

Ear-IT WP1 Acoustic Test-bed Qualification

D1.2: Minimum requirements for use of
acoustic sensors

Abstract

This document is the EAR-IT deliverable 1.2. It presents for some selected performance
indicators the minimum requirements for use of acoustic sensors on the various EAR-IT test-
beds based on WSN and IoT nodes with IEEE 802.15.4 radio technology. These performance
indicators are categorized into (1) network performance indicators, (2) audio quality indicators
and (3) energy indicators. We will specifically present minimum requirements for audio source,
communication and buffering requirements for relay nodes and sensitivity of audio codecs
regarding packet loss rates. These indicators will then serve for deliverable 1.3 “Methodology
and tools for measurements and benchmarking on the use of acoustic sensors” with both lab
and in-situ experiments to determine the performance level of the EAR-IT test-beds.

Ear-IT

2

Project Number: Project Acronym: Project Title:

318381 EAR-IT
Experimenting Acoustics in Real environments
using Innovative Test-beds

Instrument: Thematic Priority

STREP Future Internet Research and Experiment

Title

Minimum requirements for use of acoustic sensors

Contractual Delivery Date:

Actual Delivery Date:

1st December 2013 1st April 2014

Start date of project: Duration:

October, 1st 2012 24 months

Organization name of lead contractor for
this deliverable: Document version:

EGM V0.9

Dissemination level (Project co-funded by the European Commission within the Seventh
Framework Programme)
PU Public X

PP
Restricted to other programme participants (including the Commission

RE
Restricted to a group defined by the consortium (including the Commission)

CO
Confidential, only for members of the consortium (including the Commission)

Ear-IT

3

Authors	
 (organizations)	
 :	

Congduc Pham, EGM
Philippe Cousin, EGM

Abstract	
 :	

	

This	
 document	
 is	
 the	
 EAR-­‐IT	
 deliverable	
 1.2.	
 It	
 presents	
 for	
 some	
 selected	
 performance	
 indicators	
 the	
 minimum	
 requirements	
 for	
 use	
 of	

acoustic	
 sensors	
 on	
 the	
 various	
 EAR-­‐IT	
 test-­‐beds	
 based	
 on	
 WSN	
 and	
 IoT	
 nodes	
 with	
 IEEE	
 802.15.4	
 radio	
 technology.	
 These	
 performance	

indicators	
 are	
 categorized	
 into	
 (1)	
 network	
 performance	
 indicators,	
 (2)	
 audio	
 quality	
 indicators	
 and	
 (3)	
 energy	
 indicators.	
 We	
 will	

specifically	
 present	
 minimum	
 requirements	
 for	
 audio	
 source,	
 communication	
 and	
 buffering	
 requirements	
 for	
 relay	
 nodes	
 and	

sensitivity	
 of	
 audio	
 codecs	
 regarding	
 packet	
 loss	
 rates.	
 These	
 indicators	
 will	
 then	
 serve	
 for	
 deliverable	
 1.3	
 “Methodology	
 and	
 tools	
 for	

measurements	
 and	
 benchmarking	
 on	
 the	
 use	
 of	
 acoustic	
 sensors”	
 with	
 both	
 lab	
 and	
 in-­‐situ	
 experiments	
 to	
 determine	
 the	
 performance	

level	
 of	
 the	
 EAR-­‐IT	
 test-­‐beds.	

	

	

	

	

	

	

Keywords	
 :	

Acoustic data, benchmark methodology, minimum requirement of test-bed, audio streaming

Disclaimer	

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Any liability, including liability for infringement of any proprietary rights, relating
to use of information in this document is disclaimed. No license, express or implied, by
estoppels or otherwise, to any intellectual property rights is granted herein. The members of
the project EAR-IT do not accept any liability for actions or omissions of EAR-IT members or
third parties and disclaims any obligation to enforce the use of this document. This document
is subject to change without notice.

Ear-IT

4

Revision	
 History	

The following table describes the main changes done in the document since it was created.

Revision	
 Date	
 Description	
 Author	
 (Organisation)	

0.1	
 1st	
 march	
 2014	
 Initial	
 drafting	
 	
 C.	
 Pham	
 (EGM)	

0.5	
 17	
 March	
 2014	
 Adding	
 comments	
 and	
 improvements	
 P.	
 Cousin	

0.9	
 April	
 2nd,	
 2014	
 Pre-­‐final	
 version	
 for	
 review	
 C.	
 Pham	
 (EGM)	

1.0	
 April	
 9th,	
 2014	
 Final	
 version	
 C.	
 Pham	
 &	
 P.	
 Cousin	
 (EGM)	

Ear-IT

5

Table	
 of	
 Content	

EAR-IT WP1 ACOUSTIC TEST-BED QUALIFICATION ... 1	

D1.2: MINIMUM REQUIREMENTS FOR USE OF ACOUSTIC SENSORS ... 1	

ABSTRACT .. 1	

1.	
 INTRODUCTION ... 6	

2.	
 EAR-IT AND ACOUSTIC DATA ... 7	

3.	
 IOT NODE’S HARDWARE ON EAR-IT TEST-BEDS .. 10	

SmartSantander test-bed hardware ... 10	

The HobNet test-bed hardware .. 10	

4.	
 ADDING ACOUSTIC FEATURES TO IOT NODES ... 12	

Acoustic data sampling possibilities with IoT nodes ... 12	

Current developments on target hardware platforms .. 12	

Use of a generic sender to test other audio codecs .. 18	

Summary of minimum requirements at the sender side ... 19	

5.	
 MINIMUM REQUIREMENTS IN MULTI-HOP SCENARIO ... 20	

6.	
 NETWORK INDICATORS .. 21	

Review of maximum IoT relaying performance ... 21	

Minimum buffer requirements at relay nodes .. 22	

7.	
 AUDIO INDICATORS ... 26	

Benchmark methodology .. 26	

Acoustic quality indicators ... 26	

Acoustic quality with respect to packet loss rate (transmission quality) ... 27	

8.	
 ENERGY INDICATORS ... 37	

9.	
 CONCLUSIONS AND SUMMARY OF MAIN RESULTS ... 38	

NETWORK: minimum sending/relaying rate .. 38	

NETWORK: buffer size & packet drop relationship at relay nodes .. 39	

AUDIO: maximum supported packet loss rate .. 39	

ANNEX.A: REVIEW OF SOFTWARE ENVIRONMENT, TOOLS AND TEST HARDWARE .. 40	

ANNEX.B: FUTURE DEVELOPMENTS ON TARGETED HARDWARE PLATFORMS ... 55	

REFERENCES ... 56	

	

Ear-IT

6

1. Introduction

This document is the EAR-IT deliverable 1.2. It presents for some selected performance
indicators the minimum requirements for use of acoustic sensors on the various EAR-IT test-
beds based on WSN and IoT nodes with IEEE 802.15.4 radio technology. These performance
indicators are categorized into:

1. Network performance indicators (NETWORK)
2. Audio quality indicators (AUDIO),
3. Energy indicators (ENERGY).

The document is organized as follows. Section 2 will present the EAR-IT context and will review
basic acoustic requirements. Section 3 will review the Santander’s SmartSantander and
Geneva’s HobNet test-beds used by the EAR-IT project. The IoT node’s hardware and network
components will be presented. In Section 4 we will present how audio features are added to
SmartSantander and HobNet IoT nodes, depending on the hardware constraints. Various audio
codecs will be used and we will present in more details their characteristics and minimum
requirements. Section 5 will present the minimum requirements in a global, multi-hop scenario
and the 3 categories of indicators that we will study. Section 6 will focus on the NETWORK
indicators when it comes to support acoustic data: packet loss rate, relay latency and packet
jitter to name a few. Section 7 will study the AUDIO requirements to determine, according to a
given audio codec, the maximum acceptable packet loss rate. For the ENERGY indicator,
Section 8 will discuss some energy considerations in order to provide both performance and
usability indicators.

This deliverable 1.2 will be followed by deliverable 1.3 “Methodology and tools for
measurement and benchmarking on the use of acoustic sensors” with both lab and in-site tests
to determine the performance level of the EAR-IT test-beds.

Ear-IT

7

2. EAR-IT and acoustic data

There is a growing interest in multimedia contents for surveillance applications in order to
collect richer information from the physical environment. Capturing, processing and
transmitting multimedia information with small and low-resource device infrastructures such as
Wireless Sensor Networks (WSN) or so-called Internet-of-Things (IoT) is quite challenging but
the outcome is worth the effort and the range of surveillance applications that can be
addressed will significantly increase. The EAR-IT project is one of these original projects which
focuses on large-scale "real-life" experimentations of intelligent acoustics for supporting high
societal value applications and delivering new innovative range of services and applications
mainly targeting to smart-buildings and smart-cities, see figure 1.

Figure 1: Santander’s SmartSantander test-bed for EAR-IT

One scenario that can be demonstrated is an on-demand acoustic data-streaming feature for
surveillance systems and management of emergencies. Other applications such as traffic
density monitoring or ambulance tracking are also envisioned and are also requiring timely
multi-hop communications between low-resource nodes. The EAR-IT project relies on 2 test-
beds to demonstrate the use of acoustic data in smart environments: the smart city
SmartSantander test-bed and the smart building HobNet test-bed. Figure 2 illustrates both
test-beds and the multi-hop relaying issues of acoustic data in these environments.

