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Abstract—Intrusion detection surveillance applications with
wireless video sensor networks are those applications which
require low energy consumption to increase network lifetime
while at the time require a high level of quality of service.
This paper show by simulation how a dynamic risk management
scheme based on Bezier curves that takes into account the
application’s criticality can provide fast event detection for
mission-critical surveillance applications while increasing at the
same the network lifetime. We will also present some preliminary
results on how to further increase network lifetime when some
video sensor nodes have mobility feature. The motivation behind
node’s mobility is that video applications are characterized by
their large amount of data so that a extra mobility cost can be
justified as the video duration increases.

Index Terms—Sensor networks, video surveillance, risk-based
scheduling, reinforcement.

I. I NTRODUCTION

This article focuses on Wireless Video Sensor Networks
(WVSN) mission-critical surveillance applications wheresen-
sors can be thrown in mass when needed for intrusion de-
tection or disaster relief applications. The first concern in
randomly deployed video sensors is that they will not land
upside-down with the embedded camera turned towards the
ground. This can actually be easily avoided for fixed nodes
by fitting the video sensor in a rocket-shaped case which
will always touch ground in the right way as illustrated by
figure 1(left) (the figure shows an iMote2 with an IMB400
multimedia board [1]). Figure 1(right) shows a simple video
surveillance application developed for the iMote2 with the
IMB400 multimedia board that continuously takes pictures and
displays both the current picture and the last picture.

The next thing to consider is that surveillance applications
have very specific needs due to their inherently critical nature
associated to security [2], [3], [4], [5], [6]. Early surveillance
applications involving WSN have been applied to critical
infrastructures such as production systems or oil/water pipeline
systems [7], [8]. There have also been some propositions
for intrusion detection applications but most of these early
studies focused on coverage and energy optimizations without
explicitly having the application’s criticality in the control
loop which is the main concern in our work. When adding

the criticality concerns, one must introduce accountability
aspects or more generally the so-called Quality of Service
requirements to take into account the application’s criticality
so that an appropriate level of service can be defined. For
instance, with video sensors, the higher the capture rate,
the better relevant events could be detected and identified.
However, even in the case of very mission-critical applications,
it is not realistic to consider that video nodes should always
capture at their maximum rate when in active mode.

Fig. 1. A proof-of-concept of a video sensor in a beach rockettoy (left). A
simple video surveillance application with the iMote2 and IMB400 multimedia
board (right).

Provided that the sensor node density is sufficiently high,
randomly deployed sensor nodes can be redundant (nodes
that monitor the same region) leading to overlaps among
the monitored areas. Therefore, a common approach is to
define a subset of the deployed nodes to be active while
the other nodes can go to sleep. One obvious way of saving
energy is to say that nodes that can be put in sleep mode are
typically those whose sensing area are covered by others. The
notion of cover set has therefore been introduced to define
the redundancy level of a sensor [9]. However, in mission-
critical applications where some sentry nodes are needed to
increase responsiveness, nodes that possess a high redundancy



Fig. 2. Evolution of the video network nodes

level could rather be more active than other nodes with less
redundancy level. In [10] the idea we developed is that when a
node has several covers, it can increase its frame capture rate
because if it runs out of energy it can be replaced by one of its
cover sets. Then, depending on the application’s criticality, the
frame capture rate of those nodes with large number of cover
sets can vary. It has been shown that this scheduling method
outperforms a statically assigned frame capture rate approach.

