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Abstract—In WSN-based surveillance systems power
conservation isan important issue but one must also ensure
that the application’s objectives are met. In this paper,
we jointly address the problem of coverage, disambigation
and adaptive scheduling of sensor node's activity to extend
the network lifetime while fulfilling a critical surveillance
application needs. We first present a distributed algorithm
that ensures both coverage of the deployment area and
network connectivity by providing multiple cover sets
to manage Field of View redundancies. The availability
of multiple cover sets leads to a simple but efficient
disambigation algorithm. Then, we propose a multiple
levels activity model that uses behavior functions modeled
by modified Bezier curves to define application classes
and allow for adaptive scheduling. Simulation results are
presented to validate the performance of the proposed
approach.

I. INTRODUCTION

A Wireless Video Sensor Networks (WV SN) consists
of aset of sensor nodes equi pped with miniaturized video
cameras. In this paper, we are more particularly inter-
ested in WV SN for surveillance applications. In these
scenarios, hundreds or thousands of video nodes of low
capacity (resolution, processing and storage) of a same or
similar type can be deployed in an area of interest. These
nodes would use collaboration mechanisms to ensure a
surveillance task according to a given application and to
transmit, via an ad-hoc network (mostly wireless), useful
video data to one or more base stations. Desired features
of such a surveillance infrastructure are high reliability
and longest lifetime, largest coverage, disambiguation
capabilities to name a few.

An important issue is how to ensure and maintain
high coverage of the area of interest. The problem of
coverage in many-robot system or WSN was largely
studied and very interesting results were published.
Most of the recent existing works on the connected

coverage problem in scalar sensor networks [1], [2],
[3], [4] typicaly assume omnidirectional sensors with
disk-like sensing coverage. Thus, two scalar nodes are
likely to be redundant if they are close to each other.
However, in video sensor networks, video nodes possess
limited sensing coverage area (sector coverage) due to
the camera constraints and its Field of View (FoV). In
addition, two video sensor nodes can be redundant and
still be far from each other.

One other issue of prime importance is related to
energy considerations since the scarcity of energy does
have a direct impact on coverage as it is not possible to
have al the sensor nodes in activity at the same time. In
randomly deployed sensor networks, sensor nodes can be
redundant (nodes that monitor the same region) leading
to overlaps among the monitored areas. Therefore, a
common approach is to define a subset of the deployed
nodes to be active while the other nodes can sleep. The
result is a schedule of the activity of sensor nodes in
such away that guarantees the deployment area coverage
as well as the network connectivity. In addition, it is
also desirable to be able to define multiple levels of
activity that could correspond to how many samples are
captured per unit of time. For instance some surveillance
applications may focus on barrier coverage rather than
blanket coverage. In this case, sensor nodes at the border
of the area of interest should take more samples while
interior nodes can decrease their activity. Also, multiple
levels of activity may be simply necessary because
surveillance applications such as an intrusion detection
system has to be able to operate on along term basis and
because one does not know when such intrusions could
occur. For video sensor networks efficient scheduling and
the ability to provide multiple levels of activity is even
more important than in traditional sensing systems (e.g.
temperature, pressure,...) as capturing and transmitting
images are much more energy-consuming.



This paper presents a framework for adaptively sched-
ule video sensor node’s activity while addressing cover-
age, energy considerations and application’s objectives.
The final goa is to provide the necessary agorithmic
support for a surveillance application to express its
objectives. Regarding the coverage problem, our contri-
bution is to propose a multiple cover set approach to
manage FoV redundancies. The availability of multiple
cover sets then allows us to propose a simple but effi-
cient disambigation algorithm. Next, taking account the
energy-considerations and the application’s objectives,
the framework seeksto provide multiple levels of activity
by providing a default operating mode that links a
node's capture rate to the size of its cover sets and
two additional operating modes that force a node to be
in "high” or "low” status according to the surveillance
application’s specific objectives. These operating modes
uses behavior functions modeled by modified Bezier
curves that could define application classes.

