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Abstract. This paper proposes to use video sensor nodes to provide
an efficient intrusion detection system. We use a scheduling mechanism
that takes into account the criticality of the surveillance application and
present a performance study of various cover set construction strategies
that take into account cameras with heterogeneous angle of view and
those with very small angle of view. We show by simulation how a dy-
namic criticality management scheme can provide fast event detection
for mission-critical surveillance applications by increasing the network
lifetime and providing low stealth time of intrusions.
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1 Introduction

The monitoring capability of Wireless Sensor Networks (WSN) make them very
suitable for large scale surveillance systems. Most of these applications have
a high level of criticality and can not be deployed with the current state of
technology. This article focuses on Wireless Video Sensor Networks (WVSN)
where sensor nodes are equipped with miniaturized video cameras. We consider
WVSN for mission-critical surveillance applications where sensors can be thrown
in mass when needed for intrusion detection or disaster relief applications. This
article also focuses on taking into account cameras with heterogeneous angle of
view and those with very small angle of view.

Surveillance applications [1–5] have very specific needs due to their inherently
critical nature associated to security . Early surveillance applications involving
WSN have been applied to critical infrastructures such as production systems
or oil/water pipeline systems [6, 7]. There have also been some propositions for
intrusion detection applications [8–11] but most of these studies focused on cov-
erage and energy optimizations without explicitly having the application’s crit-
icality in the control loop which is the main concern in our work. For instance,



with video sensors, the higher the capture rate is, the better relevant events could
be detected and identified. However, even in the case of very mission-critical ap-
plications, it is not realistic to consider that video nodes should always capture
at their maximum rate when in active mode. The notion of cover set has been
introduced to define the redundancy level of a sensor nodes that monitor the
same region. In [12] we developed the idea that when a node has several covers,
it can increase its frame capture rate because if it runs out of energy it can be
replaced by one of its cover sets. Then, depending on the application’s critical-
ity, the frame capture rate of those nodes with large number of cover sets can
vary: a low criticality level indicates that the application does not require a high
video frame capture rate while a high criticality level does. According to the
application’s requirements, an R0 value that indicate the criticality level could
be initialized accordingly into all sensors nodes prior to deployment.

Based on the criticality model we developed previously in [12], this article
has 2 contributions. The first contribution is an enhanced model for determining
sensor’s cover sets that takes into account cameras with heterogeneous angle of
view and those with very small angle of view. The performance of this approach
is evaluated through simulation. The second contribution is to show the perfor-
mance of the multiple cover sets criticality-based scheduling method proposed
in [12] for fast event detection in mission-critical applications. The paper is then
organized as follows: Section 2 present the coverage model and our approach for
quickly building multiple cover sets per sensor. In section 3 we quickly present
the dynamic criticality management model and then present the main contribu-
tion of this paper that focuses on fast event detection in section 4. We conclude
in section 5.

2 Video sensor model

A video sensor node v is represented by the FoV of its camera. In our approach,
we consider a commonly used 2-D model of a video sensor node where the FoV

is defined as a triangle (pbc) denoted by a 4-tuple v(P, d,
−→
V , α). Here P is

(a) Coverage model (b) Heterogeneous AoV

Fig. 1. Coverage model.



the position of v, d is the distance pv (depth of view, DoV),
−→
V is the vector

representing the line of sight of the camera’s FoV which determines the sensing

direction, and α is the angle of the FoV on both sides of
−→
V (2α can be denoted

as the angle of view, AoV). The left side of figure 1(a) illustrates the FoV of
a video sensor node in our model. The AoV (2α) is 30o and distance bc is
the linear FoV which is usually expressed in ft/1000yd or millimeters/meter.
By using simple trigonometry relations we can link bc to pv with the following
relation bc = 2 sinα

cosα .pv. We define a cover set Coi(v) of a video node v as a subset
of video nodes such that:

⋃
v′∈Coi(v)

(v′’s FoV area) covers v’s FoV area. Co(v)

is defined as the set of all the cover sets Coi(v) of node v.
One of the first embedded camera on a wireless sensor hardware is the Cyclops

board designed for the CrossBow Mica2 sensor [13] which is advertized to have
an AoV of 52o. Recently, the IMB400 multimedia board has been designed for
the Intel Mote2 sensor and has an AoV of about 20o, which is rather small.
Obviously, the linear FoV and the AoV are important criteria in video sensor
networks deployed for mission-critical surveillance applications. The DoV is a
more subjective parameter. Technically, DoV could be very large but practically
it is limited by the fact that an observed object must be sufficiently big to be
identified.