Based on the criticality model of [10], this article focuses
on the risk-based scheduling method for providing fast event
detection. One new contribution is to investigate whether dy-
namic risk management with the risk level changing during the
network lifetime can preserve network lifetime. Then we will
present some preliminary results on how to further increase
network lifetime when some video sensor nodes have mobility
feature (small robots for instance). The motivation behind
node’s mobility is that video applications are characterized
by their large amount of data so that a extra mobility cost
can be justified as the video duration increases. The mobility
optimization is mainly done at the initialization phase but
can also be done when major topology changes occur to
preserve connectivity and coverage. The main target in this
paper are intrusion detection systems but the methodology
can be extended to other surveillance applications such as
environmental. The paper is then organized as follows: Section
II presents the surveillance scenario and quickly reviews our
coverage model for building sensor’s cover sets. In section
III we briefly present the dynamic risk management model.
Section IV introduces the mobility possibilities. SectionV then
present the simulation results for both fast event detection and
increased network lifetime in case of mobility. We conclude
in section VI.

II. I NTRUSION DETECTION WITH VIDEO SENSOR NODES

A. Intrusion detection scenario

One way to see the scheduling problem in critical surveil-
lance applications is from the risk perspective: differentparts
of the area of interest may have different risk levels, noted

r0, according to the pattern of observed events such as the
number of detected intrusions. In [11], the authors introduce
so-called differentiated services by dynamically modifying the
time duration for a node to work during each round. As we
directly linked the application’s criticality to the framecapture
rate of a video sensor node, we want to impact on quality
(number of frames) rather than on whole coverage as in [11].
Moreover, figure 2 shows the surveillance scenario we want
to address in this paper where most of sensor nodes are in
a so-calledhibernate mode in the absence of intrusions: the
risk level should be close to 0 and the sensor nodes should
decrease their capture rate. However, it is also highly desirable
that some sensor nodes still keep a relatively high capture rate
to act as sentry nodes in the surveillance system (figure 2a).
These nodes will be able to quickly detect intrusions and to
alert, on intrusions, all active nodes so that they increasetheir
risk level r0 to a maximum valueR0, therefore moving to an
alerted mode (figure 2b).R0 can depend on the application’s
requirements in term of criticality, which in turn may depend
on the environment the sensor network is intended to work
in, and can be set in sensor nodes prior to deployment. In
this scenario, after some time, an alerted node which does not
detect more intrusions, should slowly go back tohibernate
mode again (figure 2c). In this figure, we can also see that
an alerted sensor node which does detect an intrusion (all
sensor nodes close to the intruder’s trajectory – dash line –
in figure 2c) should stay withr0 close to the maximum value.

B. Video sensor nodes and cover sets

The first step for defining coverage capabilities, is to define
the video sensing model. We consider a commonly used 2-
D model of a video sensor node where the FoV is defined
as a triangle (pbc) denoted by a 4-tuplev(P, d,

−→
V , α). Here

P is the position ofv, d is the distancepv (depth of view,
DoV),

−→
V is the vector representing the line of sight of the

camera’s FoV which determines the sensing direction, and 2α
is the angle of view (AoV). The left side of figure 3 illustrates
the FoV of a video sensor node in this model. The AoV is



60o and distancebc is the linear FoV. Some wireless sensor
platforms can therefore have a video camera board. This is
case for the iMote2 from Crossbow [1] where the IMB400
multimedia board’s camera has an AoV of about20o. Figure
1(right) also showed a picture taken with this board.

Fig. 3. Video sensing and coverage model

Random deployment of sensor leads to a high level of
redundancy. We define a cover setCoi(v) of a video nodev as
a subset of video nodes such that:

⋃

v′∈Coi(v)(v
′’s FoV area)

coversv’s FoV area.Co(v) is then the set of all the cover sets
of nodev. Determining whether a sensor’s FoV is completely
covered or not by a subset of neighbor sensors is a time
consuming task which is usually too resource-consuming for
autonomous sensors. The basic approach presented in [12]
is to use significant points of a sensor’s FoV to quickly
determine cover sets that may not completely cover sensor
v’s FoV but a high percentage of it. In the literature, most
of existing omni-directional sensing coverage works try to
construct disjoint sets of active nodes [13], [14], [15], [16].
In our case, we have the possibility that two or more cov-
ers have some video nodes in common. Hence, selecting
one cover also reduces the life time of the sensor it has
in common with another cover. In figure 3(right) we have
Co(v) = {{v}, {v1, v4, v6}, {v4, v5, v6}}. [17] showed that
this method has very good accuracy in terms of percentage
of coverage and extensions have been proposed to handle
heterogeneous AoV and very small AoV.

