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Motivation

• High-level formalisms (like SANs) make it easy to specify realistic systems, but 
they also make it easy to specify systems that have unreasonably large state 
spaces.

• State-of-the-art tools (like UltraSAN) can handle state-level models with a few 
million states, but not more.

• When state spaces become too large, discrete event simulation is often a viable 
alternative.

• Discrete-event simulation can be used to solve models with arbitrarily large state 
spaces, as long as the desired measure is not based on a “rare event.”

• When “rare events” are present, variance reduction techniques can sometimes be 
used.
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Simulation as Model Experimentation
• State-based methods (such as Markov chains) work by enumerating all possible 

states a system can be in, and then invoking a numerical solution method on the 
generated state space.

• Simulation, on the other hand, generates one or more trajectories (possible 
behaviors from the high-level model), and collects statistics from these 
trajectories to estimate the desired performance/dependability measures.

• Just how this trajectory is generated depends on the:
– nature of the notion of state (continuous or discrete)
– type of stochastic process (e.g., ergodic, reducible)
– nature of the measure desired (transient or steady-state)
– types of delay distributions considered (exponential or general)

• We will consider each of these issues in this lecture, as well as the simulation of 
systems with rare events.
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Types of Simulation
Continuous-state simulation is applicable to systems where the notion of state is 
continuous and typically involves solving (numerically) systems of differential 
equations.  Circuit-level simulators are an example of continuous-state simulation.

Discrete-event simulation is applicable to systems in which the state of the system 
changes at discrete instants of time, with a finite number of changes occurring in 
any finite interval of time.

Since we will focus on validating end-to-end systems, rather than circuits, we will 
focus on discrete-event simulation.

There are two types of discrete-event simulation execution algorithms:
– Fixed-time-stamp advance
– Variable-time-stamp advance
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Fixed-Time-Stamp Advance Simulation
• Simulation clock is incremented a fixed time ∆t at each step of the simulation.
• After each time increment, each event type (e.g., activity in a SAN) is checked 

to see if it should have completed during the time of the last increment.
• All event types that should have completed are completed and a new state of the 

model is generated.
• Rules must be given to determine the ordering of events that occur in each 

interval of time.
• Example:

• Good for all models where most events happen at fixed increments of time (e.g., 
gate-level simulations).

• Has the advantage that no “future event list” needs to be maintained.
• Can be inefficient if events occur in a bursty manner, relative to time-step used.

2∆t∆t 3∆t 4∆t 5∆t0
e1 e2 e5

e4e3 e6
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Variable-Time Step Advance Simulation

• Simulation clock advanced a variable amount of time each step of the 
simulation, to time of next event.

• If all event times are exponentially distributed, the next event to complete and 
time of next event can be determined using the equation for the minimum of n
exponentials (since memoryless), and no “future event list” is needed.

• If event times are general (have memory) then “future event list” is needed.
• Has the advantage (over fixed-time-stamp increment) that periods of inactivity 

are skipped over, and models with a bursty occurrence of events are not 
inefficient.
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Basic Variable-Time-Step Advance Simulation 
Loop for SANs

A) Set list_of_active_activities to null.
B)  Set current_marking to initial_marking.
C)  Generate potential_completion_time for each activity that may complete in the 

current_marking and add to list_of_active_activities.
D)  While list_of_active_activities ≠ null:

1)  Set current_activity to activity with earliest potential_completion_time.
2)  Remove current_activity from list_of_active_activities.
3)  Compute new_marking by selecting a case of current_activity, and executing 

appropriate input and output gates.
4)  Remove all activities from list_of_active_activities that are not enabled in 

new_marking.
5)  Remove all activities from list_of_active_activities for which new_marking is a 

reactivation marking.
6)  Select a potential_completion_time for all activities that are enabled in 

new_marking but not on list_of_active_activities and add them to 
list_of_active_activities.

E)  End While.
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Types of Discrete-Event Simulation
• Basic simulation loop specifies how the trajectory is generated, but does not 

specify how measures are collected, or how long the loop is executed.

• How measures are collected, and how long (and how many times) the loop is 
executed depends on type of measures to be estimated.

• Two types of discrete-event simulation exist, depending on what type of 
measures are to be estimated.

– Terminating - Measures to be estimated are measured at fixed instants of 
time or intervals of time with fixed finite point and length.  This may also 
include random but finite (in some sense) times, such as a time to failure.