2.1 Determining cover sets

In the case of an omnidirectional sensing, a node can simply determine what
parts of the coverage disc is covered by its neighbors. For the FoV coverage the
task is more complex and determining whether a sensor’s FoV is completely
covered or not by a subset of neighbor sensors is a time consuming task which
is usually too resource-consuming for autonomous sensors. A simple approach
presented in [14] is to use significant points of a sensor’s FoV to quickly determine
cover sets that may not completely cover sensor v’s FoV but a high percentage
of it. First, sensor v can classify its neighbors into 3 categories of nodes, (i) those
that cover point p, (ii) those cover point b and (iii) those that cover point c.
Then, in order to avoid selecting neighbors that cover only a small portion of
v’s FoV, we add a fourth point taken near the center of v’s FoV to construct
a fourth set and require that candidate neighbors covers at least one of the 3
vertices and the fourth point. It is possible to use pbc’s center of gravity, noted
point g, as depicted in figure 1(a)(right). In this case, a node v can practically
computes Co(v) by finding the following sets, where N(v) represents the set of
neighbors of node v:

– P/B/C/G = {v′ ∈ N(v) : v′ covers point p/b/c/g of the FoV}
– PG = {P ∩G}, BG = {B ∩G}, CG = {C ∩G}

Then, Co(v) can be computed as the Cartesian product of sets PG, BG and
CG ({PG×BG×CG}). However, compared to the basic approach described in
[14], point g may not be the best choice in case of heterogeneous camera’s AoV
and very small AoV as will be explained in the next subsections.



2.2 The case of heterogeneous AoV

It is highly possible that video sensors with different angles of view are randomly
deployed. In this case, a wide-angle FoV could be covered by narrow-angle FoV
sensors and vice-versa. Figure 1(b) shows these cases and the left part of the
figure shows the most problematic case when a wide FoV (2α = 60o) has to be
covered by a narrow FoV (2α = 30o). As we can see, it becomes very difficult
for a narrow angle node to cover pbc’s center of gravity g and one of the vertice
at the same time.

(a) Heterogeneous AoV (b) Very small AoV

Fig. 2. Using more alternate points.

The solution we propose in this paper is to use alternate points gp, gb and
gc that are set in figure 2(a)(left) as the mid-point of segment [pg], [bg] and [cg]
respectively. It is also possible to give different weights as shown in the right
part of the figure. When using these additional points, it is possible to require
that a sensor vx either covers both c and gc or gc and g (the same for b and gb,
and p and gp) depending on whether the edges or the center of sensor v’s FoV
are privileged. Generalizing this method by using different weights to set gc, gb
and gp closer or farther from there respective vertices can be useful to set which
parts v’s FoV has more priority as depicted in figure 2(a)(right) where gc has
moved closer to g, gb closer to b and gp closer to p.

2.3 The case of very small AoV

On some hardware, the AoV can be very small. This is the case for instance with
the IMB400 multimedia board on the iMote2 which has an AoV of 2α = 20o.
Figure 2(b)(left) shows that in this case, the most difficult scenario is to be
able to cover both point p and point gp if gp is set too far from p. As it is not
interesting to move gp closer to p with such a small AoV, the solution we propose
is to discard point p and only consider point gp that could move along segment
[pg] as previously. Therefore in the scenario depicted in figure 2(b)(right), we
have PG = {v3, v6}, BG = {v1, v2, v5} and CG = {v4} resulting in Co(v) =
{{v3, v1, v4}, {v3, v2, v4}, {v3, v5, v4}, {v6, v1, v4}, {v6, v2, v4}, {v6, v5, v4}}.

2.4 Accuracy of the proposed method

Using specific points is of course approximative and a cover can satisfy the spe-
cific points coverage conditions without ensuring the coverage of the entire FoV.