III. R ISK-BASED SCHEDULING OF RANDOMLY DEPLOYED

NODES WITH COVER SETS

A. Risk-based scheduling with Bezier curves

Once every sensor has broadcasted its positionP and its
line of sight

−→
V to its neighbors and have then constructed all

possible covers (Co(v)) that satisfy its local coverage objective
(e.g. covering its FoV area), the scheduling of nodes can begin.
The cover sets are sorted by increasing cardinality order. If
needed, sensors could also estimate the percentage of coverage
of each cover set by using a random sampling.

At startup, every node is active and waits to receive status
packets from its neighbors. When a video nodev receives the
status of a neighborvx it addsvx to the set of active neighbors
and tests whether there is one cover setCoi(v) in Co(v) that is
included in the set of active neighbors. Every node orders their
cover sets according to their cardinality, and gives priority to

the covers with minimum cardinality. If aCoi(v) is found,v
goes in sleep mode after sending its decision to its neighbors.
In the case where noCoi(v) is satisfied, nodev decides to
remain in active mode and diffuses its decision.

As said previously, the frame capture rate is an important
parameter that defines the surveillance quality. In [10], we
proposed to link a sensor’s frame capture rate to the size of its
cover set. In our approach we define two classes of application:
high and low risk applications. This risk level can oscillate
from a concave to a convex shape as illustrated in Figure 4
with the following interesting properties:

• Class 1 ”low risk” , does not need high frame capture
rate. This characteristic can be represented by a concave
curve (figure 4 box A), most projections ofx values are
gathered close to 0.

• Class 2 ”high risk” , needs high frame capture rate. This
characteristic can be represented by a convex curve (fig-
ure 4 box B), most projections ofx values are gathered
close to themax frame capture rate.

Fig. 4. The Behavior curve functions

We proposed in [10] to use a Bezier curve to model the 2
application classes. The advantage of using Bezier curves is
that with only three points we can easily define a ready-to-use
convex (high risk) or concave (low risk) curve:P0, P1, andP2.
P0(0, 0) is the origin point,P1(bx, by) is the behavior point
andP2(hx, hy) is the threshold point wherehx is the highest
cover cardinality andhy is the maximum frame capture rate
determined by the sensor node hardware capabilities.

As also illustrated in Figure 4, by moving the behavior
point P1 inside the rectangle defined byP0 and P2, we are
able to adjust the curvature of the Bezier curve, therefore
adjusting the risk levelr0 introduced in the introduction of this
paper. According to the position of pointP1 the Bezier curve
will morph between a convex and a concave form. Interested
readers can refer to [10] for more details on the modified
Bezier curves definitions. Table I shows the corresponding
capture rate for some relevant values ofr0. The cover set
cardinality |Co(v)| ∈ [1, 12] and the maximum frame capture
rate is set to 3fps.



r0 1 2 3 4 5 6 7 8 9 10 11 12

.1 .03 .08 .14 .22 .32 .45 .61 .81 1.1 1.4 1.9 3

.3 .11 .24 .38 .54 .72 .92 1.1 1.4 1.7 2.1 2.5 3

.6 .36 .69 1.0 1.3 1.5 1.8 2.0 2.2 2.4 2.6 2.8 3

.9 1.1 1.6 1.9 2.2 2.4 2.5 2.7 2.8 2.9 2.9 3 3

TABLE I
CAPTURE RATE IN FPS WHENP2 IS AT (12,3).