Figure 2: Acoustic data streaming on SmartSantander and HobNet

Ear-IT

8

Acoustic data are usually obtained through a sampling process of an analog signal from a
microphone. Narrow-band sampling processes use a sampling rate lower than 8KHz while
wide-band sampling usually samples at a frequency greater than 16KHz. An A/D converter
usually performs the sampling process providing the digital samples on a number of bits, e.g. a
digital sample on 10 bits gives values between 0 and 1023 for instance. Sampling at 8KHz
means that the A/D converter must provide 1 sample every 125us.

Most of audio processes used in communication networks are narrow-band audio with a
sampling rate equal or lower than 8KHz. Also, samples are usually coded on 8 and 16 bits,
meaning that the digital value provided by the A/D converter is usually mapped (quantization
stage) on 8 or 16 bits. Therefore, in the so-called raw format, the continuous flow of audio
data represents an 64kbit/s data flow if samples are 8 bits wide: 8*8000=64000 bits.

The raw audio can be compressed in various manners and many compression algorithms have
been proposed and used widely in communication networks and applications: traditional wired
telephony systems, Voice over IP, GSM, … Compression can provide a much smaller bit rate to
adapt the required throughput to the available bandwidth of the transmission system. This is
particularly important for near real-time audio in streaming applications. The term “audio
codec” will then be used as a generic term to designate one audio compression scheme. There
are hundreds of different audio codecs used in the telephony, music and video industry to
name them all. Although not an authoritarian source, a quite exhaustive list of audio codecs
and audio containers are presented on http://en.wikipedia.org/wiki/List_of_codecs and
http://en.wikipedia.org/wiki/Comparison_of_container_formats.

In the EAR-IT project, the hardware limitations of IoT nodes impose the use of narrow-band
audio with sampling rates smaller or equal to 8KHz. Also, the limitations on the sending rate at
the application level and on the radio bandwidth generally discard audio bit rates greater than
64kbps as pointed out in the EAR-IT deliverable 1.1 on the network qualification.

In addition to these constraints, we also wanted to use open-source codecs to insure largest
dissemination, compatibility and interoperability. Another important criteria is the availability
of libraries and tools that can be easily installed, used and integrated on any Linux-box on the
market. We therefore selected 3 narrow-band and open-source audio codecs, raw, codec2 and
speex, which will be described later in the document. The minimum requirements therefore
greatly depend on the audio codec that will be used.

Multi-hop transmissions as depicted by figure 3 below also increase the packet loss rates and
introduce larger packet jitter. As audio traffic is isochronous, packet jitter can have a dramatic
impact on the audio restitution quality.

Figure 3: Multi-hop audio transmission issues

Near real-time audio streaming usually needs small packet jitter in order to avoid gaps in the
audio play out. As bounded jitter is difficult to achieve because timing guarantees are difficult

Ear-IT

9

to ensure in communication protocols at low cost, a best-effort approach is commonly
used with an end-point play out buffer. Figure 4 below illustrates the basic principles of a play
out buffer with the objective of shaping and regulating the packet output rate.

Figure 4: Principles of a play out buffer to handle packet jitter

Audio streaming is challenging on a multi-hop manner on low-resource IEEE 802.15.4 IoT
nodes because relaying overheads and packet loss rates can be high. However, if the number
of hops is small, a best-effort approach can be adopted for simplicity with a simple play out
buffer at the end point (we assume that most of communication issues are between the IoT
node and the gateway as once on the gateway, traditional Internet connection technologies
such as Wi-Fi, 3G or wired Ethernet are sufficient enough).

The use of a play out buffer leverages the packet jitter issue at the cost of a higher play out
latency. The minimum requirement regarding packet jitter is then to define at the application
level the acceptable latency. For instance, for an on-demand audio streaming scenario, the
maximum acceptable time between the audio request and the beginning of the audio play out
must be defined. Low bit rate audio codecs have the advantage of not requiring large amount
of buffers.

The next section will present the developed hardware for the EAR-IT’s IoT nodes to support
acoustic data, i.e. sampling and transmission.

Ear-IT

10

3. IoT node’s hardware on EAR-IT test-beds

The EAR-IT test-beds consist in (i) the SmartSantander test-bed and (ii) the HobNet test-bed.
The SmartSantander test-bed is a FIRE test-bed with 3 locations. Being one location the
Santander city in north of Spain with more than 5000 nodes deployed across the city. This is
the site we will use when referring to the SmartSantander test-bed. HobNet is also a FIRE test-
bed that focuses on Smart Buildings. Although the HobNet test-bed has several sites, within
the EAR-IT project only test-bed located at MANDAT Intl and HEPIA are concerned. Many
information can be found on corresponding project web site (www.smartsantander.eu and
www.hobnet-project.eu) but we will present in the following paragraphs some key information
that briefly present the main characteristics of the deployed nodes.

SmartSantander test-bed hardware

IoT	
 nodes	
 and	
 gateways	

IoT nodes in the Santander test-bed are WaspMote sensor boards and gateways are Meshlium
gateways, both from Libelium. Most of IoT nodes are also repeaters for multi-hops
communication to the gateway. Figure 5 shows on the left part the WaspMote sensor node
serving as IoT node and on the right part the gateway. The WaspMote is built around an Atmel
ATmega1281 micro-controller running at 8MHz. There are 2 UARTs in the WaspMote that serve
various purposes, one being to connect the micro-controller to the radio modules.

Figure 5: Santander’s IoT node and gateway

Radio	
 module	

IoT nodes have one XBee 802.15.4 module and one XBee DigiMesh module. Differences
between the 802.15.4 and the DigiMesh version are that Digimesh implements a proprietary
routing protocol along with more advanced coordination/node discovery functions. In this
document, we only consider acoustic data transmission/relaying using the 802.15.4 radio
module as the DigiMesh interface is reserved for management and service traffic. XBee
802.15.4 offers the basic 802.15.4 [802154] PHY and MAC layer service set in non-beacon
mode. Santander's nodes have the "pro" version, set at 10mW transmit power, with an
advertised transmission range in line-of-sight environment of 750m. Details on the
XBee/XBee-PRO 802.15.4 modules can be found in [XBeeDigi] [DMDigi].

The HobNet test-bed hardware

IoT	
 nodes	

Sensor nodes in the HobNet test-bed consist in AdvanticSys TelosB motes, mainly CM5000 and
CM3000, see figure 6, that are themselves based on the TelosB architecture. These motes are

Ear-IT

11

built around a TI MSP430 microcontroller with an embedded Texas Instrument CC2420
802.15.4 compatible radio module. The TelosB description and data-sheet can be found in
[TELOSB]. Documentation on the AdvanticSys motes can be found in [ADVAN]. AdvanticSys
motes run under the TinyOS system [TINYOS]. The last version of TinyOS is 2.1.2 and our
tests use this version.

Figure 6: CM5000 (left) and CM3000 (right)

Radio	
 module	

The CC2420 is less versatile than the XBee module but on the other hand more control on low-
level operations can be achieved. The important difference compared to the previous Libelium
WaspMote is that the radio module is connected to the microcontroller through an SPI bus
instead of a serial UART line which normally would allow for much faster data transfer rates.
The CC2420 radio specification and documentation are described in [CC2420].

The TinyOS configuration by default uses a MAC protocol that is compatible with the 802.15.4
MAC (Low Power Listening features are disabled). It also uses ActiveMessage (AM) paradigm to
communicate. As we are using heterogeneous platforms we will rather the TKN154 IEEE
802.15.4 compliant API. We verified the performances of TKN154 against the TinyOS default
MAC and found them greater.

Ear-IT

12

4. Adding acoustic features to IoT nodes
Acoustic data sampling possibilities with IoT nodes

As stated previously, most of IoT nodes are based on low speed microcontroller (Atmel 1281 at
8MHz for the Libelium WaspMote and TI MSP430 at 16Mhz for the AdvanticSys) making
simultaneous raw audio sampling and transmission nearly impossible when using only the
mote microcontroller.

To leverage these performance issues, one common approach is to dedicate one of the 2 tasks
to another microcontroller:

1. Use another microcontroller to perform all the transmission operations (memory
copies and buffering, frame formatting, among others);

2. Use another microcontroller to perform the sampling operations (generates
interruptions, reads analog input, performs A/D conversion and possibly encodes the
raw audio data).

With the hardware platforms used in the EAR-IT project we can investigate these 2 solutions:

1. Libelium WaspMote uses an XBee radio module which has an embedded internal
microcontroller that is capable of handling all the sending operations when running in
so-called transparent mode (API mode 0 of XBee module);

2. Develop a daughter audio board for the AdvanticSys TelosB mote that will perform the
periodic sampling, encode the raw audio data with a given audio codec and fill in a
buffer that will be periodically read by the host microcontroller, i.e. the TelosB MSP430.

In the following sub-sections we will describe in more details these 2 solutions to demonstrate
the audio capabilities of resource-constrained IoT nodes.

Current developments on target hardware platforms

Libelium	
 WaspMote	

Figure 7: raw audio capture with Libelium WaspMote

Ear-IT

13

Synopsis

1. Use a pre-amplified MIC and connect it a analog input of the Libelium WaspMote. We
use the following MIC: http://www.cooking-hacks.com/shop/sensors/sound/breakout-
board-for-electret-microphone (see figure7, left) and connect it to the WaspMote (AUD
to Analog2, VCC to Digital 2 to get 3.3V and GND to GND, see figure 7, right).