– Steady-state - Measures to be estimated depend on instants of time or 
intervals whose starting points are taken to be t →∞.
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Issues in Discrete-Event Simulation
1)  How to generate potential completion times for events

2)  How to estimate dependability measures from generated trajectories
– Transient measures
– Steady-state measures

3)  How to implement the basic simulation loop
– Sequential or parallel
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Generation of Potential Completion Times
1)  Generation of uniform [0,1] random variates

– Used as a basis for all random variate samples
– Types

• Linear congruential generators
• Tausworthe generators
• Other types of generators

– Tests of uniform [0,1] generators

2)  Generation of non-uniform random variates
– Inverse transform technique
– Convolution technique
– Composition technique
– Acceptance-rejection technique
– Technique for discrete random variates

3)  Recommendations/Issues
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Generation of Uniform [0,1] Random Number Samples
Goal: Generate sequence of numbers that appears to have come from uniform [0,1] 

random variable.

Importance: Can be used as a basis for all random variates.

Issues:
1)  Goal isn’t to be random (non-reproducible), but to appear to be random.
2)  Many methods to do this (historically), many of them bad (picking 

numbers out of phone books, computing π to a million digits, counting 
gamma rays, etc.).

3)  Generator should be fast, and not need much storage.
4)  Should be reproducible (hence the appearance of randomness, not the 

reality).
5)  Should be able to generate multiple sequences or streams of random 

numbers.
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Linear Congruential Generators (LCGs)
• Introduced by D. H. Lehmer (1951).  He obtained

xn = an mod m
xn = (axn - 1) mod m

• Today, LCGs take the following form:

xn = (axn - 1 + b) mod m, where

xn are integers between 0 and m - 1
a, b, m non-negative integers

• If a, b, m chosen correctly, sequence of numbers can appear to be uniform and 
have large period (up to m).

• LCGs can be implemented efficiently, using only integer arithmetic.

• LCGs have been studied extensively; good choices of a, b, and m are known.  
See, e.g., Law and Kelton (1991), Jain (1991).
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Tausworthe Generators

• Proposed by Tausworthe (1965), and are related to cryptographic methods.

• Operate on a sequence of binary digits (0,1).  Numbers are formed by selecting 
bits from the generated sequence to form an integer or fraction.

• A Tausworthe generator has the following form:
bn = cq - 1bn - 1 ⊕ cq - 2bn - 2 ⊕ . . . ⊕ c0bn - q

where bn is the nth bit, and ci (i = 0 to q - 1) are binary coefficients.

• As with LCGs, analysis has been done to determine good choices of the ci.

• Less popular than LCGs, but fairly well accepted.
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Generation of Non-Uniform Random Variates
• Suppose you have a uniform [0,1] random variable, and you wish to have a 

random variable X with CDF FX.  How do we do this?

• All other random variates can be generated from uniform [0,1] random variates.

• Methods to generate non-uniform random variates include:
– Inverse Transform - Direct computation from single uniform [0,1] variable 

based on observation about distribution.
– Convolution - Used for random variables that can be expressed as sum of 

other random variables.
– Composition - Used when the distribution of the desired random variable 

can be expressed as a weighted sum of the distributions of other random 
variables.

– Acceptance-Rejection - Uses multiple uniform [0,1] variables and a function 
that “majorizes” the density of the random variate to be generated.
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Inverse Transform Technique
Suppose we have a uniform [0,1] random variable U.

If we define X = F-1(U), then X is a random variable with CDF FX = F.

To see this,
FX(a) = P[X ≤ a]

= P[F-1(U) ≤ a]
= P[U ≤ F(a)]
= F(a)

Thus, by starting with a uniform random variable, we can generate virtually any 
type of random variable.
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Example of Inverse Transform

Let X be an exponentially distributed random variable with parameter λ.  Let U be a 
uniform [0,1] random variable generated by a pseudo-random number generator.
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Convolution Technique
• Technique can be used for all random variables X that can be expressed as the 

sum of n random variables
X = Y1 + Y2 + Y3 + . . . + Yn

• In this case, one can generate a random variate X by generating n random 
variates, one  from each of the Yi, and summing them.

• Examples of random variables:
– Sum of n Bernoulli random variables is a binomial random variable.
– Sum of n exponential random variables is an n-Erlang random variable.
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Composition Technique
• Technique can be used when the distribution of a desired random variable can 

be expressed as a weighted sum of other distributions.

• In this case F(x) can be expressed as

• The composition technique is as follows:
1) Generate random variate i such that P[I = i] = pi for i = 0, 1, . . . 

(This can be done as discussed for discrete random variables.)
2)  Return x as random variate from distribution Fi(x), where i is as chosen 

above.