B. Dynamic risk-based scheduling

Given the model described above, it is quite easy to vary
the risk level during the network lifetime. The purpose is to
only set the surveillance network in an alerted mode (high
risk value) when needed, i.e. on intrusions. For instance, all
nodes could start with a risk levelr0 = 0.1 and when a sensor
node detects an intrusion, it would send an alert message to
its neighbors and would increase its own risk level tor0 =
0.9. Alerted nodes will then also increase their risk level to
r0 = 0.9. Alerted nodes will run at a high risk level for an
alerted period before going back tor0 = 0.1.

IV. I NTRODUCING SENSOR MOBILITY

When some areas of the field are not or become uncovered,
the mission of the entire network may be affected especially
when the uncovered area is security critical. Connectivity, for
its part, allows the different sensors to be able to reach each
other as well as the sink (central controller or a gateway). Lack
of connectivity could create unconnected sets in the network
leading to some sensors to be unable to reach the sink.

Due to connectivity and coverage issues, nodes have to be
placed carefully when deployed in the network field according
to the target application. Good coverage and strong connectiv-
ity can be achieved through careful planning of node densities
and fields of view so the network topology can be defined
before startup [18][19]. However, this is impossible to achieve
in randomly deployed networks. Moreover, a sensor network
is dynamic by nature since sensors stop working when they
exhaust their on-board energy supply. In a dynamic, hostile
or hard-to-access environment, there is a need to be able to
dynamically redeploy the network such that the application’s
requirements in terms of coverage and connectivity continue to
be met while saving energy. This is what we call On-demand
repositioning. In [20] for instance, sensor’s ability to move
is used to distribute them as evenly as possible in the region
so coverage is achieved within the shortest time duration and
with minimal overhead. A survey on node placement in WSN
can be found in [21].

In this paper, we explore the possibility of having locomo-
tion capabilities at some sensors so they are able to move [?].
The aim of this work is to save the overall communication
energy in a video session by allowing mobile nodes to move.
Even if mobility cost may be higher than communication,
moves can be justified by preserving coverage and connectivity
in the network. Moreover, moves are generally performed only
once, at the beginning of a session, so video applications
characterized by their large amount of data can have a small
mobility cost as the video duration increases. Our approachis
based on linear programming where we extended the work

of [22] so both coverage and connectivity are considered.
Additionally, our formulation fits the case of heterogeneous
networks where video and scalar nodes coexist. Nodes may
have different types of energy supplies (traditional batteries,
solar or wind energy, etc.). Energy levels at nodes can be
considered in the model so the network lifetime is increased.

A. Network Model

During the position broadcast phase described previously,
support for mobility optimization can be provided by ex-
tending the neighbors broadcast to allow the sink(s) to get
the position of all mobile nodes in the field which will be
represented by a two-dimensional grid (N1 × N2). Therefore
all sensor nodes positions are then assumed to be known and
are given by a boolean matrixP :

pi,j =

{

1 if there is a sensor at position(i, j)

0 otherwise
(1)

where 0 ≤ i ≤ N1 − 1 and 0 ≤ j ≤ N2 − 1. The
network can be heterogeneous to contain video and scalar
sensors with different energies and processing powers.ci,j,i′,j′

is the amount of energy needed to transmit a 1-bit message by
a sensor located at(i, j) and to be received by the one located
at (i′, j′) and can be estimated using [23]:

ci,j,i′,j′ = αi,j(2 × Eelec + ǫamp × d2
i,j,i′,j′) (2)

where di,j,i′,j′ is the distance between the two sensors
located at(i, j) and (i′, j′) positions,Eelec is the dissipated
energy by the radio to run the transmitter or the receiver
circuitry and ǫamp is the required energy by the transmit
amplifier. We introduced a parameterαi,j , 0 ≤ αi,j ≤ 1,
defined on a per sensor basis in order to individually consider
the energy capacities of each sensor node. For instance, a
mobile node with solar cells can be assigned anαi,j close to
0 and a node with a low energy level at a given time (possibly
with ubiquitous energy) can be assigned anαi,j close to1.
Sensors in the network can have different energy capacities.
They can operate on batteries or even use energy extracted
from the environment, such as solar energy or vibrations. This
does not mean that the energy could become infinite [24] since
harvesting energy can not be possible all the time and could
be insufficient to provide sensors mobility for instance.

