable 
parameters: R,b  
 
Controller: monitors & 
modifies behaviour 

Input  
buffer 

Token 
Bucket 

PU Buffer 



 Control for Elastic SLA definitions 

A Scalable, Distributed Stream Processing System for Electric 
Vehicle Demand Forecasting< 
Controller: monitors & modifies behaviour 

•  Token bucket behaviour is regulated by b, R parameters 
•  SLAs can specify more flexible behaviours allowing the controller to 

take different actions when a threshold is reached 
•  Load-shedding: drop data stored by the token bucket buffer 
•  Modify the mean injection rate  R 



Business rules  



PETRI NET MODELS 

TOKEN BUCKET  
MANAGER TOKEN BUCKET  



Self adaptation with different 
performance constraints 



Load-shedding (dropping data) 



Processing rate change 



Conclusion & Future work 
A Scalable, Distributed Stream Processing System for Electric 
Vehicle Demand Forecasting< 
Conclusion 

•  EV vehicles  load forecast and  Identify Charging Schedules  for EVs  
requires  to control the data injection rate  

•  Token bucket parameters can provide a flexible injection of bursty 
data isolating each data stream. 

•  Business rules can adapt token Bucket parameters to control data 
stream priorities. 

A Scalable, Distributed Stream Processing System for Electric 
Vehicle Demand Forecasting< 
Future Work 

•  Develop efficient mechanisms  
•  Token bucket models that implement business strategies 

•  Validation in real scenarios: Smart grid, sensor network, Ev charging 
schedules 
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