• A variant of composition can also be used if the density function of the desired 
random variable can be expressed as weighted sum of other density functions.
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Acceptance-Rejection Technique
• Indirect method for generating random variates that should be used when other 

methods fail or are inefficient.
• Must find a function m(x) that “majorizes” the density function f(x) of the 

desired distribution.  m(x) majorizes f(x) if m(x) ≥ f(x) for all x.
• Note:

• If random variates for m(x) can be easily computed, then random variates for f(x) 
can be found as follows:

1)  Generate y with density m′(x)
2)  Generate u with uniform [0,1] distribution
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Generating Discrete Random Variates

• Useful for generating any discrete distribution, e.g., case probabilities in a SAN.
• More efficient algorithms exist for special cases; we will review most general 

case.
• Suppose random variable has probability distribution p(0), p(1), p(2), . . . on 

non-negative integers.  Then a random variate for this random variable can be 
generated using the inverse transform method:

1)  Generate u with distribution uniform [0,1]
2)  Return j satisfying
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Recommendations/Issues in Random Variate Generation

• Use standard/well-tested uniform [0,1] generators.  Don’t assume that because a 
method is complicated, it produces good random variates.

• Make sure the uniform [0,1] generator that is used has a long enough period.  
Modern simulators can consume random variates very quickly (multiple per 
state change!).

• Use separate random number streams for different activities in a model system.  
Regular division of a single stream can cause unwanted correlation.

• Consider multiple random variate generation techniques when generating non-
uniform random variates.  Different techniques have very different efficiencies.
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Estimating Dependability Measures: Estimators and 
Confidence Intervals

• An execution of the basic simulation loop produces a single trajectory (one 
possible behavior of the system).

• Common mistake is to run the basic simulation loop a single time, and presume 
observations generated are “the answer.”

• Many trajectories and/or observations are needed to understand a system’s 
behavior.

• Need concept of estimators and confidence intervals from statistics:
– Estimators provide an estimate of some characteristic (e.g., mean or 

variance) of the measure.
– Confidence intervals provide an estimate of how “accurate” an estimator is.
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Typical Estimators of a Simulation Measure
• Can be:

– Instant-of-time, at a fixed t, or in steady-state
– Interval-of-time, for fixed interval, or in steady-state
– Time-averaged interval-of-time, for fixed interval, or in steady-state

• Estimators on these measures include:
– Mean
– Variance
– Interval - Probability that the measure lies in some interval [x,y]

• Don’t confuse with an interval-of-time measure.
• Can be used to estimate density and distribution function.

– Percentile - 100βth percentile is the smallest value of estimator x such that   
F(x) ≥ β.
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Different Types of Processes and Measures Require 
Different Statistical Techniques

• Transient measures (terminating simulation):
– Multiple trajectories are generated by running basic simulation loop multiple 

times using different random number streams.  Called Independent 
Replications.

– Each trajectory used to generate one observation of each measure.
• Steady-State measures (steady-state simulation):

– Initial transient must be discarded before observations are collected.
– If the system is ergodic (irreducible, recurrent non-null, aperiodic), a single 

long trajectory can be used to generate multiple observations of each 
measure.

– For all other systems, multiple trajectories are needed.
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Confidence Interval Generation: Terminating Simulation
Approach:

– Generate multiple independent observations of each measure, one 
observation of each measure per trajectory of the simulation.

– Observations of each measure will be independent of one another if different 
random number streams are used for each trajectory.

– From a practical point of view, new stream is obtained by continuing to 
draw numbers from old stream (without resetting stream seed).

Notation (for subsequent slides):
– Let F(x) = P[X ≤ x] be measure to be estimated.
– Define µ = E[X], σ2 = E[(X - µ)2].
– Define xi as the ith observation value of X (ith replication, for terminating 

simulation).

Issue:  How many trajectories are necessary to obtain a good estimate?
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Terminating Simulation: Estimating the Mean of a 
Measure I

• Wish to estimate µ = E[X].
• Standard point estimator of µ is the sample mean

• To compute confidence interval, we need to compute sample variance:
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Terminating Simulation: Estimating the Mean of a 
Measure II

• Then, the (1 - α) confidence interval about x can be expressed as:

Where
–

–
– N is the number of observations.

• Equation assumes xn are distributed normally (good assumption for large 
number of xi).

• The interpretation of the equation is that with (1 - α) probability the real value 
(µ) lies within the given interval.
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Terminating Simulation: Estimating the Variance of a 
Measure I

• Computation of estimator and confidence interval for variance could be done 
like that done for mean, but result is sensitive to deviations from the normal 
assumption.

• So, use a technique called jackknifing developed by Miller (1974).

• Define
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Terminating Simulation: Estimating the Variance of a 
Measure II

• Now define

(where s2 is the sample variance as defined for the mean)

• And

• Then

is a (1 - α) confidence interval about σ2.
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Terminating Simulation: Estimating the Percentile of an 
Interval About an Estimator

• Computed in a manner similar to that for mean and variance.

• Formulation can be found in Lavenberg, ed., Computer Performance Modeling 
Handbook, Academic Press, 1983.