The rest of this paper is organized as follows. Sec-
tion 11 presents the coverage and node scheduling propo-
sitions. Section 111 presents the adaptive model that uses
behavior functions modeled by modified Bezier curves
for providing the necessary flexibility to the end appli-
cations. Simulation results are presented in section 1V
before the conclusions.

II. COVERAGE AND SENSOR NODES SCHEDULING

The coverage problem for wireless video sensor net-
works can be categorized as:

« Known-Targets Coverage Problem, which seeks to
determine a subset of connected video nodes that
covers a given set of target-locations scattered in a
2D plane.

« Region-Coverage Problem, which seeks to find a
subset of connected video nodes that ensures the
coverage of the entire region of deployment in a
2D plane.

Most of the previous works have considered the
known-targets coverage problem [5], [6], [7], [8], [9].
The objective is to ensure at all-time the coverage of
some targets with known locations which are deployed in
atwo-dimensional plane. For example, the authorsin [9]
organize sensor nodes into mutually exclusive subsets
that are activated successively, where the size of each
subset is restricted and not al of the targets need to be
covered by the sensors in one subset.

In [6], a directional sensor model is proposed, where
a sensor is allowed to work in several directions. The
idea behind this is to find a minimal set of directions
that can cover the maximum number of targets. It is

different from the approach described in [5] that aims to
find a group of non-digoint cover sets, each set covering
al the targets to maximize the network lifetime.

Concerning the area coverage problem, the existing
works focus on finding an efficient deployment pattern
so that the average overlapping area of each sensor is
bounded. The authors in [10] analyze new deployment
strategies for satisfying some given coverage probability
requirements with directional sensing models. A model
of directed communications is introduced to ensure and
repair the network connectivity.

Based on a rotatable directional sensing model, the
authors in [11] present a method to deterministically
estimate the amount of directional nodes for a given
coverage rate. A sensing connected sub-graph accompa-
nied with a convex hull method is introduced to model
a directiona sensor network into several parts in a
distributed manner. With adjustable sensing directions,
the coverage algorithm tries to minimize the overlap-
ping sensing area of directiona sensors only with local
topology information.

Different from the above works, our paper mainly
focuses on the area coverage problem and more specifi-
cally on scheduling for randomly deployed video sensor
nodes. The local coverage objective of each sensor node
isto ensure, at al time, the coverage of this area either
by itself (if it is active) or by a subset of its neighbors,
caled the cover set.

A. Coverage and node’s cover set

A video sensor node v is represented by the FoV of
its camera. We consider a 2-D model of a video sensor
node where the Foy) is defined as a sector denoted by
a 4-tuple v(P, Ry, V,a)_.)Here P is the position of v,
R, isits sensing range, V' is the vector representing the
line of sight of the camera's FoV which determines the
sensing di rection,_)and « is the offset angle of the FoV
on both sides of V.
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Fig. 1. Video sensing and coverage model

Figure 1a illustrates the FoV of a video sensor node
in our model. In the reminder of this paper, we consider



that all video nodes have the same characteristics: same
sensing range R, and same offset angle a.

The approach we described in this paper is completely
distributed: every video node computes its local solution
for coverage. Each node v covers a sector area thanks
to its FoV, which we call v's FoV area. Then, its locd
coverage objective is to ensure, at all time, the coverage
of this area either by itself (if it is active) or by a subset
of its neighbors. If every video node ensure that its local
coverage objective is satisfied then global coverage is
also satisfied.

Definition 1: We define a cover Co;(v) of a video
node v as a subset of video nodes such that:
U ecow) (v"'s FOV area) covers v's FoV area

Definition 2: Co(v) is defined as the set of al the

covers of node v.
An example of FoV coverage is shown in Figure 1b,
where nodes vq, v and vg cover the FoV area of node
v, represented by abc. To compute Co(v), our model
uses four distinctive points: a, b, ¢ and g (the center of
gravity of (abc)) to represent the FoV of v as shown in
Figure 1b. Then, we say that v's FoV is covered by a
set Co;(v) € Co(v) if:

1) V o' € Co;(v), v covers the point g and at least

one of the points {a, b, ¢}

2) a,b, cand g are covered by theelementsof Co;(v).