In our network model, some nodes have locomotion capa-
bilities so they are able to move. Their positions can be known
thanks to the mobility matrixB(N1 × N2):

bi,j =

{

1 if the sensor at location(i, j) is mobile

0 otherwise
(3)

To move from point(i, j) to (i′, j′) in the sensor field, the
required energy is notedmi,j,i′,j′ and assumed to drain much
more energy compared to communication cost per bit for the
same distances, that is,

∀i, j, i′, j′ : mi,j,i′,j′/ci,j,i′,j′ = ρ > 1



In order to cover a given region or to avoid obstacles, a
video sensor with locomotion facility may move mainly as a
response to a sink request. However, a video sensor is assumed
to stay at its location for the whole session when it begins
capturing/transmitting images. Since there is a big amount
of data to be transmitted in a video session and assuming
that the transportation path is provided from the network
layer, a relatively long schedule of messages send/receive
can be obtained. We note byL, the number of messages to
be transmitted.S and R are the transmission and reception
matrices respectively before move wheresi,j,l = 1 if node
at position(i, j) (before moving) sends thelth message to
another node andri,j,l = 1 if node at position(i, j) (before
moving) receives thelth message from another node. Each
sensor node has a radio communication rangerc which is
fixed and can not be varied during the video session.

Finally, we assume that each sensor node is able to sense
within a disk of constant radiusrs and introduce the notion
of coverage degree. Noteddc, it is the number of redundant
sensors that cover a given area. For video sensors, we aim to
obtain asoft video coverage as opposed tohard coverage. a
video sensor is able to move when there is another node to
replace it even if it is not a video sensor and can not insure
the same service degree (rich video capture). Nevertheless, it
can contribute in covering the sensor field by sensing other
physical (scalar) phenomenon such as movement detection. In
a hard video coverage however, a video sensor moves only if
there is another video sensor that it is able to replace it in the
coverage of a given zone.

Notations and different parameters and variables used in this
paper are listed in tables II and III.

B. Problem Formulation

In this section, we present our formulation to the problem of
minimizing energy through mobility while preserving connec-
tivity and coverage in our relatively heterogeneous network
as described in the previous section. The problem can be
formulated as an integer linear program (ILP) as follows:

minimize

E =

N1−1
X

i=0

N2−1
X

j=0

N1−1
X

i′=0

N2−1
X

j′=0

δi,j,i′,j′ × mi,j,i′,j′

+

N1−1
X

i=0

N2−1
X

j=0

N1−1
X

i′=0

N2−1
X

j′=0

L
X

l=1

sri,j,i′,j′,l × k × ci,j,i′,j′ (4)

subject to

∀i ∈ 0..N1 − 1,∀j ∈ 0..N2 − 1,

N1−1
X

i′=0

N2−1
X

j′=0

δi,j,i′,j′ = pi,j (5)

∀i
′

∈ 0..N1 − 1,∀j
′

∈ 0..N2 − 1,

N1−1
X

i=0

N2−1
X

j=0

δi,j,i′,j′ ≤ 1 (6)

TABLE II
NOTATIONS: PARAMETERS

N number of sensor nodes.
N1 × N2 sensor field dimensions.

P matrix position:pi,j = 1 if there is a node at(i, j).
di,j,i′,j′ the distance between sensors located at(i, j) and(i′, j′).

B mobility matrix: bi,j = 1 if node at (i, j) is able to
move.

k number of bits per message.
L number of messages to send.

S transmission matrix before move,si,j,l = 1 if node at
(i, j) (before moving) sends thelth message,1 ≤ l ≤ L.

R reception matrix before move:ri,j,l = 1 if node at(i, j)
(before moving) receives thelth message,1 ≤ l ≤ L.