• Such estimators are very important, since mean and variance are not enough to 
plan from when simulating a single system.
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Confidence Interval Generation: Steady-State 
Simulation

• Informally speaking, steady-state simulation is used to estimate measures that 
depend on the “long run” behavior of a system.

• Note that the notion of “steady-state” is with respect to a measure (which has 
some initial transient behavior), not a model.

• Different measures in a model will converge to steady state at different rates.
• Simulation trajectory can be thought of as having two phases: the transient phase 

and the steady-state phase (with respect to a measure).
• Multiple approaches to collect observations and generate confidence intervals:

– Replication/Deletion
– Batch Means
– Regenerative Method
– Spectral Method

• Which method to use depends on characteristics of the system being simulated.
• Before discussing these methods, we need to discuss how the initial transient is 

estimated.
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Estimating the Length of the Transient Phase

Problem: Observations of measures are different during so-called “transient 
phase,” and should be discarded when computing an estimator for steady-state 
behavior.

Need: A method to estimate transient phase, to determine when we should begin to 
collect observations.

Approaches:
– Let the user decide: not sophisticated, but a practical solution.
– Look at long-term trends: take a moving average and measure differences.
– Use more sophisticated statistical measures, e.g., standardized time series 

(Schruben 1982).

Recommendation:
– Let the user decide, since automated methods can fail.
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Methods of Steady-State Measure Estimation: 
Replication/Deletion 

• Statistics similar to those for terminating simulation, but observations collected 
only on steady-state portion of trajectory.

• One or more observations collected per trajectory:

• Compute

as ith observation, where Mi is the number of observations in 
trajectory i.

• xi are considered to be independent, and confidence intervals are generated.
• Useful for a wide range of models/measures (the system need not be ergodic), 

but slower than other methods, since transient phase must be repeated multiple 
times.
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Methods of Steady-State Measure Estimation: Batch 
Means

• Similar to Replication/Deletion, but constructs observations from a single 
trajectory by breaking it into multiple batches.

• Example

• Observations from each batch are combined to construct a single observation; 
these observations are assumed to be independent and are used to construct the 
point estimator and confidence interval.

• Issues:
– How to choose batch size?
– Only applicable to ergodic systems (i.e., those for which a single trajectory 

has the same statistics as multiple trajectories).
– Initial transient only computed once.

• In summary, a good method, often used in practice.

initial transient O11 O12 O21 O22

O31 O32 33nO...

O13 11nO...

...O23 ...
22nO
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Other Steady-State Measure Estimation Methods I
• Regenerative Method (Crane and Iglehart 1974, Fishman 1974)

– Uses “renewal points” in processes to divide “batches.”
– Results in batches that are independent, so approach used earlier to generate 

confidence intervals applies.
– However, usually no guarantee that renewal points will occur at all, or that 

they will occur often enough to efficiently obtain an estimator of the 
measure.

• Autoregressive Method (Fishman 1971, 1978)
– Uses (as do the two following methods) the autocorrelation structure of 

process to estimate variance of measure.
– Assumes process is covariance stationary and can be represented by an 

autoregressive model.
– Above assumption often questionable.
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Other Steady-State Measure Estimation Methods II
• Spectral Method (Heidelberger and Welch 1981)

– Assumes process is covariance stationary, but does not make further 
assumptions (as previous method does).

– Efficient method, if certain parameters chosen correctly, but choice requires 
sophistication on part of user.

• Standardized Time Series (Schruben 1983)
– Assumes process is strictly stationary and “phi-mixing.”
– Phi-mixing means that Oi and Oi + j become uncorrelated if j is large.
– As with spectral method, has parameters whose values must be chosen 

carefully.
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Summary: Measure Estimation and Confidence Interval 
Generation

1)  Only use the mean as an estimator if it has meaning for the situation being 
studied.  Often a percentile gives more information.  This is a common mistake!

2)  Use some confidence interval generation method!  Even if the results rely on 
assumptions that may not always be completely valid, the methods give an 
indication of how long a simulation should be run.

3)  Pick a confidence interval generation method that is suited to the system that 
you are studying.  In particular, be aware of whether the system being studied is 
ergodic.

4)  If batch means is used, be sure that batch size is large enough that batches are 
practically uncorrelated.  Otherwise the simulation can terminate prematurely 
with an incorrect result.
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Summary/Conclusions: Simulation-Based Validation 
Techniques

1)  Know how random variates are generated in the simulator you use.  Make sure:
– A good uniform [0,1] generator is used
– Independent streams are used when appropriate
– Non-uniform random variates are generated in a proper way.

2)  Compute and use confidence intervals to estimate the accuracy of your 
measures.
– Choose correct confidence interval computation method based on the nature 

of your measures and process
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