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ABSTRACT

Caching is a hot research topic and poised to 
develop into a key technology for the upcoming 
5G wireless networks. However, the successful 
implementation of caching techniques crucial-
ly depends on joint research developments in 
different scientific domains such as networking, 
information theory, machine learning, and wire-
less communications. Moreover, there are busi-
ness barriers related to the complex interactions 
between the involved stakeholders: users, cel-
lular operators, and Internet content providers. 
In this article we discuss several technical mis-
conceptions with the aim of uncovering enabling 
research directions for caching in wireless sys-
tems. Ultimately, we make a speculative stake-
holder analysis for wireless caching in 5G.

INTRODUCTION
Caching is a mature idea from the domains of web 
caching, content delivery networks, and memory 
optimization in operating systems. Why is caching 
still an active topic of discussion? In the 1990s, the 
traffic in the web exploded, leading its inventor, 
Sir Tim Berners-Lee, to declare network conges-
tion as one of the main challenges for the Inter-
net of the future. The congestion was caused 
by the dotcom boom, specifically due to the cli-
ent-server model of connectivity, whereby a web 
page was downloaded from the same network 
server by every Internet user in the world. The 
challenge was ultimately resolved by the inven-
tion of content delivery networks (CDNs) and 
the exploitation of web caching. The latter repli-
cates popular content in many geographical areas 
and saves bandwidth by avoiding unnecessary 
multihop retransmissions. As a byproduct, it also 
decreases access time (latency) by decreasing the 
distance between two communicating entities.

Today, 30 years later, we are reviving the 
same challenge in the wireless domain. The latest 
report of Cisco [1] predicts a massive increase 
of Internet devices connected through wireless 
access, and warns of a steep increase in mobile 
traffic, which is expected to reach roughly 60 per-
cent of total network traffic by 2018, the majority 
of which will be video. Wireless system designers 
strive to fortify fifth generation (5G) wireless net-
works with higher access rates on one hand and 
increased densification of network infrastructure 

on the other. Over the last three decades, these 
two approaches have been responsible for the 
majority of network capacity upgrade per unit 
area, successfully absorbing the wireless traffic 
growth. However, with the explosion of access 
rates and number of base stations, the backhaul 
of wireless networks will also become congested 
[2, 3], which motivates further use of caching: 
storing popular reusable information at base sta-
tions to reduce the load at the backhaul. Further-
more, a recent technique [4] combined caching 
with coding and revolutionized how goodput 
scales in bandwidth-limited networks. Therefore, 
caching has the potential to become the third key 
technology for wireless system sustainability. 

The research community is converging to 
an enabling architecture as shown in Fig. 1. In 
the network of the future, memory units can be 
installed in gateway routers between the wire-
less network and the Internet (e.g., in 4G this 
is called the serving gateway, S-GW), in base 
stations of different sizes (small or regular size 
cells), and in end-user devices (mobile phones, 
laptops, routers, etc.). In this article, we discuss 
important topics such as:
• The characteristics of cacheable content 

and how this affects caching technologies in 
wireless

• Where to install memory
• The differences between wireless caching 

and legacy caching techniques
Last, we focus on business barriers that must be 
overcome for the successful adoption of wireless 
caching by the industry.

DEALING WITH MASSIVE CONTENT
Not all network traffic is cacheable. Interactive 
applications, gaming, voice calls, and remote 
control signals are examples of information 
objects that are not reusable and hence cannot 
be cached. Nevertheless, most network traffic 
today (an estimated 60 percent [1]) is deemed 
cacheable. We refer to cacheable information 
objects as content in this article. Since the perfor-
mance of caching is inherently connected to the 
specifics of contents, this section is dedicated to 
the understanding of these specifics.

In particular, we focus on the following mis-
conceptions:
• The static IRM model is sufficient for exper-

imentation.
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• User information cannot be used for popu-
larity estimation due to the vast number of 
users.

• Security issues precludes caching at the 
edge.

INSUFFICIENCY OF STATIC POPULARITY MODELS
The standard approach to designing and analyz-
ing caching systems involves a model for generat-
ing content requests to replace the actual request 
traces — this approach is often several orders of 
magnitude faster. 

The de facto model for performance analysis 
of web caching is the independence reference 
model (IRM): content N is requested according 
to an independent Poisson process with rate λ pn, 
where pn refers to the content popularity mod-
eled by a power law (i.e., pn ∝ n–α, α > 0). This 
well established model thrives due to its simplic-
ity; it only has two parameters: λ to control the 
rate of requests, and α to control the skewness of 
the popularity. 