αi,j weight given to node located at(i, j).
ρ ratio of mobility to communication per bit cost:ρ > 1
C communication energy matrix:ci,j,i′,j′ is the required

energy to send a 1-bit message by a sensor located at
(i, j) and to be received by the another one located at
(i′, j′).

M mobility energy matrix:mi,j,i′,j′ is the required energy
to move from point(i, j) to (i′, j′).

rc communication radio range of the different sensors.
rs sensing (coverage) radius of each sensor.
dc required degree of coverage.

TABLE III
NOTATIONS: VARIABLES

Ṡ sending matrix after move:̇si,j,l = 1 if node at (i, j)
(after a move) sends thelth message to any other node,
(1 ≤ l ≤ L).

Ṙ reception matrix after move:̇rpi,j,l = 1 if node at(i, j)
(after a move) receives thelth message from any other
node, (1 ≤ l ≤ L).

∆ movement matrix:δi,j,i′,j′ = 1 if node at(i, j) moves
to optimal location(i′, j′).

SR send/receive matrix after move:sri,j,i′,j′,l = 1 if (after
move) node(i, j) takes part in the communication of
message numberl and sends it to a node located at
(i′, j′), 1 ≤ l ≤ L.

∀i
′

∈ 0..N1 − 1,∀j
′

∈ 0..N2 − 1,∀l ∈ 1..L,

ṙi′,j′,l =

N1−1
X

i=0

N2−1
X

j=0

δi,j,i′,j′ × ri,j,l (7)

∀i
′

∈ 0..N1 − 1,∀j
′

∈ 0..N2 − 1,∀l ∈ 1..L,

ṡi′,j′,l =

N1−1
X

i=0

N2−1
X

j=0

δi,j,i′,j′ × si,j,l (8)

∀i ∈ 0..N1 − 1,∀j ∈ 0..N2 − 1,

(pi,j = 1) ∧ (bi,j = 0) ⇒ δi,j,i,j = 1 (9)



∀i ∈ 0..N1 − 1,∀j ∈ 0..N2 − 1,∀l ∈ 1..L,
N1−1
X

i′=0

N2−1
X

j′=0

sri,j,i′,j′,l = ṡi,j,l with di,j,i′,j′ ≤ rc (10)

∀i ∈ 0..N1 − 1, ∀j ∈ 0..N2 − 1,∀l ∈ 1..L,
N1−1
X

i′=0

N2−1
X

j′=0

sri′,j′,i,j,l = ṙi,j,l with di,j,i′,j′ ≤ rc (11)

∀i ∈ 0..N1 − 1,∀j ∈ 0..N2 − 1,
N1−1
X

i′′=0

N2−1
X

j′′=0

N1−1
X

i′=0

N2−1
X

j′=0

δi′′,j′′,i′,j′ ≥ dc (12)

with (i′ ≥ i−rs)∧(i′ ≤ i+rs)∧(j′ ≥ j−rs)∧(j′ ≤ j+rs)∧((i 6=

x) ∨ (j 6= y)) where(x, y) is the sink coordinates.

where E is the overall consumed energy including both
communication and movement cost andk is the number of
bits per transmitted packet. The different joined constraints
are explained below:

(5): a node can move to any non-occupied place and a move
can only take place from an occupied position in the network.

(6): any move to a non-occupied position is performed by
only one node; otherwise this latter stays in its initial position.

(7) and (8) give expressions oḟS and Ṙ, the emission and
reception matrices respectively after move.

(9): a non mobile node located at(i, j) (i.e. bi,j = 0) stays
at its initial position.

(10) and (11) are the connectivity constraints. A message
m is sent by one node and received by only one node (unicast
communication). Moreover two nodes can not communicate
unless they are in each other radio range. The distance
between the two nodes (after move) is less or equal to the
communication radio range [22].