In other terms, to compute C'o(v), a node v finds
the following sets where N(v) represents the set of
neighbors of node v:

: v/ covers point a of the FoV'}
: v' covers point b of the FoV}
: v' covers point ¢ of the FoV'}

e G={v € N(v): v covers point g of the FoV}

e« AG={ANG}, BG={BnNG}, CG={CnNG}

Then, Co(v) is set to the cartesian product of sets
AG, BG and CG ({AG x BG x CG}). Note that the
set - i nt ersecti on function generates n +m recur-
sive callsin the worst case. Therefore, the intersection of
2 sets can be done with complexity of O(n + m), where
m and n are the cardinality of the two sets respectively.
As the size of sets A, B,C and G is limited, a video
node can easily computes the intersections.

In the example illustrated by Figure 1c, v's FoV is
represented by (abeg). To find the set of covers, node
v finds the sets: AG = {va,v3}, BG = {vy,v4} and
CG = {v1,vs}. Then, following the above method, the
set of possible covers for v is: Co(v) = {{v}, {va,v1},
{vs,v1}, {v2,v4,v5}, {v3,v4,05}}.

This model allows a node v to construct Co(v) of
its FoV area. Hence, in some cases, it can occur that
a cover does not ensure the complete FoV coverage.

The effectiveness of such model will be shown in the
experimental results section. Note that, one can consider
more points such that the midpoints of segments [ab],
[ac] and [bc]. On the other hand, doing so will reduce the
number of covers and consequently increase the number
of active nodes. Note that the way coverage is defined
could be different. The method we use in this paper has
the advantage of being simple since the main purpose
here is to be able to construct cover sets.

B. Scheduling nodes with cover sets

The scheduling of video sensor nodes operates in 2
phases. The first is a setup phase where each node v
constructs its set of covers Co(v). The second phase
is the scheduling phase where each node decides to be
active or in sleep mode. Our objective is to minimize
the number of active nodes while ensuring the whole
coverage area.

1) Construction of Co(v): At this step, each video
node v constructs al possible covers, Co(v) that sat-
isfy its local coverage objective (e.g. covering its FoV
area). These sets are constructed by considering al the
communication graph nel ghbori Each node diffuses its
position P and its direction V' to its neighbors and
receivestheir informations. Each node constructs the sets
A, B and C' and then computes C'o;(v) that overlap its
FoV and ensure its coverage as explained in section 11-A.

In the literature, most of existing omnidirectional
sensing coverage works try to construct digoint sets of
active nodes [1], [2], [3], [4]. In our case, we have the
possibility that two or more covers have some video
nodes in common. This dependancy must be taken into
account in the scheduling phase. Hence, selecting one
cover also reduces the lifetime of the sensor it has in
common with another cover. In this case we can consider
the level of energy as a criteria while choosing the active
cover. The energy level of the lowest node in Co;(v)
determines C'o;(v)’s energy level. We notice here that
the singleton {v} is considered as an element of the set
Co(v).

2) Video Node's Scheduling: The activity of video
sensor nodes operates in rounds. For each round, every
node decides to be active or not based on the activity
messages received from its neighbors. At a first step,
every node orders its sets of covers according to their
cardinality, and gives priority to the covers with mini-
mum cardinality and the lowest priority is given to the
singleton {v}. After, during the network lifetime, the
covers priority order change according to the energy
level of each cover. Note that another criteria can be
defined.



A video node v receives the activity decisions of its
neighbors. Then, it tests if the active nodes belong to a
cover C'o;(v) in which case v goes in sleep mode after
sending its decision to its neighbors. In the case where no
Co;(v) is satisfied, or because v has the highest level of
energy, v decides to remain in active mode and diffuses
its decision.