Numerous studies fit the IRM to real traffic 
with satisfactory results [5], so why do we need 
to change it? The IRM assumes that the content 
popularity is static, which of course is not true. 
Trending tweets, breaking news, and the next epi-
sode of Game of Thrones are examples of ephem-
eral content with rapidly changing popularity; they 
appear, they become increasingly popular, and 
they gradually become unpopular again. In fact, 
[6] considers large YouTube and video on demand 
(VoD) datasets and discovers that time-varying 
models are more accurate than the IRM with 
respect to caching performance analysis; Fig. 2 
reproduces the comparison when fitting YouTube 
data and shows the superiority of modeling the 
popularity as time-varying. In the inhomogeneous 
Poisson model proposed in [6], each content is 
associated with a “pulse” the duration of which 
reflects the content life span and the height of 
which denotes its instantaneous popularity. The 
model is called the shot noise model (SNM), mir-
roring the Poisson noise from electronics. While 
the shape of the pulse is not important, the study 

observes strong correlations between popularity 
and duration; apparently, popular contents pros-
per longer. Finally, a class-based model [6] can 
conveniently capture spatio-temporal correlations 
while allowing analytical tractability.  Mobile users 
are especially keen on downloading ephemeral 
content; thus, it is expected that in the case of 
wireless content, the improvement in modeling 
accuracy will be even greater. 

To optimize a cache one needs to track the 
changes in content popularity.  For example, 
the classical web caching systems adopt dynamic 
eviction policies like least recently used (LRU) 
in order to combat time-varying content popu-
larity in a heuristic manner. However, the joint 
consideration of popularity variations with wire-
less systems reveals a new challenge that renders 
LRU policies inefficient.  While a typical CDN 
cache normally receives 50 requests/content/day, 
the corresponding figure for base station cache 
may be as low as 0.1 requests/content/day. With 
such a small number of requests, fast variations 
of popularity become very difficult to track, and 
classical LRU schemes fail. 

This development motivates novel caching 
techniques that employ learning methodologies 
to accurately track the evolution of content pop-
ularity over time. A recent study [7] analyzes the 
SNM model and gives the optimal1 policy for 
joint caching and popularity estimation. Addi-
tionally, [8] proposes as an alternative solution 
the use of LRU with prefilters. 

HOW TO TRACK POPULARITY VARIATIONS
Since content popularity is time-varying, caching 
operations can only be optimized if a fresh view 
of the system is maintained. This requires mas-
sive data collection and processing, and statistical 
inference from this data, which by itself is a com-
plex task to handle. Additionally, user privacy is 
a concern that can limit the potential of collect-
ing such information. So, can we promptly gather 
all this information in a wireless network? 

Consider K users subscribed to telecom oper-
ator and L caches placed in the network (e.g., in 

1 The optimality is established 
for the restricted case of homo-
geneous rectangular pulses and 
asymptotically large content 
catalogs.

Figure 1. An illustration of caching in future wireless networks. Contents available in the origin server are cached at the base stations 
and user devices for offloading the backhaul and the wireless links.
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base stations or other locations). Each of these 
caches has the capability of storing M contents 
out of N contents in the catalog. Then let the 
matrix P ∈ RK×N model the content access statis-
tics where rows are users and columns are con-
tents. In other words, each entry (or rating) in 
this matrix quantifies how popular content N is to 
user K. The popularity matrix P is large, sparse, 
and only partially known in practice, and has to 
be continuously estimated in order to enable the 
correct cache decisions at the base stations. At 
first, this seems to be an impossible feat.

To deal with the complexity of handling matrix 
P, it is possible to use machine learning tools to 
estimate the unknown entries. Such an estima-
tion is particularly efficient when the matrix has 
low spectral dimension, and the system can be 
described by a small number of “features”; for-
tunately, popularity correlation induces such 
behavior in matrices obtained from real data. For 
instance, low-rank matrix factorization methods, 
that is, P � KTN where K ∈ Rr×K and N ∈ Rr×N 
are factor matrices, can be employed to construct 
the r-rank version of the matrix, using the fact 
that users’ interests are correlated and predict-
able when r is small. This additionally allows the 
collected statistics to be stored in a more compact 
way. As a result, a big data platform installed in 
the operator network can provide efficient collec-
tion and processing of user access patterns from 
several locations, as evidenced in [9]. Further 
development of novel machine learning tools, such 
as clustering techniques, are needed to improve 
the estimation of the time-evolving content pop-
ularity matrix (i.e., Pl(t) for base station L), which 
may differ from base station to base station. 