(12) is the coverage constraint. Each position in the field is
covered by at leastdc nodes to satisfy the required coverage
degree. A node moves to position(i′, j′) from another one
(i′′, j′′) or it stays at its initial position i.e.i′ = i′′ and j′ =
j′′. Position(i, j) must be in the zone covered by the sensor
located at(i′, j′).

Illustrative Example: we consider a field10×10 where
20 sensor nodes are deployed as depicted by Figure 5(a) with
4 sources (at(3, 7), (4, 5), (1, 5) and(8, 8) willing to transmit
one message each to the sink. Takingrs = 2, each sensor
node covers in addition to its own position, the 24 neighboring
ones: the node located at(3, 7) covers the square area within
the dotted boundary as shown in Figure 5. In this sensor field,
positions(0, 8) and(0, 9) are not covered. We assume that the
communication radio rangers = 4 and that communications
are only possible in single hop (there is no underlying routing
protocol). All sources can not reach the sink in one hop.

After applying our optimization program, all source nodes
as well as the sink move as shown by dashed arrows in Figure
5(b). In this way, the required connectivity is satisfied so all the

(a) (b)

Fig. 5. Illustrative Example: coverage and connectivity constraints

sources can achieve the sink in one hop. Additionally, the node
located at(3, 7) moves to position(2, 7) so the problem of
coverage is solved (points(0, 8) and (0, 9) become covered).
The consumed energy is also reduced (for one message with
1024 bits,401mJ is consumed instead of403mJ).

V. SIMULATION RESULTS

A. Risk-based scheduling

For all the risk-based scheduling simulations
we used the OMNET++ discrete event simulator
(http://www.omnetpp.org).150 sensor nodes are randomly
deployed in a75m ∗ 75m area. Sensors have an36o AoV, a
DoV of 25m and communication range of 30m. Each sensor
node captures with a given number of frames per second
(between 0.01fps and 3fps) according to the model defined
in figure 4. Nodes with 12 or more cover sets will capture
at the maximum speed. Simulation ends when there are no
active nodes anymore.

1) Static risk-based scheduling: We ran simulations for 9
levels of risk, fromr0 = 0.1 to r0 = 0.9. The corresponding
capture rates are those shown in table I. With 150 nodes, the
percentage of coverage of the initial area is very close to
100% of the initial area. Nodes with high capture rate will
use more battery power until they run out of battery (initial
battery level is 100 units, 1 captured image consumes 1 unit)
but according to the scheduling model nodes with high capture
rate are also those with large number of cover sets. Note that
it is the number of valid cover sets that defines the capture
rate and not the number of cover sets found at the beginning
of the cover sets construction procedure. Figure 6 shows the
mean stealth time (MST) whenr0 is varied fromr0 = 0.1
to r0 = 0.9 by 0.1 increments. The stealth time is the time
during which an intruder can travel in the field without being
seen. The first intrusion starts at time 10s at a random position
in the field. The scan line mobility model is then used with a
constant velocity of 5m/s to make the intruder moving to the
right part of the field. When the intruder is seen for the first
time by a sensor, the stealth time is recorded and the MST
computed. Then a new intrusion appears at another random
position. This process is repeated until the simulation ends. In
figure 6, the higher the risk level, the smaller the MST and
the network lifetime.
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Fig. 7. Mean stealth time. Dynamic scheduling:r0 increases from 0.1 to
0.9 on intrusion.

2) Dynamic risk-based scheduling: With the same network
topology than the previous simulations, we set the initial risk
level of all nodes tor0 = 0.1. When a sensor node detects
an intrusion, it sends an alert message to its neighbors and
increases its risk level tor0 = 0.9. Alerted nodes will then
also increase their risk level tor0 = 0.9. Both the node that
detects the intrusion and the alerted nodes will run at a high
risk level for an alerted period, notedTa, before going back to
r0 = 0.1. Nodes may be alerted several times but an already
alerted nodes will not increase itsTa value any further in this
simple scenario. Figure 7 shows the MST whenTa is varied
from 5s to 60s. WhenTa is high, the stealth time is small but
the network lifetime decreases dramatically. However, we can
also see that this simple dynamic scenario already succeeds
in reducing the MST while increasing the network lifetime
when compared to the static scheduling that provides the same
level of service. For instance theTa = 20s case that gives a
MST very close to 1.5s (below 1s most of the time) lasts for
1300s while an equivalent level of service needs a risk level
of r0 = 0.6 which only lasts for 540s.