To evaluate the accuracy of our cover sets construction technique, especially
for very small AoV, we conducted a series of simulations based on the discrete
event simulator OMNet++ (http://www.omnetpp.org/). The results were ob-
tained from iterations with various node populations on a 75m.75m area. Nodes

have random position P , random line of sight
−→
V , equal communication ranges of

30m (which determines neighbor nodes), equal DoV of 25m and an offset angle
α. We will test with 2α = 20o (α = π/18), 2α = 36o (α = π/10) and 2α = 60o

(α = π/6). We run each simulation 15 times to reduce the impact of randomness.
The results (averaged over the 15 simulation runs) are summarized in table 1.

We will denote by COpbcG, COpbcApbc and CObcApbc the following respective
strategies: (i) the triangle points are used with g, which is pbc’s center of gravity,
when determining eligible neighbors to be included in a sensor’s cover sets, (ii)
alternates points gp, gb and gc are used with the triangle points and, (iii) same as
previously except that point p is discarded. The ”stddev of %coverage” column is
the standard deviation over all the simulation runs. A small standard deviation
value means that the various cover sets have percentages of coverage of the initial
FoV close to each other. When ”stddev of %coverage” is 0, it means that each
simulation run gives only 1 node with 1 cover set. This is usually the case when
the strategy to construct cover sets is too restrictive.

Table 1 is divided in 3 parts. The first part shows the COpbcG strategy with
2α = 60o, 2α = 36o and 2α = 20o. We can see that using point g gives very
high percentage of coverage but with 2α = 36o very few nodes do have cover
sets compared to the case when 2α = 60o. With very small AoV, the position
of point g is not suitable as no cover sets are found. The second part of table
1 shows the COpbcApbc strategy, where alternate points gp, gb and gc are used
along with the triangle vertices, with 2α = 36o and 2α = 20o. For 2α = 36o, this
strategy succeeds in providing both a high percentage of coverage and a larger
number of nodes with cover sets. When 2α = 20o the percentage of coverage is
over 70% but once again very few nodes do have cover sets. This second part
also shows CObcApbc (point p is discarded) with 2α = 20o. We can see that this
strategy is quite interesting as the number of nodes with cover sets increases for
a percentage of coverage very close to the previous case. In addition, the mean
number of cover sets per node greatly increases which is highly interesting as
nodes with high number of cover sets could act as sentry nodes in the network.
The last part of table 1 uses a mixed AoV scenario where 80% of nodes have
an AoV of 20o and 20% of nodes an AoV of 36o. This last part shows the
performance of the 3 strategies and we can see that CObcApbc presents the best
tradeoff in terms of percentage of coverage, number of nodes with cover sets and
mean number of cover sets per nodes when many nodes have a small AoV.

3 Criticality-based scheduling of randomly deployed

nodes with cover sets

As said previously, the frame capture rate is an important parameter that defines
the surveillance quality. In [12], we proposed to link a sensor’s frame capture rate



Table 1. Results for COpbcG, COpbcApbc and CObcApbc. 2α = 20o, 2α = 36o and mixed
AoV.