It is worth noting that a caching system has 
requirements similar to those of a recommenda-
tion system. For example, the well-known Netflix 
movie recommendation system exploits infor-
mation of a user’s past activity in order to pre-
dict which movie is likely to be scored high by 
the user. Similarly, a caching system exploits the 
request sequence to predict what contents are 
popular enough to be cached. In this context, 
user privacy regulations may affect the collection 
of these valuable data. A key topic of research 

in this direction is privacy-preserving mecha-
nisms that can enable sufficient sampling of the 
time-evolving and location-dependent popularity 
matrix Pl(t) without compromising user privacy.

SECURITY IS A KIND OF DEATH
A common anti-caching argument relates to the 
operation of caching in a secure environment.  
The secure counterpart of HTTP, called HTTPS, 
was originally used to provide end-to-end (e2e) 
encryption for securing sensitive information like 
online banking transactions and authentication. 
Due to the recent adoption from traffic giants 
Netflix and YouTube, the HTTPS protocol is 
growing to soon exceed 50 percent of total net-
work traffic. Content encryption poses an unsur-
mountable obstacle to in-network operations, 
including caching.  Since encrypting the data 
makes them unique and not reusable, caching, 
or even statistically processing encrypted content, 
is impossible. Ironically, Tennessee Williams’ 
statement “security is a kind of death” seems to 
squarely apply to wireless caching.

Security is definitely a precious good every-
one welcomes. Although securing a video stream 
might seem an excessive measure, in some cases it 
may be well justified.  Unfortunately, e2e encryp-
tion is clearly not in the Berners-Lee spirit since it 
prevents operators from optimizing their networks 
and reanimates the server-client ghost of conges-
tion, a reality that equally no one can overlook. 
In fact, modern CDN systems resolve this issue by 
having “representatives” of the content provider 
at the edge of the Internet. These representatives 
are trusted entities that hold the user keys and are 
able to decrypt the requests and perform standard 
caching operations. Ultimately, this methodology 
is neither entirely secure for the user nor efficient 
for the network [10]. The need to make the sys-
tem sustainable finally overrules the need for e2e 
encryption, which is an argument against HTTPS 
for video delivery. Given this situation, however, 
how can we realistically push caching deeper into 
the wireless access?

Currently, content providers install their 
own caching boxes in the operator network and 
intercept the related encrypted content requests 
deeper in the wireless access network. In this 
approach, the boxes are not controlled by the 
operator, which leads to several limitations:
• The caching boxes cannot perform complex 

tasks.
• It is difficult to apply learning techniques with-

out context information from the operator. 
• The caching approach is similar to CDNs 

and therefore does not exploit the perfor-
mance opportunities specific to wireless 
caching, as we discuss below.
New security protocols have been proposed to 

enable operators to perform caching on encrypt-
ed requests [10]. This leads to an interesting 
research direction: to combine user security and 
privacy with facilitation of the network manage-
ment operations, which are crucial for the sus-
tainability of future wireless systems.

TOWARD A UNIFIED NETWORK MEMORY
The proposition of information-centric network-
ing (ICN) as a candidate for the future Internet 
has also raised the subject of where to install net-

Figure 2. Hit probability comparison between best fit of the IRM, SNM, and 
YouTube traces (from [6]).
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work memory [11]. The ICN approach proposes 
to equip routers with caches, and to allow con-
tent replication everywhere in the network. A 
recent work [12] came up with striking conclu-
sions about the ICN approach: most of the cach-
ing benefits of ICN can be obtained by caching 
at the edges of the network using existing CDNs, 
and any extra caching in the core network brings 
only negligible improvements at very high costs. 
In the wireless domain, however, the question 
remains relevant: does it make sense to cache 
even closer to the user than CDN? 

It is commonly believed that caching is very 
inefficient near the user, and thus should be 
done at CDN. Below we explain the main causes 
of inefficiency and argue that they can be over-
come.

CACHING DEEPER THAN CDN
Mitigating backhaul and wireless link overload 
requires going beyond CDN and caching at the 
base stations and mobile users. However, the 
efficient operation of such caches is very chal-
lenging.