2. Configure an XBee radio module in transparent mode (API mode 0). Broadcast or
unicast communications can be used but this has to be configured prior to sending any
data because we let the XBee microcontroller do all the sending tasks. Here is a text
taken from the XBee manual from Digi:

« When operating in this mode, the modules act as a serial line replacement - all UART
data received through the DI pin is queued up for RF transmission »

« Data is buffered in the DI buffer until one of the following causes the data to be
packetized and transmitted:

a. No serial characters are received for the amount of time determined by the RO
(Packetization Timeout) parameter. If RO = 0, packetization begins when a
character is received.

b. The maximum number of characters that will fit in an RF packet (100) is
received.

c. The Command Mode Sequence (GT + CC + GT) is received. Any character
buffered in the DI buffer before the sequence is transmitted. »

In our case, data will be sent by the XBee radio module internal microcontroller either
on case (a) or (b).

3. Sample the analog input (Analog2) at 4KHz or 8KHz, i.e. read analog value once every
250us or 125us. A/D converter gives a 10-bit sample so it has to be converted into an
8-bit sample.

4. As the XBee radio module is connected to the host microcontroller, i.e. the Atmel 1281,
with a serial UART line, we can just write in a dedicated register the 8-bit sampled
value.

5. Receive on a PC or a gateway (Libelium Meshlium for instance) using an XBee radio
module in AP0 mode that will send data to the serial interface.

6. Continuously read PC or gateway serial port and send data to standard output (usually
stdout on a Unix machine). Use redirection to inject stdout into an audio player such
as play (part of sox package on a Linux machine).

Current development status

1. All the steps have been successfully demonstrated and validated.

2. 4KHz and 8KHz sampling version are available.

Review of sending performances

We already reported in deliverable 1.1 the time spent in a generic send() function, noted tsend,
and the minimum time between 2 packet generation, noted tpkt. tpkt will typically take into
account various counter updates and data manipulation so depending on the amount of
processing required to get and prepare the data, tpkt can be quite greater than tsend. With tsend,
we can easily derive the maximum sending throughput that can be achieved if packets could

Ear-IT

14

be sent back-to-back, and with tpkt we can have a more realistic sending throughput.

In order to measure these 2 values, we developed a traffic generator with advanced timing
functionalities. Packets are sent back-to-back with a minimum of data manipulation needed to
maintain some statistics (counters) and to fill-in data into packets, which is the case in a real
application. On the WaspMote, we increased the default serial baud rate between the
microcontroller and the radio module from 38400 to 125000. The Libelium API has also been
optimized (for instance, we also remove the overhead of waiting for transmission status, which
is not very relevant for real-time acoustic data) to finally cut down the sending overheads by
almost 3 compared to the original Libelium API! Figure 8 shows tsend and tpkt for the WaspMote.

Figure 8: tsend and tpkt for for WaspMote

Minimum requirements for raw audio

1. The default factory communication speed of an XBee module is 9600 bauds. Libelium

ships the XBee module with the Libelium WaspMote configured at 38400 bauds. This
baud rate can handle 4KHz sampling.

2. For 8KHz sampling, the baud rate must be increased to at least 64000 bauds. Due to
clock constraints (that were explained in deliverable 1.1) standard baud rates (such as
115200) are not accurate enough and 125000 bauds should be used instead. Therefore
the XBee module MUST BE configured at 125000 baud to handle 8KHz sampling.

3. It is difficult to use the RO (Packetization Timeout) for triggering the sending of
buffered data. Therefore, acoustic data are sent once 100 8-bit samples have been
buffered. This means that the communication stack MUST BE able to send a 100-byte
radio packet every 25ms or 12.5ms depending on the sampling frequency, i.e. 4KHz or
8Khz.

4. According to deliverable 1.1 this is out of reach of the WaspMote with the radio module
in API mode, even for 4KHz sampling rate, which requires a time window of 25ms,
because the sending delays (shown in figure 8 above) are only valid with a
microcontroller fully dedicated to the communication tasks. This is the reason why we
set the XBee module in transparent mode, delegating the radio packet formatting
overheads to the XBee embedded micro-controller while the main WaspMote micro-
controller is dedicated to the sampling process.

 	

Ear-IT

15

AdvanticSys	
 TelosB	
 	

Synopsis

1. Develop a daughter audio board with its own microcontroller that will be connected to
the AdvanticSys expansion connector. The audio board will handle the sampling
operations and encode in real-time the raw audio data into Speex codec
(www.speex.org). 8KHz sampling and 8-bit sample will be used to produce an
optimized 8kbps encoded Speex stream (speex encoding library is provided by
Microchip).

2. The audio board is designed and developed through collaboration with INRIA CAIRN
research team. Here is a schematic of the audio board design:

The audio board has a built-in omnidirectional MEMs microphone (ADMP404 from
Analog Devices) but an external microphone can also be connected. The microphone
signal output is amplified, digitized and filtered with the WM8940 audio codec. The
audio board is built around a 16-bit Microchip dsPIC33EP512 microcontroller clocked at
47.5 MHz that offers enough processing power to encode the audio data in real-time.
From the system perspective, the audio board sends the audio encoded data stream to
the host microcontroller through an UART component. The host mote will periodically
read the encoded data to periodically get fixed size encoded data packets that will be
transmitted wirelessly through the communication stack.

3. Connect the audio board to the AdvanticSys through the 51-pin expansion connector:
from the system perspective, the audio board sends the audio encoded data stream
through an UART connection to the host micro-controller.

.

Ear-IT

16

Figure 9: developed audio board and AdvanticSys TelosB with the audio board

4. 8KHz speex works with 20ms audio frames: every 20ms, 160 8-bit samples of raw
audio data are sent to the speex encoder to produce a 20-byte audio packet.

5. Read encoded date from the host mote to periodically get fixed size encoded data
packets that will be transmitted wirelessly through the communication stack (provided
by TinyOS environment).

6. Receive on a PC or a gateway (Libelium Meshlium for instance) using another
AdvanticSys mote as a base station mote.

7. Continuously read PC or gateway serial port and send data to standard output (usually
stdout on a Unix machine). Use redirection to inject stdout into a Speex decoder that
will also send on stdout the raw decoded audio data.

Ear-IT

17

8. Use redirection to inject stdout into an audio player such as play (part of sox package

on a Linux machine).

Current development status

1. All the steps have been successfully demonstrated and validated.

2. Audio capture and data streaming can be triggered on an on-demand basis: the audio
board can be controlled and configured remotely.

Review of sending performances

Similar to the WaspMote case, we reported in deliverable 1.1 the time spent in a generic
send() function, noted tsend, and the minimum time between 2 packet generation, noted tpkt,
for the AdvanticSys TelosB mote. Figure 10 shows tsend and tpkt for the TelosB with the TKN154
802.15.4 protocol stack under TinyOS 2.1.2.

Figure 10: tsend and tpkt AdvanticSys TelosB

Minimum requirements of speex codec

1. As the speex encoder produces a 20-byte audio packet every 20ms, the sender node
SHOULD BE able to send a 20-byte radio packet every 20ms.

2. However, as the payload of a 20ms audio sampling is smaller than the maximum radio
payload (100 bytes), it is possible to aggregate several audio frames into 1 radio
packet. Due to additional framing bytes (4 bytes) that are required for reliability and
robustness issues (see ANNEX A, slide 16), the maximum number of audio frames that
can be aggregated is 4 (noted A4 aggregation level), giving a total payload of 96 bytes.
Therefore the sender MUST BE able to send a 96-byte packet every 80ms as the
minimum requirement for loss-free aggregation mode.

3. Without audio aggregation the time to send a 20-byte packet is very close to the time
window of 20ms. Therefore audio data losses are likely to occur at the source. Starting
from an aggregation level of 2 (2 audio frames in a radio packet, A2 level), the
AdvanticSys TelosB can easily sustain the required sending rate.

Ear-IT

18

Use of a generic sender to test other audio codecs

Synopsis

1. We use an Arduino MEGA 2560 platform with an XBee radio module and an external SD
card storage extension. We also have an LCD display to ease the interaction with the
mote. Figure 11 below shows our Arduino-based generic sender node.

Figure 11: Arduino-based generic sender with an SD card extension

2. A desktop computer (e.g. Linux machine) is use to produce the desired audio codec. We

use the open-source codec2 codec, which is a very low bit rate codec. codec2 proposes
bit rates of 1400, 2400 and 3200bps. Figure below shows for the various bit rates the
codec2 operations.

3. The audio files are stored on an SD card and we can dynamically select which file is
going to be sent. The audio file will be transmitted in a number of packets according to
the defined chunk size. When the sending is triggered, we can choose the time between
the generation of two packets as well as the chunk size.

4. Receive on a PC or a gateway (Libelium Meshlium for instance) using any 802.15.4
gateway.

5. Continuously read PC or gateway serial port and send data to standard output (usually
stdout on a Unix machine). Use redirection to inject stdout into a codec2 decoder that
will also send on stdout the raw decoded audio data.