COpbcG 60o

#nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

75 4.89 94.04 90.16,98.15 3.67 1,5.66 2.10

100 7.13 94.63 86.99,98.49 4.40 1,6 2.99

125 11.73 95.06 85.10,99.52 4.12 1,13 3.53

150 17.11 95.44 84,99.82 3.98 1,16.13 4.15

175 26.19 94.64 83.57,99.89 4.01 1,35.66 6.40

COpbcG 36o

#nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

75 0 0 0,0 nan 0,0 0

100 1 92,03 89.78,98.64 0 1,1 1

125 1.87 91.45 88.83,93.15 2.97 1.13,2 1.56

150 1.78 95.06 91.47,98.19 4.06 1,3 1.94

175 3.43 94.42 87.60,99.03 4.40 1.13,2.66 1.92

COpbcG 20o

#nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

all cases 0 0 0,0 nan 0,0 0

COpbcApbc

36o #nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

75 12.44 77.48 56.46,91.81 13.13 1.13,9.13 3.62

100 20.13 79.62 53.65,98.98 12.05 1,10.66 3.94

125 30.67 76.89 50.53,97.92 11.58 1,34 5.40

150 35.11 78.47 52.07,96.09 10.60 1,31.13 6.90

175 48.57 77.76 49.97,98.10 10.54 1,50.13 11.57

COpbcApbc

20o #nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

75 1.13 70.61 57.60,91.54 0 1,1 1

100 2 73.89 69.45,79.80 9.50 1.13,2 1.58

125 2.67 71.78 58.67,84.98 12.45 1.13,2 1.75

150 4 71.67 54.18,92.19 14.10 1,3.66 1.91

175 7.43 75.50 54.69,94.01 12.87 1,8 2.74

CObcApbc

20o #nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

75 7.56 73.79 56.18,88.54 12.45 1,5 2.10

100 9.13 67.16 47.78,88.71 13.80 1,4.66 2.14

125 12.53 70.12 40.41,87.46 13.11 1,11.13 3.17

150 21.13 70.10 45.72,91.57 11.57 1,19.13 4.18

175 25.13 71.79 44.15,94.18 11.91 1,37 7.05

COpbcG

20o(80%)
36o(20%)
#nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

75,100,125 0 0 0,0 nan 0,0 0

150 0.66 92.13 83.64,95.83 0 1,1 1

175 0.57 93.45 85.75,96.14 0 1,1 1

COpbcApbc

20o(80%)
36o(20%)
#nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

75 3.11 81.89 78.13,89.02 8.15 1.13,2 1.58

100 3 69.83 65.50,74.55 8.18 1,3.66 1.89

125 4.80 78.58 69.52,90.92 8.03 1,3.13 1.56

150 8.67 78.12 56.41,97.59 13.71 1,5 1.95

175 10.19 76.60 50.4,95.47 13.48 1,8.66 2.62

CObcApbc

20o(80%)
36o(20%)
#nodes

% nodes with
coverset

mean %
coverage

min,max % cover-
age/coverset

stddev of %
coverage

min,max
#coverset/node

mean
#coverset/node

75 9.13 81.48 69.18,93.72 9.72 1,5.66 2.06

100 6 80.10 62.82,90.16 11.81 1,3.66 1.94

125 10.93 73.15 47.14,92.14 14.43 1.13,9.13 3.65

150 20 72.12 45.53,95.94 12.19 1,16.66 4.83

175 20.95 75.15 43.01,97.57 12.59 1,18.13 5.15



to the size of its cover set. In our approach we define two classes of applications:
low and high criticality applications. This criticality level can oscillate from a
concave to a convex shape as illustrated in Figure 3 with the following interesting
properties:

– Class 1 ”low criticality”, does not need high frame capture rate. This
characteristic can be represented by a concave curve (figure 3(a) box A),
most projections of x values are gathered close to 0.

– Class 2 ”high criticality”, needs high frame capture rate. This char-
acteristic can be represented by a convex curve (figure 3(a) box B), most
projections of x values are gathered close to the max frame capture rate.

(a) Application classes (b) The Behavior curve functions

Fig. 3. Modeling criticality.

[12] proposes to use a Bezier curve to model the 2 application classes. The
advantage of using Bezier curves is that with only three points we can easily
define a ready-to-use convex (high criticality) or concave (low criticality) curve.
In figure 3(b) P0(0, 0) is the origin point, P1(bx, by) is the behavior point and
P2(hx, hy) is the threshold point where hx is the highest cover cardinality and
hy is the maximum frame capture rate determined by the sensor node hardware
capabilities. As illustrated in Figure 3(b), by moving the behavior point P1 inside
the rectangle defined by P0 and P2, we are able to adjust the curvature of the
Bezier curve, therefore adjusting the risk level r0 introduced in the introduction
of this paper. According to this level, we define the risk function called Rk which
operates on the behavior point P1 to control the BV function curvature. Accord-
ing to the position of point P1 the Bezier curve will morph between a convex
and a concave form. As illustrated in figure 3(b) the first and the last points
delimit the curve frame. This frame is a rectangle and is defined by the source
point P0(0, 0) and the threshold point P2(hx, hy). The middle point P1(bx, by)
defines the risk level. We assume that this point can move through the second
diagonal of the defined rectangle bx =

−hy

hx
∗ by + hy. Table 2 shows the corre-

sponding capture rate for some relevant values of r0. The cover set cardinality
|Co(v)| ∈ [1, 12] and the maximum frame capture rate is set to 3fps.