In particular, there are two main challenges: 
a. Caches used in wireless networks are typi-

cally small compared to CDN caches.
b. The popularity profile of traffic is highly 

unpredictable when non-aggregated.
To understand point a, consider that the 

effectiveness of a cache is measured with the hit 
probability (i.e., the fraction of requests found in 
the cache). This can be upper bounded by the 
popularity sum ΣM

n=1pn, where pn is the ordered 
popularity distribution with p1 denoting the prob-
ability of requesting the most popular file. 

For power-law popularity the sum can further 
be approximated by (M/N)1–α, where α < 1 is 
the power-law exponent. A very small ratio M/N 
means that the hit probability becomes vanish-
ingly small. For example, if we are caching Net-
flix (12.5 PB) in a mobile phone (10 GB), M/N b  
10–6, α b 0.8, and the hit probability is less than 
10 percent. However, base stations equipped 
with a disk array (40 TB) can be extremely effec-
tive when caching contents for a mobile video on 
demand (VoD) application. In this context there 
are three promising research directions:
• Restrict caching operations to a subset of 

the catalog while maintaining network neu-
trality.

• Store only parts of the content using partial 
caching techniques.

• Install massive memory at the edge in the 
form of small-sized data centers.
The third option will be realized by the fog 

computing paradigm. Table 1 provides some indic-
ative numbers for the memory types available and 
the catalog sizes of reasonable applications.

To understand the unpredictable nature of 
sparse requests (formulated as challenge b above), 
consider as an example the delivery of breaking 
e-news in a city served by a single CDN node. 
Most users will download the news only once. 
The CDN system can quickly detect the rising 
popularity of the news, since it will receive many 
requests in a short timeframe. From the point of 
view of a mobile user, however, the detection of 
the popularity of the trending news becomes very 
difficult because the news is requested only once 

by a given user. This example shows that detec-
tion efficiency depends on the number of requests 
aggregated at the popularity learner. To illustrate 
this, Fig. 3 shows the optimal hit probability in 
a hierarchy of L base stations.  Learning at the 
global CDN cache is shown to detect variations 
that are L times faster than those at local caches. 
To remedy the situation, it is possible to use an 
architecture that combines information obtained 
at different aggregation layers [7].

MEMORY IS CHEAP BUT NOT FREE
Although the cost of a small cache is dwarfed 
by the base station cost, the total amount of 
installed memory in a mobile network can be 
considerable; therefore, deciding to install wire-
less caching requires a careful cost analysis [8]. 
To compute the optimal size of memory to install 
at each location, one needs to know:
a. The cost coefficients
b. The skewness of content popularity
c. The local traffic distribution in cells
Predicting how a and b will evolve is quite chal-
lenging, but as in [8] a survey may determine a 
good set of parameters at any given time.

For c, the literature is extensively based on grid 
models, which in the case of future wireless net-
works might be off for a significant factor. More 
accurate models have recently been introduced 
from the field of stochastic geometry, where 
the cache-enabled base stations are distributed 
according to a spatial point process (often cho-
sen to be 2D Poisson), thus enabling the problem 
to be handled analytically. The validity of such 
modeling compared to regular cellular models has 
been verified using extensive simulations. Addi-
tional insights for the deployment of cache-en-
abled base stations can be obtained by analytically 
characterizing the performance metrics, such as 
the outage probability and average delivery rate, 
for a given set of parameters such as given num-
ber of base stations, storage size, skewness of 
the distribution, transmit power, and target sig-
nal-to-interference-plus-noise ratio (SINR) [13]. 
Therefore, although storage units become increas-
ingly cheaper, the question of how much storage 
we should place at each location should be studied 
together with realistic topological models.

WIRELESS ≠ WIRED
Web caching has traditionally been studied by 
the networking community. A common miscon-
ception says that caching is a network layer tech-

Table 1. Typical data size values for normalized cache size M/N taken from 
the study of [8]. In practice, it is anticipated that wireless traffic is an 
80–20 mix of torrent-like traffic and live VoD traffic tailored to wireless 
device capabilities.