Algorithm 1 Scheduling of the node v

1 v is active

2: v orders its covers Co;(v) € Co(v) i =1,2,...|Co(v)]

R |

4: while i < |Co(v)| do

5. v begins with the cover with highest priority Co;(v)

6: if Co;(v) = {v} then

7. v remains active and sends its decision to its neigh-
bors

8 endif

9. if v receives an activity message from neighbor v’ then

10: if v" decides to go in sleep mode then

11 if o' ¢ Co;(v) then

12: try to verify Co;(v)

13: end if

14: end if

15 else

16: v chooses the next best priority cover Co;41(v)

17: t— 1+ 1

18: if v' decides to remain active then

19; if v € Co;(v) then

20: try to verify Co;(v)

21 end if

22: end if

23 end if

24: it W', v € Co;(v), v’ is active then

25: v becomes inactive and sends its decision to its
neighbors

26. end if

27: end while

28: if no Co;(v) is found then

29: v remains active and sends its decision to its neighbors
30: end if

A video node v ordersthe set C'o(v) according to their
priorities (cardinality or energy level). Then, it starts with
the first cover Co;(v) € Co(v) (which has the highest
priority) and tests if it is satisfied. If singleton {v} has
the highest priority it becomes active and difuuses its
decision. A cover is comprised by a set of video nodes
and if one node is or become inactive this cover can not
be satisfied.

The node's scheduling process is summarized in Al-
gorithm 1. Node v receives an activity message from its
neighbor v', if v' € Coy(v) decided to be inactive, then
v goes to the next cover and so on until it finds an active
cover or decides to be active itself. If node v’ € Co;(v)

is active then node v check whether all nodes of C'o1(v)
are in active mode in order to go in sleep mode. This
process is repeated for each cover and at every round.

I11. ADAPTATION TO APPLICATION CRITICALITY

For wireless video sensor nodes the frame capture
process and transmission to a sink is a huge energy-
consuming task. On the other hand, the higher the
capture rate is, the better relevant events could be de-
tected and identified. Therefore if we consider a video
surveillance application for intrusion detection, video
nodes should capture at a high rate due to the critical-
ity of this type of application. There are other types
of non-critical surveillance or monitoring applications
where the capture rate does not need to be set to the
maximum rate. However, even in the case of an intrusion
detection application, it is not realistic to consider that
video nodes should always capture at their maximum
rate when in active mode because network lifetime is
almost as important as coverage in such applications. In
general, it is desirable to be able to adjust the capture
rate according to the application’s requirements. In our
approach we express the application criticality by the
r0 variable which can take values between 0 and a
defined 1 representing the low and the high criticality
level respectively. Low leve criticality indicates that the
application does not require a high video frame capture
rate while a high level criticality does. Then, according
to the application’s requirements, »° could be initialized
accordingly into all sensors nodes prior to deployment.

A. Satic capture model

A naive approach would consist in fixing the frame
capture rate of all video nodes to a given rate. For
instance, high level criticality pushes video nodes to cap-
ture at near the maximum frame rate capability. However,
this simple approach presents some drawbacks. In fact,
(i) setting video nodes to work at full capacity provides
very good capture quality but the network lifetime is
very short, (ii) athough setting the nodes at low capacity
saves energy and extends the network lifetime, it pro-
vides poor surveillance quality, (iii) choosing a moderate
frame capture rate could balance between capture quality
and network lifetime but at the same time sensors can
not be fully exploited if it is necessary.

B. Dynamic capture model

To fully exploit the video node capahilities we propose
that a video node captures frames at arate that is defined
by the size of its cover set. Obviously, when a node



has several covers (see definition 1) it can increase its
frame capture rate because if it runs out of energy it
can be replaced by one of its covers. On the other hand,
the frame capture rate variation should depend on the
criticality level of the application as discussed previoudly.
In what follows we will define different application
classes which will determine a node's frame capture rate.