Table 2. Capture rate in fps when P2 is at (12,3).

r0 1 2 3 4 5 6 7 8 9 10 11 12

0 .01 .02 .05 0.1 .17 .16 .18 .54 .75 1.1 1.5 3
.1 .07 .15 .15 .17 .51 .67 .86 1.1 1.4 1.7 2.1 3
.4 .17 .15 .55 .75 .97 1.1 1.4 1.7 2.0 2.1 2.6 3
.6 .16 .69 1.0 1.1 1.5 1.8 2.0 2.1 2.4 2.6 2.8 3
.8 .75 1.1 1.6 1.9 2.1 2.1 2.5 2.6 2.7 2.8 2.9 3
1 1.5 1.9 2.1 2.4 2.6 2.7 2.8 2.9 2.9 2.9 2 3

4 Fast event detection with criticality management

We are evaluating in this section the performance of an intrusion detection sys-
tem by investigating the stealth time of the system. For these set of simulations,
150 sensor nodes are randomly deployed in a 75m ∗ 75m area. Unless specified,
sensors have an 36o AoV and the COpbcApbc strategy is used to construct cover
sets. Each sensor node captures with a given number of frames per second (be-
tween 0.01fps and 3fps) according to the model defined in figure 3(b). Nodes
with 12 or more cover sets will capture at the maximum speed. Simulation ends
when there are no active nodes anymore.

4.1 Static criticality-based scheduling

We ran simulations for 4 levels of criticality: r0 = 0.1, 0.4, 0.6 and 0.8. The
corresponding capture rates are those shown in table 2. Nodes with high capture
rate will use more battery power until they run out of battery (initial battery
level is 100 units and 1 captured image consumes 1 unit) but, according to
the scheduling model, nodes with high capture rate are also those with large
number of cover sets. Note that it is the number of valid cover sets that defines
the capture rate and not the number of cover sets found at the beginning of the
cover sets construction procedure. In order to show the benefit of the adaptive
behavior, we computed the mean capture rate for each criticality level and then
used that value as a fixed capture rate for all the sensor nodes in the simulation
model. r0 = 0.1 gives a mean capture rate of 0.12fps, r0 = 0.4 gives 0.56fps,
r0 = 0.6 gives 0.83fps and r0 = 0.8 gives 1.18fps. Table 3 shows the network
lifetime for the various criticality and frame capture rate values.

Table 3. Network lifetime.

r0 = 0.1 0.12 fps r0 = 0.4 0.56 fps r0 = 0.6 0.83 fps r0 = 0.8 1.18 fps

2900s 620s 1160s 360s 560s 240s 270s 170s

Using the adaptive frame rate is very efficient as the network lifetime is
2900s for r0 = 0.1 while the 0.12fps fixed capture rate last only 620s. In order
to evaluate further the quality of surveillance we show in figure 4(top) the mean
stealth time when r0 = 0.1, fps = 0.12, r0 = 0.4 and fps = 0.56, and in figure



4(bottom) the case when r0 = 0.6, fps = 0.83, r0 = 0.8 and fps = 1.18. The
stealth time is the time during which an intruder can travel in the field without
being seen. The first intrusion starts at time 10s at a random position in the field.
The scan line mobility model is then used with a constant velocity of 5m/s to
make the intruder moving to the right part of the field. When the intruder is seen
for the first time by a sensor, the stealth time is recorded and the mean stealth
time computed. Then a new intrusion appears at another random position. This
process is repeated until the simulation ends.

meanStealthTime r°=0.2

meanStealthTime 0.32fps

meanStealthTime r°=0.4

meanStealthTime 0.56fps
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Fig. 4. Mean stealth time. Top: r0 = 0.1, fps = 0.12, r0 = 0.4, fps = 0.56. Bottom:
r0 = 0.6, fps = 0.83, r0 = 0.8, fps = 1.18.

Figure 5(left) shows for a criticality level r0 = 0.6 the special case of small
AoV sensor nodes. When 2α = 20o, we compare the stealth time under the
COpbcGpbc and the CObcGpbc strategies. Discarding point p in the cover set con-
struction procedure gives a larger number of nodes with larger number of cover
sets, as shown previously in table 1. In figure 5(left) we can see that the stealth
time is very close to the COpbcGpbc case while the network lifetime almost dou-
bles to reach 420s instead of 212s. The explanation is as follows: as more nodes
have cover sets, they act as sentry nodes allowing the other nodes to be in sleep
mode while ensuring a high responsiveness of the network.