Netflix catalog  
(12.5 PB)1

Torrents 
(1.5 PB)

Wireless VoD 
catalog (1 TB)

Disk                             2 TB b0.01% b0.1% 100%

Disk array                  40 TB  b0.3%  b2% 100%

Data center              150 PB       50%   100% 100%

1 The entire catalog was anecdotally measured to contain 3.14 PB of content in 2013, which, however, 
we multiply by 4 since the same video is available in multiple formats.
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nique, and hence the web caching approaches 
are sufficient for wireless caching as well.

However, following the fundamental work of 
Maddah-Ali and Niesen [4], the idea of caching 
has penetrated the information theory commu-
nity with a new twist called coded caching, which 
promises unprecedented gains. In the following, 
we discuss the differences between wired and 
wireless caching.

WIRELESS CACHING LIES AT BOTH THE 
NETWORK AND PHY LAYERS

Suppose that a base station wants to deliver infor-
mation to K users at a rate of 1 Mb/s each for 
streaming a video. If the video is the same for all 
users (broadcast video), this might be possible for 
an arbitrarily large number of users. For exam-
ple, the base station could use an omnidirectional 
antenna, exploit the broadcast characteristic of 
the wireless medium, and transmit at 1 Mb/s to 
all users simultaneously. When the videos are dif-
ferent, this is clearly not possible: the base station 
needs to multiplex the users over frequency, time, 
or codes, where each such resource block is then 
associated with a single user. Since the resource 
blocks are finite, ultimately the base station can 
serve 1 Mb/s videos up to a maximum number of 
users Kmax, after which the resources are exhaust-
ed. To increase Kmax, physical layer researchers 
propose ways to increase the resource blocks of 
a given spectrum (i.e., increase spectral efficien-
cy) or install more base stations so that there are 
more resource blocks per unit area, referred to as 
network densification. 

The novel paradigm of [4] shows a surpris-
ing fact: exploiting caching in a smart way, an 
unbounded number of users watching different 
videos can be accomodated. How is this made 
possible? During off-peak operation of the net-
work, users can cheaply populate their caches with 
parts of popular contents. This is a perfectly rea-
sonable assumption since the question of sustain-
ability that caching is trying to tackle refers to the 
hours of the day when the network experiences 

peak traffic. The content parts are appropriately 
chosen according to a caching code, which ensures 
symmetric properties. Then at request time, a 
coding technique called index coding is employed 
to minimize the number of transmissions to sat-
isfy all users.2 The combination of these schemes 
is shown in [4] to yield required resource blocks 
equal to K (1 – M/N)/(1 + KM/N), where K is the 
number of users, M the cache size, and N the cat-
alog size. Hence, if the cacheable fraction of the 
catalog M/N is kept fixed, the required number of 
resource blocks does not increase with the number 
of users K; this can be verified by taking the limit 
K → ∞ whereby the above quantity converges to a 
constant. The result is summarized in Fig. 4.

More recently, it has been shown that in 
order to achieve such “order of K” gain over con-
ventional unicast (with possible legacy uncoded 
caching) systems, the content objects must be 
split into an O(exp(K)) number of subpackets; 
for networks of practical size, this gain is not 
achievable. The optimal trade-off between coded 
caching gain and content object size is a very 
interesting topic of current research. 

From the implementation point of view, 
promising research directions include extensions 
to capture system aspects such as:
• Popularity skewness
• Asynchronous requests
• Content objects of finite size
• Cache sizes that scale slower than N
Assuming that these practical challenges are 
resolved, caching for wireless systems will 
become intertwined with physical layer tech-
niques employed at the base station and hand-
held devices.

ONE CACHE ANALYSIS IS NOT SUFFICIENT 
A contemporary mobile receives the signals of 
more than 10 base stations simultaneously. In 
future densified cellular networks, the mobile will 
be connected to several femto-, pico-, or nano- 
cells. The phenomenon of wireless multi-access 
opens a new horizon in caching exploitation [14]. 

2 In fact, finding the optimal index 
code is a very difficult problem, 
and hence the proposed approach 
resorts to efficient heuristics..

Figure 3. Optimal hit probability comparison between observing the aggregate request process at the CDN level (global) and observ-
ing the individual request process at each base station cache (local), when refreshing the catalog. The hit probability perfor-
mance depends on how fast the time-varying popularities can be learned: global is faster than local.
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Since a user can retrieve the requested content 
from many network endpoints, neighboring cach-
es should cooperate and avoid storing the same 
objects multiple times. 