FRAMES
EEI:L?NDE

HIGH CRITICAL APPLICATION
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Fig. 2. Dynamic approach.

1) Application classes. We can broadly classify ap-
plications into different categories based on their criti-
cality level. In our approach we define two classes of
applications: high and low criticality applications. This
criticality level is represented by a mathematical function
y = fro(z) that we call BV (BehaVior) function. This
function can oscillate from hyperbolic to parabolic shape
as illustrated in Figure 2:

« values on the x axis are positive integers represent-
ing the cardinality of the cover set |Col|. Integer
values lie between 1 and mazx, where maz is fixed
according to the network topology. A video sensor
node that is the only node capable of covering its
FoV has a cover size of 1 on the z axis.

« the y axis gives the corresponding frame capture
rate based on the cardinality of the cover set ex-
pressed on the x axis and the application criticality
level (rY).

We now present the contrast between applications that
exhibit high and low criticality level in terms of the BV
function.

1) Class 1 "low criticality”, 0 < % < 0.5: this
class of applications does not need high frame
capture rate. This characteristic is represented
by an hyperbolic BV function. As illustrated in
figure 2 (box A), most projections of = values
are gathered close to zero (i.e. the mgjority of the

sensors will preserve their energy by capturing
slowly).

2) Class 2 "high criticality”, 0.5 < % < 1: This
class of applications needs high frame capture rate.
This characteristic is represented by a parabolic
BV function. As illustrated in figure 2 (box B),
most projections of x values are gathered close to
the max frame capture rate (i.e. the majority of
nodes capture at a high rate).

2) The behavior function: We use Bezier curve to
model the BV function. Bezier curves are flexible and
can plot easily a wide range of geometric curves and
have successfully been used for modeling subjectivity in
trust evaluation models in pervasive environments [12].

Definition 3: The bezier curveis aparametric form to
draw a smooth curve. It is fulfilled through some points
Py, P,...P,, starting at P, going towards P;...P,_; and
terminating at P,.

In our model we will use a Bezier curve with three
points which is called a Quadratic Bezier curve. It is
defined as follows:

Definition 4: A quadratic Bezier curve is the path
traced by the function B(t), given points Py, Pi, andPs.

Bt)=(1—-t)**Py+2t(1—t)* PL+t*x P5. (1)

The BV function is expressed by a Bezier curve that
passes through three points:

« The origin point (Py(0,0)).

« The behavior point (Py(b.,by))

o The threshold point (P2 (h, hy)) Where h, repre-
sents the highest cover cardinality and &, represents
the maximum frame capture rate determined by the
sensor node hardware capabilities.

As illustrated in Figure 3, by moving the behavior
point P; inside the rectangle defined by Py and P, we
are able to adjust the curvature of the Bezier curve. The
BV function describes the application criticality. It takes
|C'o| asinput on the z axis and returns the corresponding
"frame capture rate” on the y axis. To apply the BV
function with the Bezier curve, we modify this latter to
obtain y as a function of x, instead of taking a tempora
variable t as input to compute z and y. Based on the
Bezier curve, let us now define the "BV function”:

Definition 5: The BV function curve can be drawn
through the three points Py(0,0), Pi(bs,b,) and
P>(hy, hy) using the Bezier curve as follows:
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Fig. 3. The Behavior curve functions

3) The criticality level »°: As discussed above, the
criticality level 70 of an application is given into the
interval [0,1]. According to this level, we define the
criticality function called Cr which operates on the
behavior point P; to control the BV function curvature.

According to the position of point P; the Bezier curve
will morph between parabolic and hyperbolic form.
As illustrated in figure 3 the first and the last points
delimit the curve frame. This frame is a rectangle and
is defined by the source point Py(0,0) and the threshold
point Ps(hy, hy). The middle point P (b,,b,) controls
the application criticality. We assume that this point
can move through the second diagona of the defined
rectangle b, = 7 x by, + hy.