6. Use redirection to inject stdout into an audio player such as play (part of sox package
on a Linux machine).

Ear-IT

19

Current development status

1. All the steps have been successfully demonstrated and validated.

Review of sending performances

The WaspMote board is very similar to the Arduino MEGA. However, the latter platform is more
powerful as it runs at 16MHz instead of 8MHz or the WaspMote. In addition, the
communication API is less complex. Therefore, on the Arduino, the communication API has
better performances, especially for tpkt: for a 100-byte packet tpkt is about 13ms to be
compared with the 16.3ms of the WaspMote.

Minimum requirements

1. codec2 encoder at 1400bps produces a 7-byte audio packet every 40ms. For 2400 and
3200 bit rates, the encoder works with 20ms time window and produces 6 and 8 bytes
of encoded audio respectively. In this document, we will only consider 2400 and 3200
bit rates. Therefore, the sender node SHOULD BE able to send 6 or 8 bytes every 20ms.

2. However, as the payload of 20ms audio sampling is much smaller than the maximum
radio payload (100 bytes), it is possible to aggregate several audio frames into 1 radio
packet. Due to additional framing bytes (3 bytes) that are required for reliability and
robustness issues (see ANNEX A, slide 25), the maximum number of audio frames that
can be aggregated at 2400bps is 11 (A11). At 3200bps, only 9 frames can be
aggregated (A9), giving a total payload of 99 bytes in both cases. Therefore the sender
MUST BE able to send a 99-byte packet every 220ms or 180ms respectively as the
minimum requirement for loss-free aggregation mode.

Summary of minimum requirements at the sender side

Codec Minimum sending rate

Raw

4KHz

8KHz

100 bytes every 25ms

100 bytes every 12.5ms

Speex 8000bps

A1
A2
A3
A4

24 bytes every 20ms
48 bytes every 40ms
72 bytes every 60ms
96 bytes every 80ms

Codec2

2400bps
A1
.
.
An (1≤n≤11)

3200bps
A1
.
.
An (1≤n≤9)

9 bytes every 20ms
.
.

9*n bytes every n*20ms

11 bytes every 20ms

11*n bytes every n*20ms

Table I: summary of the minimum requirements at the sender side

Ear-IT

20

5. Minimum requirements in multi-hop scenario

Figure 12 illustrates from the source to the destination through relay nodes the various
constraints and limitations that will impact the audio transmission in a multi-hop scenario.

Figure 12: multi-hop constraints and limitations

Our focus in this document is to define performance indicators for acoustic data in a multi-hop
environment. In the next deliverable we will measure experimentally these indicators both in
lab test conditions and in-site test condition on the two EAR-IT test-beds. These performance
indicators are categorized into:

4. Network performance indicators (NETWORK)
5. Audio quality indicators (AUDIO),
6. Energy indicators (ENERGY).

For network indicators, the minimum requirements will be determined for:

1. Packet relaying time and jitter at relay nodes
2. Buffering capability at relay nodes

For audio quality indicators, we will study:

1. Sensitivity of audio codecs
2. Impact of packet size on audio quality
3. Impact of packet losses on audio quality

to determine the minimum requirements for an acceptable audio quality at the receiver.

For energy indicators, we will discuss on:

1. Node lifetime for capturing and transmitting audio
2. Node lifetime for relaying audio data

Ear-IT

21

6. NETWORK indicators
Review of maximum IoT relaying performance

We also used the traffic generator to send packets to a receiver where we measured (i) the
time needed by the mote to read the received data into user memory or application level,
noted tread, and (ii) the total time needed to relay a packet. Figure 13 shows the results.

Figure 13: tread and trelay for for WaspMote (top) and AdvanticSys TelosB (bottom)

On the WaspMote, we found that tread is quite independent from the microcontroller to radio
module communication baud rate as the main source of delays come from memory copies.

In figure 13(top), the relaying time is based on a radio to microcontroller communication
speed of 38400bps. Unlike the previous case of audio source mote where we increased this
speed to 125000, we chose to use the default speed as changing it needs a major change in
the software and hardware configuration of sensor board which is not practically possible at
large scale on the SmartSantander test-bed.

Ear-IT

22

Minimum buffer requirements at relay nodes

Libelium	
 WaspMote	
 audio	
 source	

At the sender, raw audio at 4KHz and 8KHz with the WaspMote gives a 100-byte packet every
25ms and 12.5ms respectively. To sustain the relaying operation, a relay node MUST BE able
to relay incoming packets as fast as it receives them. Buffers can be used to store incoming
packets but the cost of memory copies must be taken into account. With buffering capabilities,
we can have a more elaborated system.

With WaspMote as relay nodes, the relaying time (reception and transmission to next hop)
for a 100-byte packet is about 108ms. During the relaying of a single packet, the WaspMote
relay node will receive about 4 packets or 8 packets depending on the sampling rate of the
source, i.e. 4KHz or 8KHz. The system is similar to a simple producer-consumer model with
deterministic packet arrival time and service time. Given that the packet-incoming rate is more
than 4 times greater than the output rate, the traffic intensity ρ is well above 1 therefore the
system is not sustainable and packets will be dropped when the storage buffer is full.

If we take the relaying time as the system’s cycle duration T and assuming a continuous
behaviour (both for arrival and departure), the amount of bytes in excess every cycle
T=108ms is:

• 4KHz: 108/25 * 100 = 432
• 8KHz: 108/12.5 * 100 = 864

Therefore, if λ is the byte arrival rate, we have λ4KHz=432 and λ8KHz=864. If Q is the size of the
buffer, we can write:

 (Eq. 1) Q(t) = λ*t – µ*t

Where µ is the departure rate, which is 100 bytes for a cycle.

If Q = 4000 bytes which is the typical amount of dynamic memory available for the application
on these low-resource motes, replacing Q in Eq. 1 gives:

 (Eq. 2) t = 4000/(λ-µ)

Depending on the sampling rate, we have:

• t4KHz = 4000/(λ4KHz-µ) = 12.05
• t8KHz = 4000/(λ8KHz-µ) = 5.24

In summary, according to Eq. 2, a WaspMote relay node will start dropping incoming packets
after 12.05*T=12.05*108ms=1.3s if the audio source is a 4KHz source, or after
5.24*T=5.24*108ms=0.57s if the audio source is an 8KHz source.

If the relay node is an AdvanticSys TelosB, we have T=28ms instead of 108ms and,
λ4KHz=112 and λ8KHz=224. Again, depending on the source-sampling rate, we have:

• t4KHz = 4000/(λ4KHz-µ) = 333.33
• t8KHz = 4000/(λ8KHz-µ) = 32.26

In summary, an AdvanticSys TelosB relay node will start dropping incoming packets after
333.33*T=333.33*28ms=9.33s if the audio source is a 4KHz source, or after
32.25*T=32.26*28ms=0.9s if the audio source is a 8KHz source.

These results are summarized in Table II below

Ear-IT

23

Table II: summary of the minimum requirements at relay node, WaspMote audio

Table III below shows the time before packet drop due to a full receive buffer when the
amount of buffer Q is varied from 1000 bytes to 5000 bytes by a 500-byte increment. /W or /t
denotes respectively a WaspMote and a TelosB relay node. Figure 14 illustrates these results.

Table III: time before packet drop due to a full receive buffer, WaspMote audio

Figure 14: time before packet drop due to a full receive buffer, WaspMote audio

When building a minimal relay node with a WaspMote, we found that the amount of free
memory for the application is about 2500 bytes. In this case a WaspMote node can relay less
than 1s of 4KHz audio, without dropping any packet .

Aggre
gation*
level

Relay*
time*
(ms)

pkt*inter5
arrival*

time*(ms)

pkt*
size*
(byte) λ μ Q*(byte) t*(#cycle)

t*
(second)

WaspMote*audio*4KHz*
WaspMote*relay NA 108 25 100 432 100 4000 12.05 1.30
WaspMote*audio*8KHz*
WaspMote*relay NA 108 12.5 100 864 100 4000 5.24 0.57
WaspMote*audio*4KHz*
TelosB*relay NA 28 25 100 112 100 4000 333.33 9.33
WaspMote*audio*8KHz*
TelosB*relay NA 28 12.5 100 224 100 4000 32.26 0.90

Q 4KHz/W 8KHz/W 4KHz/T 8KHz/T
1000 0.33 0.14 2.33 0.23
1500 0.49 0.21 3.50 0.34
2000 0.65 0.28 4.67 0.45
2500 0.81 0.35 5.83 0.56
3000 0.98 0.42 7.00 0.68
3500 1.14 0.49 8.17 0.79
4000 1.30 0.57 9.33 0.90
4500 1.46 0.64 10.50 1.02
5000 1.63 0.71 11.67 1.13

WaspMote:audio,:WaspMote:&:TelosB:relay:nodes

Ear-IT

24

AdvanticSys	
 TelosB	
 audio	
 source	

At the sender, speex encoded audio at 8kbps with AdvanticSys TelosB gives a 24-byte packet
(with framing overhead) every 20ms without audio aggregation (A1 level). Again, to sustain
the relaying operation, a relay node MUST BE able to relay incoming packets as fast as it
receives them. Table I shown previously gives the minimum requirements in terms of relaying
capabilities to avoid packet drops depending on the audio aggregation level.