B. Sensor mobility

In order to get some insight into the benefit of mobility to
save energy in a WVSN, our formulated problem was coded
using AMPL (A Mathematical Programming Language) [25]
and solved using the CPLEX solver [26] on NEOS server [27].

We consider the case of a grid of dimension10× 10 where
40 nodes among which a given ratio is assumed to be mobile,
are randomly placed. The sink is located at position(0, 0)
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Fig. 8. Mobility to overall energy ratio for different values of ρ. One source,
20% of nodes are mobile

and depending on the experiment, one to seven sources are
randomly chosen in the field. Paths from each source to the
sink are generated using MFR (Most Forward within Radius)
[28]. Each source is assumed to capture and transmit a 10-
second video sequence (Hall Monitor [29]). Data packets are
assumed to have 1024 bits of payload. Information about paths,
amount of data to be transmitted and the size of packets allow
us to generate the corresponding communication schedule
required as an input of our ILP. For the energy model, we put
in equation (2),Eelec = 50nJ/bit andǫamp = 0.1nJ/bit/m2.

Figure 8 plots the mobility to the overall consumed energy
ratio as a function of video duration for different values of
ρ. In this scenario, 20% nodes have locomotion facilities and
only one source is transmitting. The overall consumed energy
includes energy required by nodes to move to their optimal po-
sitions and the consumed energy due to transmitting/receiving
data packets. We can see that if we increaseρ (till 100,000)
so the mobility cost is much higher than the communication
one and even for a small video duration (0.1 second for
instance), mobility cost is at most about 18% of the overall
consumed energy. It is also to notice that the share of mobility
in overall energy consumption decreases with session duration.
In fact, the longer the video session, the larger the amount of
data to deliver. As a result, the communication cost increases
compared the mobility one where moves are performed only
once at the beginning of a session.

In order to assess the gain obtained thanks to nodes mobility,
we plot curves of Figure 9 showing the amount of energy (in
Joules) saved when applying our optimization problem as a
function of video duration for different densities of mobile
nodes in the field. We can see that the amount of saved energy
is higher for larger number of mobile nodes. Furthermore,
when the video session duration increases, saved energy is
also increased. This confirms results obtained and observedin
Figure 8. The amount of energy saved allows for augmenting
the lifetime of the entire network.

Finally, we varied the number of transmitting sources from
1 to 7 and reported the amount of saved energy for different
video streaming durations ranging from 1 to 5 minutes. Figure
10 plots this saved energy and shows, once again, that when
increasing the video duration, the saved energy increases.
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When augmenting the number of sources until 5 sources,
we save more energy. However when the number of sources
reaches 6, we get less energy saving. This is due to the fact
that when increasing the number of sources, some nodes are
likely to belong simultaneously to more than one path.

VI. CONCLUSIONS

This paper addresses video intrusion detection systems and
is based upon a risk-based scheduling model that determines
the video node’s capture rate according to the node’s number
of cover sets and the risk level. We showed that using dynamic
risk management can increase the network lifetime while
maintaining a high level of service in the form of small stealth
time. These results show that besides providing a model for
translating a subjective risk level into a quantitative parameter,
our approach for video sensor nodes also optimize the resource
usage by dynamically adjusting the provided service level.
Regarding mobility, we formulated the problem of optimal
node placement in a WVSN so energy consumption is mini-
mized under coverage and connectivity constraints using ILP.
The results mainly showed that even if mobility cost is much
higher than communication, the latter tends to be predominant
in the overall consumed energy as the video session duration
increases.
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