We define the Cr function as follows, such that
varying r° between 0 and 1 gives updated positions for
Py
— [0, hg] % [0, hy]
0 — (b:cvby)
by = —hy x 10 4 hy
by = hy X 70

3

Level 0 is represented by the position of point P;. If
70 = 0 P; will have the coordinate (h,,0). If =1 P,
will have the coordinate (0, h.,).

C. Resolving ambiguities

Some applications such as surveillance and security
applications, emergency detection in clinical environ-
ments and intrusion detection and tracking need more
comprehensive interpretation of events or gestures. Ac-
cess to multiple sources of visual data often alows
for reducing ambiguities to alow for more accurate
interpretation. Multiview has several advantages. First,
the multi-view cameras can help circumvent occlusions.
Second, even without occlusions, the information ob-
tained from a single camera may be ambiguous for
decision making, whereas a combination of information
from multiple views may convey a higher confidence
interpretation. Therefore, in our approach we alow col-
laboration among multiple cameras to reduce ambigui-
ties, by adapting the activity nodes scheduling in a way
to obtain more information about a target when it is
necessary. In other words, to obtain multi-view of atarget
coming from more than one video node.

The problem studied here is known in the literature as
the k-coverage problem [13]. Redundant sensing capabil-
ities are usually required in sensor network applications
for robustness, fault tolerance, or increased accuracy
features. At the same time high sensor redundancy
offers the possibility of increasing network lifetime by
scheduling sleep intervals for some sensors and till
providing continuous service with help of the remaining
active sensors. In our approach, we use the k-coverage
feature provided by the availability of multiple cover sets
in order to reduce ambiguities by alowing video nodes
to see the critical object from different perspectives.

When a node detects a critical event, it sends an urgent
message to its neighbors to end the current round and
begin a new one with a new scheduling scheme. The new
scheduling must ensure that the target is covered by at
least two or more video nodes. Therefore, from Co(v),
video node v selects the cover that ensure the target’s
multi-coverage to be active. Then, it goes to sleep mode
after sending its decision to its neighbors which in their
turn schedule their activity, and a new round starts. This
process is summarized in Algorithm 2.

IV. EXPERIMENTAL RESULTS

To evaluate our approach we conducted a series of
simulations based on the discrete event simulator OM-
Net++ [14]. Nodes have equal communication and sens-
ing ranges of 30m and 25m respectively, an offset angle



Algorithm 2 Reducing Ambiguities
v is active
v detects a critical object
: for 4 from 1 to |Co(v)| do
finds Co;(v) with highest cardinality
for j going from 0 to |Co;(v)| do
activate v; € Co;(v)
v; diffuses its decision
end for
end for
. Cal Algorithm 1

©NARE®NR
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a of 7/6, a battery life OL 100 units, random position
P and random direction V. A simulation starts by a
neighborhood discovery. Each node gathers positions and
directions of its neighbors and finds the sets AG, BG
and C'G. Then, round by round each node decides to be
active or not. For these simulations, the round duration is
set to 1s. Simulation ends as soon as the subset of nodes
with power left is disconnected (when all active nodes
have no neighbors anymore). We run each simulation
15 times to reduce the impact of randomness. Then,
proportion of active nodes, area coverage and criticality
impact were observed and analyzed.

A. Coverage results

In this section, we focus on the coverage results. We
varied the deployed nodes density from 50 to 200 nodes
in a 100m * 100m area. At the end of a round an active
node decreases its battery life by one unit.

120 T
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Density 150 ------
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Fig. 4. Percentage of coverage.

The main objective of our approach is to maintain a
full area coverage at each round. We define the full area
coverage as the region covered initially by the whole
network (i.e when all the deployed nodes are active).
This area represents the union of all FoV areas of the

deployed nodes. Figure 4 shows the percentage of area
coverage round by round. This percentage is the ratio
between the area covered by the set of active nodes over
the initial covered area

The initial sensing coverage is preserved for 100
rounds which is equal to anode’s lifetime. At round 100,
as expected, a set of nodes run out of energy. We can
observe that in al the cases our algorithm guarantees a
sensing coverage of at least 67% of the deployment area.