With WaspMote as relay nodes, the relaying time (reception and transmission to next hop)
according to the audio aggregation level is;

• A1, 24-byte packet: relay time is about 58ms
• A2, 48-byte packet: relay time is about 74ms
• A3, 72-byte packet: relay time is about 89ms
• A4, 96-byte packet: relay time is about 106ms

Table I shown previously also gave the packet inter-arrival time depending on the audio
aggregation level. Therefore, if we take the same methodology than previously with the
WaspMote audio node, we can determine the impact of buffering capability on the audio packet
drop rate. The results are summarized in Table IV below for Q=4000 bytes as previously.

Table IV: summary of the minimum requirements at WaspMote relay node, AdvanticSys TelosB audio

Again, Table V below shows the time before packet drop due to a full receive buffer when the
amount of buffer Q is varied from 1000 bytes to 5000 bytes by a 500-byte increment, and for
the various aggregation levels. Figure 15 illustrates these results.

Table V: time before packet drop due to a full receive buffer, TelosB audio board

Aggre
gation*
level

Relay*
time*
(ms)

pkt*inter5
arrival*

time*(ms)

pkt*
size*
(byte) λ μ Q*(byte) t*(#cycle)

t*
(second)

A1 58 20 24 69.60 24 4000 87.72 5.09
A2 74 40 48 88.80 48 4000 98.04 7.25
A3 89 60 72 106.80 72 4000 114.94 10.23
A4 106 80 96 127.20 96 4000 128.21 13.59

TelosB*audio/WaspMote*relay

Q A1 A2 A3 A4
1000 1.27 1.81 2.56 3.40
1500 1.91 2.72 3.84 5.10
2000 2.54 3.63 5.11 6.79
2500 3.18 4.53 6.39 8.49
3000 3.82 5.44 7.67 10.19
3500 4.45 6.35 8.95 11.89
4000 5.09 7.25 10.23 13.59
4500 5.72 8.16 11.51 15.29
5000 6.36 9.07 12.79 16.99

TelosB4audio4board,4WaspMote4relay4node

Ear-IT

25

Figure 15: time before packet drop due to a full receive buffer, TelosB audio board

With TelosB as relay nodes, the relaying time (reception and transmission to next hop)
according to the audio aggregation level is;

• A1, 24-byte packet: relay time is about 18ms
• A2, 48-byte packet: relay time is about 21ms
• A3, 72-byte packet: relay time is about 25ms
• A4, 96-byte packet: relay time is about 28ms

Therfore, theoretically, the TelosB can relay faster than the packet inter-arrival time. We then
have a system where buffers are not needed.

Ear-IT

26

7. AUDIO indicators

The WaspMote platform will be tested with raw audio data that will be referred to as raw
codec. The AdvanticSys TelosB with the audio board will be tested with speex codec. We also
tested with codec2 codec for comparison purposes. In this case, the generic sender node is
used to send perform data segmentation and transmission.

Benchmark methodology

Figure 16 shows the benchmark methodology for measuring audio codec sensitivity to packet
losses for instance.

Figure 16: General process of audio quality tests

Going from left to right, audio data are converted into raw, codec2 and speex codecs: .raw,
.bit and .spx (purple boxes). We also create .wav format of these audio files: .raw.wav,
.bit.wav and .spx.wav (purple boxes). Various packet sizes and packet loss rates are applied
on the .raw, .bit and .spx files (red boxes), that are then converted into .wav format (red
boxes). The audio quality between the original files and the files with packet losses will be
determined and compared.

Acoustic quality indicators

We can use ITU-T PESQ benchmark tool suite to determine the MOS (Mean Opinion Score)
value for audio data (raw, codec2, speex). MOS value greater than 2.6 are usually considered
very acceptable in telephone applications. Here are links to tools and documents related to the
ITU-T PESQ benchmark

• ITU-T P.862 Perceptual evaluation of speech quality (PESQ): An objective method for
end-to-end speech quality assessment of narrow-band telephone networks and speech
codecs. Download software at:
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-P.862-200511-
I!Amd2!SOFT-ZST-E&type=items

• ITU-T PESQ in practice:http://stackoverflow.com/questions/2329403/how-to-start-a-
voice-quality-pesq-test

Ear-IT

27

• E-Model tutorial: http://www.itu.int/ITU-T/studygroups/com12/emodelv1/tut.htm

• E-model on-line tool:http://www.itu.int/ITU-T/studygroups/com12/emodelv1/calcul.php

• ITU-T P Series: Telephone transmission quality, telephone installations, local line
networks : http://www.itu.int/net/itu-t/sigdb/genaudio/Pseries.htm

• ITU-T R-factor, E-model and MOS:
http://www.sageinst.com/downloads/960B/EModel_wp.pdf

• wav2rtp tool : http://wav2rtp.sourceforge.net

In all our tests, we use an original raw 8KHz audio test file of about 13s, referred to as
test.wav. This file has then been converted into codec2 (.bit) and speex (.spx) codec. Various
bit rates can be used: usually the higher the better quality. codec2 can use 1400, 1600, 2400
and 3200 bit rates while speex can propose 2150, 5950, 8000, 11000, 13000 and 15000 bit
rates. Table VI below shows the MOS value (output of the ITU-T PESQ software) of comparison
between the original test.wav file and the encoded one. We also have a 4KHz sampling file to
compared with the 8KHz case. The MOSLQO column is the MOS value used for comparison
purposes.

REFERENCE DEGRADED PESQMOS MOSLQO SAMPLE_FREQ MODE
test.wav test.wav 4.500 4.549 8000 nb

test.wav test4000Hz.raw.wav 0.769 1.115 4000 nb

test.wav test2150.spx.wav 2.757 2.472 8000 nb
test.wav test5950.spx.wav 3.428 3.454 8000 nb
test.wav test8000.spx.wav 3.652 3.757 8000 nb
test.wav test11000.spx.wav 3.941 4.093 8000 nb
test.wav test13000.spx.wav 3.941 4.093 8000 nb
test.wav test15000.spx.wav 4.085 4.235 8000 nb

test.wav test1400.bit.raw.wav 2.625 2.293 8000 nb
test.wav test1600.bit.raw.wav 2.648 2.323 8000 nb
test.wav test2400.bit.raw.wav 2.768 2.487 8000 nb
test.wav test3200.bit.raw.wav 2.801 2.533 8000 nb

Table VI : MOSLQO value of 4KHz raw, speex and codec2 codecs compared to original file

Most of speex bit rates have high MOS value. With the developed audio board, the speex bit
rate is 8000bps. Compared to the original file, the MOS indicator shows a value of 3.757 which
denotes a very good fidelity to the original file. With codec2, as the bit rate is very low, the
MOS values are in all cases below 2.6. However, as the EAR-IT targeted applications are not
telephone conversations but mainly short audio streaming with a human operator at the other
end, we observed that even the 4000Hz sampling file with a MOS value of 1.115 still provides
sufficient quality for a human operator to understand the speech. In the EAR-IT audio
streaming scenario, the MOS value is therefore an useful indicator for comparison purposes but
a low MOS value does not necessarily means that the audio data is un-exploitable by a human
operator.

Acoustic quality with respect to packet loss rate (transmission quality)

This section describes the benchmark tests illustrated in figure 9. We use XBeeSendFile (see
Annex.B.8) to segment the encoded audio file and to apply packet losses. We then compared
the original encoded file with the output of XBeeSendFile with the ITU-T PESQ software. We
will present in the next paragraphs the results for raw, codec2 and speex codecs.

	

Ear-IT

28

Raw	

Raw format audio capture is realized with the Libelium WaspMote hardware as illustrated
previously in figure 7. The sampling rate can be 4KHz and 8KHz. The XBee radio module runs
in transparent mode and automatically sends the packet when the maximum radio packet size
is reached, i.e. 100 bytes (see ANNEX.A slide 9).

It is however possible to trigger the sending of buffered data with adequate commands sent to
the radio module. Figure 17 shows for the 4000Hz sampling case the MOSLQO value when the
packet loss rate is varied from 5% to 70% and the radio packet size is set to 40 bytes. The
first blue bar represents the loss-free case. Therefore, we have the maximum MOSLQO value
when compared to the loss-free case. When a packet is dropped/lost, the receiver can simply
either ignore it, or it can detect the packet loss (with gap in sequence number for instance)
and fill-in the missing data with 0 values for instance.

Doing so can preserve the timing of the audio file and generally can improve the audio quality.
The red bars represent the case where missing data is ignored, while the blue bars are for the
case when the receiver detects the packet losses.

Figure 17: MOSLQO value for 4KHz raw format as packet loss rate is varied, 40 bytes payload

Figure 18 shows the MOS when the radio packet size is set to 80 bytes

Ear-IT

29

Figure 18: MOSLQO value for 4KHz raw format as packet loss rate is varied, 80 bytes payload

Even though the MOS value is well below 2.0 for packet loss rates greater than 25%, we
observed that the audio quality is still sufficient for an easy understanding of the speech up to
50% packet losses.

Figure 19 shows for the 8000Hz sampling case the MOSLQO value when the packet loss rate is
varied from 5% to 70% and the radio packet size is set to 100 bytes.

Figure 19: MOSLQO value for 8KHz raw format as packet loss rate is varied, 100 bytes payload

Again, a packet loss rate of 50% still provides a sufficient quality for an easy understanding of
the speech.