Content placement optimizations of wireless 
caching typically boil down to a set cover problem 
in a bipartite graph connecting the users to the 
reachable caches. Therefore, finding what con-
tents to store at each cache is a difficult problem 
even if the popularities are assumed known [14]. 
It is possible to relax the problem to convex opti-
mization by the use of distributed storage codes, 
where each cache stores coded combinations of 
contents [14], or obtaining a fractional placement 
by time sharing different integral placements. 
These ideas lead to several interesting algorithms 
in the literature of cooperative caching. 

What is the gain from these approaches? 
Cooperative caching typically saves space in 
the cache by avoiding caching the same popu-
lar contents in neighboring caches. Equivalently, 
we may think of multiplying the cache size M by 
a small number, at best say a gain of 3–5. With 
respect to hit probability, this can correspond to 
very different levels of gain, depending on the 
value of M/N. Due to the skewness of the popu-
larity distribution, marginal hit probability gain3 
is high when M/N is small, and very small when 
M/N is large. Since in wireless we expect the for-
mer, high gains are expected from cooperative 
wireless caching.

The current proposals on cooperative caching 
assume static popularity, and therefore a prom-
ising direction of research along these lines is to 
design caching schemes that combine coopera-
tion with learning of the time-varying populari-
ty. The time to search and retrieve the content 
from a nearby cache may also be significant; 
hence, intelligent hash-based filtering and rout-
ing schemes are required [15]. 

A STAKEHOLDER ANALYSIS FOR 
WIRELESS CACHING

The business of wireless caching involves three 
key stakeholders that together form a complex 
ecosystem.

The users of telecommunication services are 
primarily the customers and consumers of the 
content, but in the case of wireless caching they 
are also active stakeholders. 

Users might be requested to help in the form 
of contributing with their own resource (e.g., in 
the case of coded caching it will be memory and 
processing, or in device-to-device, D2D, cach-
ing it will also be relaying transmissions), and 
they will end up spending energy for the benefit 
of better performance. On the other hand, one 
could envision users employing D2D technology 
to enable caching without the participation of 
other stakeholders. Due to the complexities men-
tioned above, however, efficient wireless caching 
will require heavy coordination and extensive 
monitoring/processing. Hence, D2D approaches 
will be limited to restricted environments. 

The operators of telecommunication networks 
are well placed for wireless caching. Due to the 
particularities of coded caching and multi-access 
caching, operators are in a unique position to 
implement new protocols in base stations, affect 

the standards for new mobile devices, and devel-
op big data processing infrastructure that can 
realize wireless caching. Nevertheless, for rea-
sons related to encryption, privacy, and global 
popularity estimation, operators might not be 
able to install these technologies without the 
cooperation of the other two stakeholders.

The providers of Internet content are champi-
ons of trust from the user community. Apart from 
the security keys, they also hold extensive exper-
tise in implementing caching techniques in core 
networks. From this advantageous position, they 
can positively affect the progressive evolution of 
caching in wireless networks. On the other hand, 
content-provider-only solutions cannot unleash 
the full potential of wireless caching, since they 
are limited to alienated boxes in the operator net-
work that can perform caching only with legacy 
CDN techniques. The deeper the caches go into 
the wireless network, the less efficient they will be 
if they stick to legacy CDN techniques. 

We summarize what each stakeholder offers 
and needs in Fig. 5. What are the prospects of 
the required collaboration among the stakehold-
ers? Operators and content providers seek a 
“best friends forever” union in order to mutually 
harvest benefits in the digital value chain while 
keeping their users happy. This is a favorable 
environment for the scenario of wireless cach-
ing.  In fact, if telecom operators enable caching 
capabilities at the edge of their networks, their 
infrastructure will become sustainable while they 
gain access to new business models. On the other 
hand, content providers can benefit from a cach-
ing collaboration since:
• Traffic will be intercepted earlier and the 

content transport cost will be reduced.
• User demand will not be held back by sus-

tainability issues.
• Costs associated with the deployment of 

large memory units will be avoided.
• They will be able to reach closer to their 

users and extend computing infrastructures 
to the fog paradigm.

Lastly, it is foreseeable that in some situations 

Figure 4. Required resource blocks for K mobile users with unicast demands, 
when the caches fit 30 percent of the catalog. Coded caching can serve 
an arbitrarily large population of users with a fixed number of resource 
blocks.
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the roles of the content provider and the wireless 
operator may converge. 
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Figure 5. A stakeholder analysis.
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