B. Criticality impact

For these set of experiments, we randomly deployed
150 sensor nodes in a 75m * 75m area. Each sensor
node captures with a given number of frames per second
(between Ofps and 6fps) in which case the battery
capacity is decreased accordingly by 1 unit per captured
frame (initial battery capacity is set to 100 units). The
performance evaluation was realized with 2 fixed frame
capture rate scenarios (3fps and 6fps) and 3 levels of ap-
plication criticality that follows the dynamic rate model:
r® = 0 (low criticality), »° = 0.5 and 7 = 1 (high
criticality) where a node's frame capture rate depends
on the size of its cover set.

Figure 5 shows the percentage of coverage while
varying the frame capture rate. Figure 6 shows the
average frame capture rate of al active nodes per round
which is representative of the surveillance application
quality during the network lifetime.
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Fig. 5. Percentage of coverage while varying the frame capture rate.

As the application criticality 7 is varied the frame
capture rate of each sensor node that depends on its
cover set size is modified according to the behavior
function. Beyond the fact that our multiple levels activity
model allows an application to specify a criticality level
according to its objectives, the model also optimizes
the area coverage as well as the network lifetime. For
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Fig. 6. Average frame capture rate per round.

instance, we can see in figure 6 that the high criticality
scenario gives a mean frame capture rate of 4.63fps
which should draw in figure 5 a curve that lies between
the 6fps and the 3fps curves. However, figure 5 shows a
high criticality curve very close to the 3fps curve which
indicates that our dynamic model can provide the same
percentage of coverage but at a higher frame capture rate
which should mean a better surveillance quality.

C. Disambiguation feature

To test how well our algorithm reduces the ambigui-
ties, we consider a rectangular object which traverses the
area of interest from left to right. The objective of this
experiment is to determine the object trgjectory and the
identification time. In a surveillance application, faster
the identification is, faster the interaction with the user
is.

The rectangle as shown in Figure 7 is composed of 8
points, and is said to be fully identified when all 8 points
are identified. In figure 7, we observe that node v; can
detect three points {a, d, h}, while node v, detects only
{a}(considering that point a hides b and c) and v3 sees
{e, f} (g is not well detected). In our simulation, vs and
vg consider the object as critical, so the first node that
detects the object enforces its neighbors to become active
in order to have multiple views of the object.

v2

9=
o

v3

Fig. 7. The rectangular object in the region of deployment

The rectangular object (4m x 2m) traverses a 100m *
100mm area where we have randomly dispersed 150
video nodes. Then, we picked up the time taken by the
network to identify the object, while varying its velocity.
Figure 8 shows the variation of the identification time
over the velocity of the object. We notice that this time
is dmost constant when using the ambiguity reduction
scheduling. On the another hand, the identification takes
alonger time in the case where just active nodes monitor
the region.
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Fig. 8.
object

The time taken by the network to identify the rectanglar

V. CONCLUSION

Our contribution in this article is to provide the
necessary algorithmic support for enabling critical video
surveillance applications on WSN. Based on a simple
coverage model that handle FoV redundancies by pro-
viding multiple covers per sensor node, we proposed
a multiple levels activity model that uses behavior
functions modeled by modified Bezier curves to define
application classes and allow for adaptive scheduling.
In addition, the availability of multiple cover sets then
allows us to propose a simple but efficient disambigation
agorithm. Besides providing a model for trandating a
subjective criticality level into a quantitative parameter of
the surveillance system, our proposed approach for video
sensor nodes can also optimize the resource usage by
dynamically adjusting the provided service level. Future
works will investigate how the risk factor in surveillance
systems can be handled by our multiple levels activity
model in order to automatically configure sensor nodes
according to the environment stimulus.
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