Ear-IT

30

Speex	

As mentioned previously, the developed audio board uses a speex codec with a bit rate of
8000bps. The speex codec at 8kbps works with 20ms audio frames: every 20ms, 160 8-bit
samples of raw audio data are sent to the speex encoder to produce a 20-bytes audio packet.
4 framing bytes are then added to the audio data for transmission as illustrated by figure 20.

Figure 20: speex audio data at 8000bps

The receiver recognizes an audio packet by the usage of the first two framing bytes
(0xFF0x55) .Then a sequence number can be used to detect packet losses. The last framing
byte stores the audio payload size (in our case it is always 20 bytes).

As the basic audio frame is only 20 bytes long, it is possible to aggregate several audio frames
into one radio packet. Doing so could serve to increase the time window for network-relaying
operations as this is will be shown and discussed later on. Figure 21 shows the case when 1
audio frame is sent in 1 radio packet and the MOSLQO value is determined according to the
packet loss rates. This will be referred to as A1 aggregation case and the real payload is 20
audio bytes with 4 framing bytes, giving a total of 24 bytes.

Once again, the first blue bar represents the loss-free case. Therefore, we have the maximum
MOSLQO value when compared to the original file. When a packet is dropped/lost, the speex
receiver can simply either ignore it, or it can detect the packet loss (with gap in sequence
number for instance) and use a dedicated decoding procedure. Once again, doing so can
preserve the timing of the audio file and generally can improve the audio quality. The red bars
represent the case where missing data are ignored, while the blue bars are for the case when
the receiver detects the packet losses.

Ear-IT

31

Figure 21: MOSLQO value for 8kbps speex codec as packet loss rate is varied, A1 level

For packet loss rates up to 20% the MOSLQO value is well over 2.0 and the audio quality is
very good. However, we also observed that a packet loss rate up to 35% still provide a
sufficient quality for an easy understanding of the speech.

Aggregating 2 audio frames into 1 radio packet gives a real payload of 48 bytes with 40 bytes
being the audio data. Figure 22 shows this case, noted A2 level. Figure 23 and 24 respectively
show the A3 and A4 aggregation level. A4 level is the maximum aggregation level as the real
payload is 4 times 24 bytes, giving a total payload of 96 bytes (102 bytes being the maximum
payload size of IEEE 802.15.4).

Figure 22: MOSLQO value for 8kbps speex codec as packet loss rate is varied, A2 level

Ear-IT

32

Figure 23: MOSLQO value for 8kbps speex codec as packet loss rate is varied, A3 level

Figure 24: MOSLQO value for 8kbps speex codec as packet loss rate is varied, A4 level

Codec2	

Given the low bit rate of codec2, we will perform the tests with 2400 and 3200 bit rate as they
provide higher audio quality. The codec2 encoder works as follows: (i) the raw audio data is
segmented into 160 8-bit samples, representing 20ms of audio; (ii) these 160 bytes are
encoded into 6 bytes or 8 bytes according to the final bit rate, i.e. 2400bps or 3200bps. 3
framing bytes are then added to the audio data for transmission as illustrated by figure 25.
The receiver uses the first two framing bytes (0xFF0x55) to recognize an audio packet. Then a
sequence number can be used to detect packet losses.

Ear-IT

33

Figure 25: codec2 audio data at 2400bps and 3200bps

Figure 26 shows for codec2 at 2400bps the case when 1 audio frame is sent in 1 radio packet
and the MOSLQO value is determined according to the packet loss rates. Again, this will be
referred to as A1 aggregation case and the real payload is 6 audio bytes with 3 framing bytes,
giving a total payload of 9 bytes.

Figure 26: MOSLQO value for 2400bps codec2 as packet loss rate is varied, A1 level

Once again, the first blue bar represents the loss-free case. Therefore, we have the maximum
MOSLQO value when compared to the original file. When a packet is dropped/lost, the receiver
can simply either ignore it, or it can detect the packet loss (with gap in sequence number for
instance) and fill-in missing data with a pre-defined value prior to injection into the codec2
decoder. Again the red bars represent the case where missing data is ignored, while the blue
bars are for the case when the receiver detects the packet losses. We found empirically that
for 2400-bit rate, a filling value of 0x77 does give good results. Better values may be possible
but this is out of the scope of this study.

Ear-IT

34

Figure 27, 28 and 29 respectively show the MOSLQO value for A2, A4 and A6 aggregation.

Figure 27: MOSLQO value for 2400bps codec2 as packet loss rate is varied, A2 level

Figure 28: MOSLQO value for 2400bps codec2 as packet loss rate is varied, A4 level

Ear-IT

35

Figure 29: MOSLQO value for 2400bps codec2 as packet loss rate is varied, A6 level

Again, we observed that a packet loss rate up to 20% still provide a sufficient quality for an
easy understanding of the speech. Over 20% packet loss rates, the audio quality is very
degraded due to the very low bit rate of codec2.

Figure 30 and 31 respectively show the MOSLQO value for codec2 3200bps with A6 and A7
aggregation. Recall that codec2 3200bps uses 8-byte audio frames. Here, we observed that a
packet loss rate up to 30% still provide a sufficient quality for an easy understanding of the
speech.

Figure 30: MOSLQO value for 3200bps codec2 as packet loss rate is varied, A6 level

Ear-IT

36

Figure 31: MOSLQO value for 3200bps codec2 as packet loss rate is varied, A7 level

Summary	

Table VII below summarizes the main results for the audio quality under packet losses.

Codec
Maximum packet loss rate
for speech understanding

Raw 4KHz & 8KHz

50%

Speex 8000bps

35%

Codec2

2400bps

3200bps

20%

30%

Table VII : summary of the maximum packet loss rate for understanding the speech

Ear-IT

37

8. ENERGY indicators

Energy consumption is an important criterion to take into account as continuous audio
sampling and transmission is very demanding. However, in the context of the EAR-IT test-beds
where most of IoT nodes have recharging capabilities, the important issue is to define how
long and how often audio data must be provided to the decision makers.

Therefore, the discussion that will be presented in this deliverable is very limited and
deliverable 1.3 will present in more detail the energy consumption study of the various audio
and network hardware elements to determine how long they can provide the acoustic services
without tempering the other deployed services.

Minimum requirements in terms of acoustic data needs largely depend on the targeted
applications. In an on-demand audio streaming scenario, when audio samples are requested
by a human operator on emergency, it seems reasonable to have several minutes of streaming
capability for an audio node. 10 to 15 minutes per audio node can then be considered as a
minimum requirement.

For relay nodes, as they can be shared for multiple audio streaming sessions, they should be
able to sustain about 1 hour of relaying features.

In deliverable 1.3, we will perform energy measures on the developed hardware to verify
whether these requirements could be met.

Ear-IT

38

9. Conclusions and summary of main results

In this deliverable the minimum requirements for use of acoustic sensors on the various EAR-
IT test-beds based on WSN and IoT nodes with IEEE 802.15.4 radio technology are
investigated. We presented our development on the targeted hardware to provide acoustic
features and we defined performance indicators that are categorized into 3 categories:

1. Network performance indicators (NETWORK)
2. Audio quality indicators (AUDIO),
3. Energy indicators (ENERGY).

In the NETWORK category, we presented the minimum requirements at the audio source node
and at the relay nodes in terms of minimum sending rate, minimum relaying rate and the
impact of buffer capacity on the packet drop rate.

Regarding the AUDIO category, according to the 3 selected audio codecs (raw, speex and
codec2) we determined the impact of packet size and packet losses on the audio quality and
using the ITU-T PESQ benchmark tool suite to determine the MOS (Mean Opinion Score) value,
we quantified the resulting audio quality. We then were able to give some indications on the
maximum supported packet loss rate for still providing an understandable audio stream.

For the ENERGY category, the discussion we will have in this deliverable is very limited and
deliverable 1.3 will present in more details the energy consumption study of the various audio
and network hardware elements to determine how long they can provide the acoustic services
without tempering the other deployed services.

The various results on minimum requirements are shown again below.

NETWORK: minimum sending/relaying rate

Codec Minimum sending/relay rate

Raw

4KHz

8KHz

100 bytes every 25ms

100 bytes every 12.5ms

Speex 8000bps

A1
A2
A3
A4

24 bytes every 20ms
48 bytes every 40ms
72 bytes every 60ms
96 bytes every 80ms

Codec2

2400bps
A1
.
.
An (1≤n≤11)

3200bps
A1
.
.
An (1≤n≤9)

9 bytes every 20ms
.
.

9*n bytes every n*20ms

11 bytes every 20ms

11*n bytes every n*20ms

Ear-IT

39

NETWORK: buffer size & packet drop relationship at relay nodes

Time before packet drop due to a full receive buffer when using the WaspMote audio with both
WaspMote and TelosB relay nodes. Q is the amount of available buffer in bytes.

Time before packet drop due to a full receive buffer when using the AdvanticSys TelosB audio
board with WaspMote relay node. Q is the amount of available buffer in bytes.

When using TelosB relay nodes, theoretically, it can relay faster than the packet inter-arrival
time of the TelosB audio board. Therefore we have a system where buffers are not needed.