In addition, for the particular case of disambiguation, we introduce a 8m.4m
rectangle at random positions in the field. COpbcGpbc is used and 2α = 36o. The
rectangle has 8 significant points as depicted in figure 5(right) and moves at
the velocity of 5m/s in a scan line mobility model (left to right). Each time a
sensor node covers at least 1 significant point or when the rectangle reaches the
right boundary of the field, it appears at another random position. This process



stealthTime, AoV=20°, bcGpbc (discard point p)

stealthTime, AoV=20°, pbcGpbc
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Fig. 5. Left: Stealth time, sliding winavg with 20 samples batch, r0 = 0.6, AoV=20o,
COpbcGpbc and CObcGpbc. Right: Rectangle with 8 significant points, initial sensor v

and 2 different cover sets.

starts at time t = 10s and is repeated until the simulation ends. The purpose
is to determine how many significant points are covered by the initial sensor
v and how many can be covered by using one of v’s cover set. For instance,
figure 5(right) shows a scenario where v’s FoV covers 3 points, the left cover
set ({v3, v1, v4}) covers 5 points while the right cover set ({v3, v2, v4}) covers
6 points. In the simulations, each time a sensor v covers at least 1 significant
point of the intrusion rectangle, it determines how many significant points are
covered by each of its cover sets. The minimum and the maximum number of
significant points covered by v’s cover sets are recorded along with the number of
significant points v was able to cover initially. Figure 6 shows these results using
a sliding window averaging filter with a batch window of 10 samples. We can
see that node’s cover sets always succeed in identifying more significant points.
Figure 7 shows that with the rectangle intrusion (that could represent a group
of intruders instead of a single intruder) the stealth time can be further reduced.
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Fig. 6. Number of covered points of an intrusion rectangle. Sliding winavg of 10.

4.2 Dynamic criticality-based scheduling

In this section we are presenting preliminary results in dynamically varying
the criticality level during the network lifetime. The purpose is to only set the
surveillance network in an alerted mode (high criticality value) when needed, i.e.



stealthTime r°=0.8 (winavg10)

stealthTime 1.18fps (winavg10)

stealthTime r°=0.8 (winavg10), rectangle intrusion
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Fig. 7. Stealth time, winavg with 10 samples batch, r0 = 0.8, fps = 1.18 and r0 = 0.8
with rectangle intrusion.

on intrusions. With the same network topology than the previous simulations,
we set the initial criticality level of all the sensor nodes to r0 = 0.1. As shown in
the previous simulations, some nodes with large number of cover sets will act as
sentries in the surveillance network. When a sensor node detects an intrusion,
it sends an alert message to its neighbors and increases its criticality level to
r0 = 0.8. Alerted nodes will then also increase their criticality level to r0 = 0.8.
Both the node that detects the intrusion and the alerted nodes will run at a high
criticality level for an alerted period, noted Ta, before going back to r0 = 0.1.
Nodes may be alerted several times but an already alerted nodes will not increase
its Ta value any further in this simple scenario. As said previously, we do not
attempt here to optimize the Ta value nor using several level of criticality values.
Figure 8shows the mean stealth time with this dynamic behavior. Ta is varied
from 5s to 60s. We can see that this simple dynamic scenario already succeeds
in reducing the mean stealth time while increasing the network lifetime when
compared to a static scenario that provides the same level of service.
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Fig. 8. Mean stealth time with dynamic criticality management.

5 Conclusions

This paper presented the performances of cover sets construction strategies and
dynamic criticality scheduling that enable fast event detection for mission-critical



surveillance with video sensors. We focused on taking into account cameras with
heterogeneous angle of view and those with very small angle of view. We show
that our approach improves the network lifetime while providing low stealth time
in case of intrusion detection systems. Preliminary results with dynamic criti-
cality management also show that the network lifetime can further be increased.
These results show that besides providing a model for translating a subjective
criticality level into a quantitative parameter, our approach for video sensor
nodes also optimize the resource usage by dynamically adjusting the provided
service level.
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