AUDIO: maximum supported packet loss rate

Codec
Maximum packet loss rate
for speech understanding

Raw 4KHz & 8KHz 50%

Speex 8000bps 35%

Codec2

2400bps

3200bps

20%

30%

Q 4KHz/W 8KHz/W 4KHz/T 8KHz/T
1000 0.33 0.14 2.33 0.23
1500 0.49 0.21 3.50 0.34
2000 0.65 0.28 4.67 0.45
2500 0.81 0.35 5.83 0.56
3000 0.98 0.42 7.00 0.68
3500 1.14 0.49 8.17 0.79
4000 1.30 0.57 9.33 0.90
4500 1.46 0.64 10.50 1.02
5000 1.63 0.71 11.67 1.13

WaspMote:audio,:WaspMote:&:TelosB:relay:nodes

Q A1 A2 A3 A4
1000 1.27 1.81 2.56 3.40
1500 1.91 2.72 3.84 5.10
2000 2.54 3.63 5.11 6.79
2500 3.18 4.53 6.39 8.49
3000 3.82 5.44 7.67 10.19
3500 4.45 6.35 8.95 11.89
4000 5.09 7.25 10.23 13.59
4500 5.72 8.16 11.51 15.29
5000 6.36 9.07 12.79 16.99

TelosB4audio4board,4WaspMote4relay4node

Ear-IT

40

ANNEX.A: Review of software environment, tools and
test hardware

1

2

the sounds of smart environments

Development environments

•  Linux-based systems for higher
flexibility and better interoperability
•  most of software tools are targeted for

Unix
•  most of gateways devices are Linux-

based (Meshlium, Beagle, Rasperry,…)
•  When possible, avoid Java

development and priviledge C, C++
and scripts (shell, python)

the sounds of smart environments

Standard IDE & software tools

•  Libelium WaspMote

•  Libelium IDE (Arduino-based) & API development environment

•  AdvanticSys TelosB

•  TinyOS 2.1.2 development environment

•  Audio

•  Codec2 software (www.codec2.org): c2enc, c2dec!

•  Speex software (www.speex.org): speexenc, speexdec!

•  sox and play package (Linux)

•  Serial & frame analysis
•  minicom, cutecom!

•  wireshark!

3

Ear-IT

41

3

4

the sounds of smart environments

Customized speex audio tools

•  Simple « pure » speex audio decoder without any
header
•  Modified version of speex’s sampledec.c

•  speex_sampledec_wframing : expects framing bytes!

•  speex_sampledec_nframing : no framing bytes

•  To get a « pure » speex audio encoded file without any
header
•  Modified version of speexdec.c (yes speexdec.c and not

speexenc.c) compatible with speex’s sampledec.c

the sounds of smart environments

Development of dedicated tools

•  Serial tools to read host computer serial port

•  XBeeReceive (C language)

•  SerialToStdout (python script)
•  115200 baud version

•  38400 baud version

•  Communication tool to send control command packets
•  XBeeSendCmd (C language)

•  Communication tool to send binary files
•  XBeeSendFile (C language)

Ear-IT

42

5

6

the sounds of smart environments

XBeeReceive!

•  XBeeReceive!

•  Main target is 802.15.4 XBee-based gateway

•  Translates XBee API frame

•  Reads from the serial port : /dev/ttyUSB0, /dev/ttyS0, …!

•  Reconstructs file in binary mode (handles packet losses)
•  Assumes each packet with 4 bytes header: 2 bytes for file size & 2 bytes for offset

•  Can write to Unix stdout & can act as a transparent serial replacement

•  Can act in a data stream fashion: no header for packets
USAGE: !./XBeeReceive -baud b -p dev -B -ap0 -v val –stdout –stream file_name!
USAGE: !-baud, set baud rate, default is 38400!
USAGE: !-p /dev/ttyUSB1!
USAGE: !-B indicates binary mode. Assumes 4-bytes header for each pkt (that will be removed)!
USAGE: !-framing expect for framing bytes 0xFF0x55 for binary data!
USAGE: !-ap0, indicates an XBee in AP mode 0 (transparent mode) so do not decode frame structure!
USAGE: !-v 77, use 0x77 to fill in missing value in binary mode!
USAGE: !-stdout, write to stdout for pipe mode in binary mode!
USAGE: !-stream, assumes no header & write to stdout for pipe mode in binary mode!
USAGE: !file_name, name for saving binary file!

the sounds of smart environments

SerialToStdout.py

•  Simple python script to read serial port when no
translation is needed

•  Change baud rate and port as needed

•  SerialToStdout.py can be use instead of
XBeeReceive with an XBee in transparent mode

import serial!
import sys!
!
ser = serial.Serial('/dev/ttyUSB0', 38400, timeout=0)!
!
flush everything that may have been received on the port to make sure !
that we start with a clean serial input!
ser.flushInput()!
!
while True:!
 out = ''!
 sys.stdout.write(ser.read(1024))!
 sys.stdout.flush()!

Ear-IT

43

7

8

the sounds of smart environments

XBeeSendCmd

USAGE: !./XBeeSendCmd -p dev [-L][-DM][-at] -tinyos -tinyos_amid id_hex -mac|-net|-addr|-b message!
USAGE: !-p /dev/ttyUSB1!
USAGE: !-mac 0013a2004069165d HELLO!
USAGE: !-net 5678 HELLO!
USAGE: !-addr 64_or_16_bit_addr HELLO!
USAGE: !-b HELLO!
USAGE: !-at to send remote AT command: -at -mac 0013a2004069165d ATMM!
USAGE: !-L insert Libelium API header!
USAGE: !-DM to specify DigiMesh firmware!
USAGE: !-tinyos to forge a TinyOS ActiveMessage compatible packet (0x3F0x05 are inserted)!
USAGE: !-tinyos_amid 6F, to set the ActiveMessage identifier to 0x6F (0x05 is the default)!

•  XBeeSendCmd!

•  Main target is 802.15.4 XBee-based gateway

•  Send ASCII command with Xbee

•  Can be used to sent remote AT command to other Xbee module

•  Support DigiMesh firmware

•  Example
•  XBeeSendCmd -addr 0013a2004069165d ’’/@D0100#’’

the sounds of smart environments

XBeeSendFile

USAGE: !./XBeeSendFile -baud baudrate -p dev -sensor -timing tpkt_us tserialbyte_us tafterradio_us -nw -fake
-drop rate -v val -fill -pktd -pktf -size s -stdout -mac|-net|addr|-b file!
USAGE: !-baud 125000, 38400 by default!
USAGE: !-sensor, will send image pkt to a sensor sniffer!
USAGE: !-framing, will use framing bytes 0xFF0x55+SN for binary packets (e.g. audio)!
USAGE: !-timing 50000 20 25000 by default!
USAGE: !-nw, do not wait for TX status response!
USAGE: !-fake, emulate sending. Will write in fakeSend.dat!
USAGE: !-drop 50, will introduce 50 of packet drop. Useful with -fake!
USAGE: !-v 77, use 0x77 to fill in missing bytes in lost packet!
USAGE: !-fill, will fill missing bytes!
USAGE: !-pktd, display generated XBee frames!
USAGE: !-pktf, generate a pkt list file!
USAGE: !-size 50, set packet size to 50 bytes!
USAGE: !-stdout, write to stdout for pipe mode!
USAGE: !-mac 0013a2004069165d!
USAGE: !-net 5678!
USAGE: !-addr 64_or_16_bit_addr, set either 64-bit or 16-bit dest. address!
USAGE: !-b!

•  XBeeSendFile!

•  Main target is 802.15.4 XBee-based gateway

•  Send binary files with Xbee with controlled timing

•  Can use any packet size between 1 and 100 bytes

•  Can insert framing bytes, can introduce packet losses

Ear-IT

44

9

10

the sounds of smart environments

WaspMote+XBee in raw mode

•  Electret mic with
amplifier

•  XBee in AP0 mode
(transparent mode)

•  8-bit 4Khz sampling
gives 32000bps

•  8Khz sampling gives
64000bps, requires
custom API

ONLY 1 HOP!

Xbee GW

VCC#on#D2,#AUDIO#on#A2,#GND#on#GND

100 8-bit samples (12.5ms)

the sounds of smart environments

Details of pin connection

VCC#on#D2##
AUDIO#on#A2#
GND#on#GND

Ear-IT

45

11

12

the sounds of smart environments

WaspMote test-bed: XBee gw AP0
void loop() {!

!val = analogRead(ANALOG2) ; // read analog value!
!val8bit = ((val >> 2)) ; // convert into 8 bit!

!
 !// write on UART1, need an XBee module!

!// with AP mode 0!
!
 !serialWrite(val8bit,1);!
}!

4KHz sampling!
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat | play --buffer 50 -t raw –r 4000 -u -1 –!
!
8KHz sampling!
> XBeeReceive -baud 125000 -ap0 -stdout dumb.dat | play --buffer 50 -t raw -r 8000 -u -1 -!
!
Save raw data for off-line playing!
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat > test.raw!
> play -t raw –r 4000 -u -1 test.raw!

With XBee GW also in AP0 mode

Alternatively using SerialToStdout python script, at 38400 baud only
!
> python SerialToStdout | play --buffer 50 -t raw –r 4000 -u -1 –!

Xbee GW

the sounds of smart environments

XBee gateway in pkt mode (AP2)

•  The receiving XBee module may need
to be in packet mode (AP2) due to
deployment constraints

•  Adds overhead of XBee API frame
decoding: 8KHz sampling may be not
supported

4KHz sampling!
> XBeeReceive -baud 38400 –stream dumb.dat | play --buffer 50 -t raw –r 4000 -u -1 –!
!
!
Save raw data for off-line playing!
> XBeeReceive -baud 38400 –stream dumb.dat > test.raw!
> play -t raw –r 4000 -u -1 test.raw!

Ear-IT

46

13

14

the sounds of smart environments

Multi-hop audio solution

•  Use dedicated audio board for
sampling/storing/encoding at 8kbps

•  Allows for multi-hop, encoded audio
streaming scenarios

Specially designed audio
board by INRIA CAIRNS &
Feichter Electronics

dsPIC33 with 8kbps speex
real-time encoder

the sounds of smart environments

Details of pin connection
P1.7 can be
used to power
on/off the audio
board

Ear-IT

47

15

16

the sounds of smart environments

AdvanticSys+audio board

•  The audio board captures 160 bytes (20ms) of raw
audio and uses speex codec at 8kbps to produce
20 bytes to encoded audio data

•  It sends the encoded audio data through an UART
line to the host micro-controller

•  The host micro-controller receives the encoded
data and sends them wirelessly to the next hop

•  The last hop is a base station that will forward the
encoded audio into a speex audio decoder

•  Output of the speex audio decoder is in raw format
that can be feed into a player (play)

the sounds of smart environments

speex at 8kbps
160 8-bit samples (20ms)

20 bytes of encoded audio data

24 or 21 bytes frame

1 byte!
frame size speex_sampledec_wframing!

1 byte!
Seq. No.

2 bytes!
framing!
0xFF0x55

Ear-IT

48

17

18

the sounds of smart environments

async event void UartStream.receiveDone(uint8_t* buf, !
!uint16_t len, error_t error){!
! ! !
!post sendMsg();!

}!

AdvanticSys+audio board

> XBeeReceive -baud 38400 -B -ap0 -stdout dumb.dat | speex_sampledec_nframing | !
!play --buffer 100 -t raw -r 8000 -s -2 –!

!

With XBee GW in AP0 mode

With AdvanticSys base station (115200 baud)
!
> python SerialToStdout | speex_sampledec_wframing | play --buffer 100 -t raw -r 8000 -s -2 -!

Xbee GW

With XBee GW in AP2 mode (pkt mode)
> XBeeReceive -baud 38400 -B -stream dumb.dat | speex_sampledec_nframing | !

!play --buffer 100 -t raw -r 8000 -s -2 –!
!

the sounds of smart environments

Relay nodes

Fully configurable:

Destination node
Additional relay delay
Clock synchronization

Libelium !
WaspMote

AdvanticSys !
CM5000, CM3000

R0/1 enable/disable relay mode!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!

Ear-IT

49

19

20

the sounds of smart environments

Multi-hop test-bed w/audio board

R0/1 enable/disable relay mode!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!

0x0040

Decode & Play !
Received audio!

Speex audio encoding!
8kbps!

0x0010 Relay

Relay

0x0020

0x0030

A1/2/3/4 aggregate audio frames!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
C0/1 power off/on the audio board!

the sounds of smart environments

Generic & controlled sender

Fully configurable:

Destination node
Clock synchronization
File to send
Size of packet chunk
Inter-packet delay
Binary/Stream mode

Use a generic sender node
to test with a larger variety
of audio codec: store
encoded audio file on SD
card

Do not need specific audio
encoding hardware to test
quality of streaming
encoded audio data

Ear-IT

50

21

22

the sounds of smart environments

Multi-hop test-bed w/generic sender
0x0010

0x0040

T130 transmit with inter pkt time of 130ms!
Z50 set the pkt size for binary mode!
Ftest2400.bit set the file name to test2400.bit !
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
B or S set to binary mode/set to stream mode!

All commands must be prefixed by « /@ »
and ended/separated by « # »

/@T130#, /@Ftest2400.bit#B#!

Decode & Play !
Received audio!

Relay

Relay

0x0020

0x0030

the sounds of smart environments

codec2/speex with generic sender

•  Use codec2/speex encoding software to
produce encoded audio file

•  Store encoded audio file (.bit/.spx) on SD
card

•  Configure the generic sender for sending
the encoded audio file
•  Define packet size
•  Determine inter-packet send time

•  Receive the encoded audio stream, decode
the data and determine audio quality

Ear-IT

51

23

24

the sounds of smart environments

Produce encoded audio file: codec2

•  Initial file: test.raw in 16-bit, signed
•  Use sox to get 16-bit, signed if your

raw file is not in this format
•  Encode at 2400bps with
•  c2enc 2400 test.raw test2400.bit

•  Store test2400.bit on SD card

the sounds of smart environments

Codec2 encoding
320 8-bit samples (40ms)

7 bytes of encoded  
audio data

at 1400bps

at 2400bps & 3200bps
160 8-bit samples (20ms)

6 bytes of encoded  
audio data

8 bytes of  
encoded  
audio data

2400bps 3200bps

Ear-IT

52

25

26

the sounds of smart environments

Codec2 at 2400bps & 3200

1 byte!
Seq. No.

2 bytes framing!
0xFF0x55

at 2400bps & 3200bps
160 8-bit samples (20ms)

6/8 bytes of encoded!
audio data

XBeeReceive!

c2dec!

the sounds of smart environments

Multi-hop tests with codec2

Decode & Play !
Received audio!

0x0010

0x0040

/@Ftest2400.dat#B#!
/@Z40#!
/@T90#!

Sample Audio: 13s !
PCM = 104000B!
Codec2 at 2400bps !
gives 3900B

> XBeeReceive -framing –B rcv-test2400.bit!
> c2dec 2400 rcv-test2400.bit - | play -t raw -r 8000 -s -2 –!

!
!
> XBeeReceive -framing –B -stdout rcv-test2400.bit | bfr -b1k -m2% - | !

!c2dec 2400 - - | play -t raw -r 8000 -s -2 -!

Store & Play

Streaming

Relay

Relay

0x0020

0x0030

Ear-IT

53

27

28

the sounds of smart environments

Produce encoded audio file: speex

•  Initial file: test.raw in 8-bit unsigned
or 16-bit signed

•  Encode at 8000bps with
•  speexenc --8bit --bitrate 8000

test.raw test8000.spx!
•  Produce a raw speex byte stream with

modified version of speexdec!
•  speexdec test8000.spx > t8000raw.spx!

•  Store t8000raw.spx on SD card

the sounds of smart environments

Multi-hop tests with speex

Decode & Play!
Received audio!

0x0010

0x0040

/@Ft8000raw.spx#B# !/@Ft8000raw.spx#S#!
/@Z25# ! ! !/@Z21#!
/@T20#!

Sample Audio: 13s !
PCM = 104000B!
speex at 8000bps !
gives 14368B

> XBeeReceive -framing –B t8000raw.spx!
> cat t8000raw.spx | speex_sampledec_nframing | play -t raw -r 8000 -s -2 –!

!
!
> XBeeReceive –B -stdout -stream t8000krw.spx | bfr -b1k -m2% - | !

!speex_sampledec_wframing | play -t raw -r 8000 -s -2 -!

Store & Play

Streaming

Relay

Relay

0x0020

0x0030

Ear-IT

54

29

30

the sounds of smart environments

speex at 8kbps on slow relay nodes
160 bytes (20ms)

20 bytes of encoded audio data

Capture 6
audio frames
(120ms) but
only send 4

Need to be
able to relay
96-byte pkt
every 120ms

1 2 3 6 5 4

A6 aggregate audio frames!

2 3 6 4

7 8

8

Add framing
bytes!

the sounds of smart environments

Apply packet loss rate

•  Use XBeeSendFile to control
•  Timing between packet sending
•  Packet loss probability

> XBeeSendFile -fake -drop 25 -stdout test2400.bit > test2400-25loss.bit

> XBeeSendFile -fake -v 77 -fill -drop 25 -stdout test2400.bit > test2400-25loss-fill.bit

Codec2 2400bps, series of 6-byte encoded audio packets

1 2 3 4

1 3 4

1 2 3 4
77 77 77 77 77 77!

Ear-IT

55

ANNEX.B: Future developments on targeted hardware
platforms
Libelium	
 WaspMote	
 +	
 audio	
 board	

1. Use the developed audio board that has been developed initially for the AdvanticSys on
the Libelium WaspMote

AdvanticSys	
 TelosB	
 +	
 MTS	
 SE1000	
 	

1. Use the MTS_SE1000 sensor board that includes a small-amplified electret MIC to test

whether 4KhZ sampling can be realized with simultaneous transmission of raw audio
data as the AdvanticSys mote can normally sustain a sending throughput of 48kbps.
See figure below of the MTS_SE1000 sensor board.

Ear-IT

56

References

[802154] IEEE Std 802.15.4™-2006.

[ADVAN] http://www.advanticsys.com/shop/wireless-sensor-networks-802154-mote-
modules-c-7_3.html

[CC2420] ChipCon CC2420, 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver.
www.ti.com/lit/ds/symlink/cc2420.pdf

[DMDigi] XBee®/XBee-PRO® DigiMesh RF Modules product manual (90000991_E), Digi
International Inc. January 6, 2012.

[TELOSB] www.willow.co.uk/html/telosb_mote_platform.html and/or
http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=252

[TINYOS] The TinyOS operating system. http://www.tinyos.net/

[XBeeDigi] XBee®/XBee-PRO® RF Modules product manual (90000982_G), Digi International
Inc. August 1, 2012.

